Reset version of a manuscript submitted November 15, 1979 to ACM SIGMOD Record. Written November, 1979;
reset March, 1996. Freely available via http://www.medg.lcs.mit.edu/doyle. Author’s current address: Laboratory
for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139.

Historical Annotations and Humble Databases

Jon Doyle
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
November 15, 1979

As databases and systems of interrelated databases become more common and more
complex, our society comes to rely crucially on their accuracy and intelligibility. Sto-
ries abound of false information irrevocably ruining someone’s credit ratings, employment
records, or worse. In trying to deal with such tragedies, society finds that computer systems
are designed with the view that they are monolithic, infallible sources of information. This
leads to great disrespect and growing resentment of these large information systems. If we
are to justify our reliance on these systems while avoiding society’s censure, we can take
either one of two paths. We might make databases responsible for their contents, but this
is impossible with current technology. More practically, with current techniques we can
make databases explicitly defer all responsibility to humans. What we can do is to have
database systems keep historical information about their inputs and about the computa-
tions they perform. This historical information can then be used to construct explanations
or justifications of each database entry so that errors can be traced to bad inputs, to faulty
programs, or to other databases in a distributed system. In this way, the computer can be
prepared with the fact of its own fallibility and irresponsibility, and can help track down its
own problems and those of its users. While this may not render intelligible the enormous
systems of programs involved, at least their effects will have been isolated to some extent.
This may add considerable cost in implementing database systems, but we suggest that in
society’s view it is too expensive not to provide these facilities. With this motivation, we
briefly outline methods for constructing such “humble” databases.

The basic idea is simple. The main objective is that no information begin with the
database; all information can be traced to some identifiable external source. To achieve
this objective, two steps are required. First, each new piece of information entered into the
system is annotated with its source. For example, the source specification might mention
the time and location of entry, the person entering the data, the physical form number
and the location of the form in physical files, if any, and perhaps other relevant informa-
tion. In highly influential databases in which the security of the system is very important,
unforgeable identification codes for the person involved might be used. Second, whenever
computations are performed on the database, again each record in the resulting database
is annotated with its source, namely the records used in its computation, the time of the
computation, the version of the program and compiler used, the computer used, and other
relevant information. For example, when two files are merged, each record in the resulting
file points back to some record in one of the merged files. When records in one file are used
to update those in another (or in itself), the updated records similarly point to the origin
records, time, program, etc. (In fact, these annotations might well exist for each field of
the records, to show just what other fields of the records were involved in computing the
annotated field. This would help to unravel the actions of complex programs as well.)

©1979, 1996 Jon Doyle. All rights reserved.



The cost of keeping this historical information can be held to a minimum in many
ways. It may be possible to avoid keeping complete historical annotations of each record
of each file involved, for example in merging two files, when the only information necessary
to reconstruct the source of a particular record are the two files merged to produce the
resulting file. The complete system calls for keeping each version of a database for future
reference, but if this is too expensive, one can maintain multiple versions of each record,
corresponding to successive updates of the record, and mark one version as the current ver-
sion. If bidirectional pointers are used to link records with their sources, the consequential
effects of updating a record can be computed by tracing forward through the pointers from
sources to consequences starting with the superceded record version. (These techniques are
described in [1], but have only been explored there in small databases.) If the computer
system running the database is careful to permanently archive all versions of the programs
and programming systems in use and the durations of their use, then simple version num-
bers may suffice to mention which program performed some computation. If the computer
system does not archive the program versions, it may well be worthwhile for the database
system to itself include a copy of the program producing a new database as part of the
database.

We have had considerable practical experience with these techniques in current artificial
intelligence programs, where they are regularly used both to explain and to automatically
update databases. (See [1] for a discussion.) Many Al researchers who have not yet adopted
these techniques are still suspicious of the memory requirements of such systems, but those
who do use them will never give them up. The explanatory capabilities of these techniques
make possible ways of using and debugging a complex system that just could not be done
before. The difference in the ease of use and intelligibility of these programs seems as great
as when high-level languages superceded assembly language.

To stress our main point again, it may be impossible for systems without historical
annotations to do many of the things that we want our databases or computer systems
to do, namely to defer responsibility to humans so that their contents may be explained
and corrected. The larger and more important our databases become, the more important
such humility becomes. The fairness and effectiveness of our databases are at stake, and if
society is to trust their accuracy and usefulness, they must be able to trace their contents
to responsible sources.

Acknowledgments: I thank Ronni Rosenberg for several suggestions and for valuable
criticisms of drafts of this paper. Statements of Gerald J. Sussman and Joseph Weizenbaum
provided motivation. I thank the Fannie and John Hertz Foundation for their support via
a graduate fellowship.

Reference

1. Doyle, J., A truth maintenance system, Artificial Intelligence 12, in the press, 1979.



