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1 Introduction

This paper is about one theoretical and two practical applications of mathe-
matical logic in artificial intelligence: the analysis of representational systems,
the elucidation or formulation of knowledge, and the calculation of meaning.
Our focus is on the second of these applications, the elucidation of knowledge,
and we assume acquaintance with the elementary concepts of logic—logical
languages, proofs, and models. (The appendix lists the elementary notions
whose aquaintance is assumed here.) Almost any textbook of logic provides
an adequate introduction to these concepts. See, for example, [Suppes 1957],
[Margaris 1967] or the survey article [Prior 1967].

1.1 Elucidation of knowledge

The elucidation of knowledge is a central activity in many sorts of thinking.
The basic process of elucidation is one of iteratively judging, diagnosing, and
revising tentative formulations and formalizations of knowledge, and may be
applied to all aspects of an agent’s knowledge, including its beliefs, preferences,
procedures, and plans. For example, the task of knowledge acquisition involves
elucidating the knowledge possessed by an informant; the task of learning in-
volves elucidating the organizing aspects or theoretical knowledge underlying
a body of data; and the formulation of knowledge of how to best achieve one’s
goals is the essence of deliberation and planning. Logic supplies a vocabulary
of ways of analyzing, judging, and criticizing tentative formulations of subject
matters—specific expertise, data or experience, plans and possibilities—so as
to guide the process of improving the formulations, and the bulk of this pa-
per is devoted to explaining these concepts and their use in the process of
formalization.

1.2 Analysis of representational systems

Logic’s metatheoretical vocabulary is both fundamental and universal, and so
supplies a means for theoretically assessing all proposed representational sys-
tems, whether or not these systems are based on logical languages and logical
operations. Briefly put, logic may be used as a language of ascribed represen-
tations in analyzing the behavior of agents. Whether an agent is constructed
using representations or using no explicit representations at all, by treating

1



the agent’s behavior as a subject matter we may ascribe representations to it
if we wish—that is, present the theory of its behavior as if it operated repre-
sentationally. These imputed representations may then be analyzed as if they
were real to determine the properties and limits of the agent’s knowledge.
The logical properties and limits of the imputed representations are then true
descriptions of the agent’s powers, no matter how the agent is organized in-
ternally. By the same token, using logic to specify the desired behavior of an
agent in no way commits one to using logical languages or logical operations
in the implementation of the agent.

1.3 Calculation of meaning

Logic is a tool of mechanization as well as a tool of formalization. Much of ar-
tificial intelligence concerns computation or calculation, and logic also supplies
ways of calculating meanings, implications, and conclusions. But these uses of
logic are already well covered in the literature, and so we will only discuss them
briefly. (See [Nilsson 1980], [Kowalski 1977], [Siekmann and Wrightson 1983].)
The fundamental methods are to use proofs to determine entailments, and to
use models to justify (or contradict) implications. Both methods have been
widely used in artificial intelligence, though their usefulness is usually limited,
both because of incompleteness and intractability of theories, and because of
infinity and ungraspability of models. See [Rabin 1974] and [Harel 1987] for
reflections on the computational limits of these techniques.

1.4 Logic and psychology

Logic has also been presented as a theory of thinking, with the rules of logic
cast as laws of thought. But this characterization of logic is misguided. Logic
is not a theory of reasoning or thinking, whether descriptively or normatively
construed. It is not a descriptive theory for humans, for humans are not
ideal. More importantly, it is also not a normative theory, for reasoning is
an activity, and logic is not about an activity but about expression, meaning,
and entailment. Unfortunately, the belief that logic is intimately related to
reasoning is widespread, and this causes no end of confusion. Do not be fooled
when you come across such claims. We cannot treat this subject here: see
[Harman 1986], [McDermott 1986], and [Doyle 1986] for extended discussions.
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2 The process of formalization

The process of formalizing a subject matter is easily described but of un-
predictable difficulty. In this section, we sketch a recipe or procedure for
formalizing knowledge that anyone can follow.

In essence, the process of formalization is iterative improvement and devel-
opment of an initial formulation—a sequence of rational guesses and rational
revisions of these guesses. In these notes we only sketch the process infor-
mally. For an extended treatment of these ideas in much greater detail, see
[Polya 1945], [Polya 1962], and especially [Polya 1965]. Do not assume that
Polya’s focus on mathematical problem solving means that this method ap-
plies only to mathematics. On this point, see also [Truesdell 1984a]. For a
formal treatment, see [Doyle 1986].

It is important to realize that, to paraphrase Hamming [1962], the purpose
of formalization is insight, not axioms. Formalization aims at making intu-
itions exact, precisely so that they may be clearly understood. The first aim is
not calculation, but criticism. Can one’s intuitions be made coherent? When
clearly stated, are they what one wants? Will everyone agree on them? Are
one’s initial intuitions adequate, or are there better (simpler, more powerful)
ways of thinking? In answering such questions, computation serves only as a
means for gaining experience with the implications of formalizations, not as an
end in itself. While one may write and employ poorly understood programs,
if we are ever to trust these programs enough to use them in consequential
applications (e.g., medicine, business, engineering, manufacturing, adminis-
tration, education, war), we must be able to understand them, and achieving
such understanding is what formalization is all about. See [Doyle 1984] and
[Doyle 1985] for further discussion.

2.1 Formulation and formalization

We may divide the process of codifying a subject matter into two parts, formu-
lation and formalization. (Actually, this is not quite right, but we will correct
the error as we go.) Formulation comes first, and is informal—a sketch of the
codification—and formalization comes second—a detailed portrait over the ba-
sis of the sketch. The step of formulation looks much like philosophy (verbal
proposals, arguments, and criticisms), while the step of formalization looks like
mathematics (mathematical definitions and axioms, proofs, and counterexam-
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ples).
At the beginning of the process, if the subject is not well understood al-

ready, one must flounder around for a while, trying out various conceptual-
izations without worrying about the precise details, just to get a feel for what
seems worth pursuing. This floundering constitutes the formulation step, and
it may go on for a long while. One can only truly proceed from formulation to
formalization if one can make the concepts of the favored informal formulation
mathematically precise. If the mathematics of the day does not offer enough
adequate formal concepts to do this, the formalization step must be postponed
pending the search for new mathematical concepts to complete the task. In
any event, it is always possible to regress from mathematical investigation to
philosophical discussion if the precise formalization of a formulation shows up
previously invisible flaws. If the mathematical formalization itself does not
suggest fixes, it may be necessary to reopen philosophical debate in light of
the new information to find a new formulation.

For some questions, it may be that we never get beyond the stage of philo-
sophical discussion, but that is an open question. Philosophers like to view
the central questions of philosophy as eternal, but even if that is so, the pro-
cess of finding better and better formulations of these questions increases our
knowledge and spins off many mathematical subjects of considerable interest.
If you are interested in learning more about this sort of thing, read [Rorty
1979], [MacLane 1986], [Jaffe 1984], and [Truesdell 1958]. For fun, consider
[Brams 1983].

2.2 Iterative formulation and formalization

The basic procedure is described by these steps.

1. Pick a vocabulary of concepts (a language of discussion), and axioms,
rules of reasoning, and intended interpretations of the terms of this vo-
cabulary.

2. See if all the obvious or intuitive elements of the subject matter are
expressible in the language. If not, return to step 1 and fix the vocabulary.

3. See if the axioms and rules correctly capture all the obvious or intuitive
elements of the subject matter. Do they lead to false or undesired con-
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clusions? Are some elements missing? If so, return to step 1 and fix the
axioms and rules.

4. See if the axioms and rules admit unwanted alternative interpretations
(for instance, trivial ones), or if they in fact are incompatible with the in-
tended interpretation, with some of the intended interpretations if there
are more than one, or with each other. If they are ambiguous, incom-

patible, or inconsistent, return to step 1 and fix the axioms and rules, or
widen or fix the set of intended interpretations.

5. Now that everything seems to be working right, we check to see if the
formalization may be improved in various ways. First, see if concepts,
axioms, and rules may be simplified. If so, back to step 1.

6. Next, see if the subject may be separated into disjoint sub-subject mat-
ters. If there are two concepts that appear roughly orthogonal, there
may be a minor reformulation that fully separates them and so clarifies
them. If they have some irreducible overlap, perhaps this intersection is
an interesting concept in itself, and can be isolated in a way that makes
separating the rest easy. If so, back to step 1.

7. See if the formulation can be generalized to cover more ground. If so,
back to step 1.

8. See if the formulation can be efficiently mechanized, and if not, if some
more mechanizable reformulation is possible. (These questions may refer
to either a fixed means of mechanization, or to any possible mechaniza-
tion.) If so, back to step 1.

Note that this procedure has no stopping point. You can always seek fur-
ther improvements. How long you go depends on whether the subject remains
interesting and important, and whether your current formalization is good
enough for your current purposes.

Another point is that the same procedure works for either verbal formula-
tions and mathematical formalizations. The two differ only in the standards
for convincing definitions, arguments, and counterarguments. In philosophy,
it is easy to seem to have defined or proved something, but people can argue
with you forever about whether you have or not. In mathematics, it may be
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hard to find the formal definitions and proofs, but once you have, there is no
further argument, at least about the proofs.

Similarly, the models employed may be formal or informal. Mathematical
logic texts often convince students that models are always purely mathemat-
ical, abstract structures. In fact, any things may be used in interpreting
theories. Especially in science, the intended interpretations are things in our
world, not abstract structures.

2.3 Formalization and mechanization

When the procedure is used to develop a formalization, the question of mech-
anization need not be held until the end.

By mechanization we mean a procedure for assessing truth of sentences
relative to the theory, or for assessing provability of sentences via the theory.
The two notions of truth and proof yield two basic ways of mechanizing the
process of answering questions within a formalization. One may use proofs to
answer questions about models (using implication to answer questions about
entailment), or use models to answer questions about proofs (discovering im-
plications via entailments). If a theory is sound, then every implication reflects
an entailment, so if one proves one thing from another, it reveals an entail-
ment. If the theory is complete, every entailment reflects an implication, so if
all models satisfying one thing also satisfy another, it reveals an implication
(but not necessarily the proof of the implication in the theory).

In general, theories are unmechanizable, or, if mechanizable, are hopelessly
difficult. But a mechanization or partial mechanization may be used in the
early steps of the procedure to facilitate experiments with the formalization.
Steps 3 and 4 consist of checking that the tentative formalization really cap-
tures the intended subject and not something else. To the extent that a mech-
anization relieves some of the chore of checking this, it speeds up the process
of formalization. Of course, if one has to specially construct a mechanization
for each subject and at each iteration of the procedure, the savings of effort
may be minimal, so for these initial checks one may want to use a general pur-
pose automated deduction system. Unfortunately, most automated deduction
systems build in a single set of inference rules. The closest one comes to the
theory-testing system that formalization requires are the Edinburgh ML sys-
tem and the “production systems” employed in artificial intelligence—general
interpreters of systems of rules and axioms. In fact, these are heavily employed

6



in artificial intelligence primarily as means for experimenting with tentative
formulations in expert system development (see [Doyle 1985]).

A word of caution: do not let questions of mechanizability (which often are
very difficult to address) unduly influence the task of formulation too early.
Yes, mechanizations can be convenient, but the most important thing is to
first find the right theory, capturing the intended subject, and only then see
how to modify or approximate it for mechanization. Without the discipline of
a single subject, the procedure of formalization will wander aimlessly.

2.4 Formalization and intuition

In the initial stages of formalization, one ordinarily attempts to reflect the
intuitive informal vocabulary and methods of the subject matter in the for-
mal vocabulary and theory. In some cases, the intuitive conception may be
formalized without substantial change. Beeson [1985, pp. 82-86], following
Feferman, discusses the notions of adequacy and fidelity of formalizations for
describing cases in which formalization mirrors intuition. A theory T is an ad-

equate formalization of a body M of informal subject matter if every concept,
argument, and result of M can be represented by a (basic or defined) concept,
proof, and theorem, respectively, of T . (We might wish to place limits on
the complexity and levels of definitions allowed to preserve a close connection
between subject and theory.) Next, T is faithful to M if every basic concept
of T corresponds to a basic concept of M , and every axiom and rule of T

corresponds to or is implicit in the assumptions and reasoning followed in M .
That is, T is faithful to M if T does not go beyond M conceptually or in
principle. Beeson considers suitable formalizations to be ones both adequate
and faithful to the subject. (See his exposition for more discussion.)

But in some cases, one’s intutions involve several mutually inconsistent
oversimplifications, and cannot be directly transformed into a formalization.
Even when one’s intuitions are consistent, further analysis of the formaliza-
tion may reveal even better formulations whose concepts are quite removed
from the superficial structures guiding the initial formulation, so that the task
of formalization involves creating and comparing alternative views. In these
cases, the best theory is not faithful to the intuitive theory. Relativity and
quantum theory are examples of this in physics; the theory of logrolling is
an example from politics and economics. Thus fidelity may not always be a
desirable property of a theory. Similarly, in science and analytic thought gen-
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erally, one attempts to separate distinct notions and study them separately.
There need not be “natural” encodings of subjects; at best there will be nat-
ural encodings of particular views of the subject corresponding to individual
intuitions. In these cases, adequacy need not be desirable either.

2.5 Metamathematics of formalization

Modern logic supplies mathematical tools not only for formalizing the axioms
and rules of a subject (that is what is usually thought of as logic), but also
the mathematical tools for judging or criticizing proposed formulations and
formalizations according to expressibility, accuracy, ambiguity, and incompat-
ibility, as well as mechanizability. In the following sections, we introduce the
basic vocabulary of metamathematics for precise study of these questions. We
will not try to be exact in every detail, or to spell out all uses and applications.
The aim rather is to convince the reader that these questions of formulation
may be posed precisely. To learn more about these metatheories, see [Barwise
1977] and [Barwise and Feferman 1985].

Section 3 presents the concepts concerning properties of individual theories
or formalizations. These are of primary importance in steps 2-4 of the proce-
dure, the steps of criticism of the tentative theory on internal grounds. Section
4 presents the concepts involved in comparing theories. These are of primary
importance in steps 5-8 of the procedure. In section 5 we present the viewpoint
of modern logic on finding the specialized logics of individual subject matters,
and introduce several specialized logics that have been studied.

3 Assessing theories

Before proceding, let us clarify the terminology we use. Informally, the com-
mon meaning of “theory” is a description of a subject matter—for example,
a list of axioms, rules, and intended interpretations. This is the meaning em-
ployed in this paper, and in Weyhrauch’s [1980] formal system as well. In
logic, however, the term theory has another meaning more convenient to log-
ical studies. In logic, a theory is the set of all sentences true of a subject.
(See [Keisler 1977] for precise definitions.) An axiomatization is any subset of
a theory equivalent to the whole theory. Naturally, a theory may have many
different axiomatizations. Indeed, one may revise the procedure of formaliza-
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tion to explicitly employ theories by, in step 1, writing down all things one can
think of that are true of the subject, whether or not those facts seem funda-
mental or not. Then, in steps 5 and 6, more perspicuous axiomatizations may
be sought. In this way, all the facts of the subject are initial data, and one
seeks to classify the facts as consequences of better and better axiomatizations.

3.1 Consistency

The most important property to seek in constructing a theory is consistency.
A theory is consistent just in case it has an interpretation in some model, so to
demonstrate consistency, one need only exhibit a model. Any model, simple
or not, intended or not, will do. An inconsistent theory has no interpretation
in any model, and so certainly cannot be interpreted as a description of the
subject matter. More exactly, an inconsistent theory describes the chosen
subject matter just as well as it describes every other subject matter. But even
though an inconsistent theory may be useless in practice, it is still valuable in
the process of formalization, for it is usually easier to correct an inconsistent
theory than to discover the theory in the first place. First drafts are almost
always represent progress over blank notebooks.

For example, in some cases one constructs a theory listing all of one’s intu-
itions about the subject matter, only to discover them inconsistent. This is not
necessarily a tragedy, for it offers an opportunity to clarify one’s thinking and
to better understand the subject matter. Sometimes the theory may be fixed
by modifying one or more of the axioms. In other cases, each of the axioms
is really something desirable, and these desires conflict necessarily. (Anyone
skeptical that one’s intuitions may conflict should read any text on morality
or functions of a real variable, or consider Milnor’s theorem on decision rules
[Luce and Raiffa 1957, pp. 297-298].) In these cases, one often must split the
theory into two or more similar but incompatible theories, each one consistent
by itself, but containing some axiom inconsistent with each of the sibling theo-
ries. In each particular application, one must then decide pragmatically which
of these versions is most appropriate. Occasionally further experience and re-
flection will lead to improved insight and a better, single theory, but usually
one must either pick one as a standard or live with a set of theories possessing
a family resemblance. Be prepared to find that family resemblances occur very
frequently in describing the ordinary objects of human life. These families of
objects or properties are called natural kinds. Their commonness makes ordi-
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nary logical definitions a rarity in formalizing commonsense knowledge, and
artificial intelligence has developed some specialized logics for capturing these
concepts. See section 5.4.

In principle, proving a theory consistent is easy. One simply constructs an
interpretation of the theory in a model; for example, an interpretation as one
of the items covered by one’s subject matter. This is usually a simple matter
for theories whose intended interpretations include specific finite structures.
If your theory is supposed to be one of finite structures and you are having
trouble constructing a model, consider the possibility that the theory is in-
consistent. In general, however, it is often difficult to tell if one’s theory is
consistent. Consistency of first-order theories is undecidable, and if the in-
tended interpretation is infinite (for example, involving the natural numbers),
one must judge how much effort, if any, to expend attempting to prove its con-
sistency. If one cannot determine consistency or inconsistency in one’s allotted
time, one might simply assume the theory consistent and be on the lookout
for indications of inconsistency that may crop up in future uses of the theory.

3.2 Categoricity

A theory is categorical if all of its models are isomorphic, so that it “really”
describes a single structure. (For infinite subjects this notion must be restated,
but it will do for this discussion.) If the intended subject matter is a single
thing, it is important to check to see that the theory describes only that thing.
If the theory is not categorical, it will possess other interpretations that are
not what one intends. On the other hand, if one intends that the theory
describe each member of a class of distinct structures, then one does not want
a categorical theory. Categoricity is not like consistency, a uniformly desirable
aim. Instead, it is a property that may or may not be desirable.

There are several metamathematical results (for example, the Löwenheim-
Skolem theorems) in logic that say that it may be harder than one thinks to
capture only the intended subject matter. One result is that finiteness and
countability are inexpressible in first-order logic. Thus any set of first-order
axioms that permit arbitrarily large finite models also have infinite models.
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3.3 Completeness

A theory is complete if every statement in its language about the subject matter
is either entailed by the theory or is inconsistent with the theory. That is, a
complete theory entails all things that are true of the subject. Inconsistent
theories are trivially complete, so if a complete theory is consistent, the set of
its possible interpretations is exactly the subject matter (or things isomorphic
to elements of the subject matter).

Clearly, a categorical theory is complete, but a complete theory need not
be categorical. Like categoricity, completeness may or may not be desirable
or possible. When it is achieved, however, it means that the theory says ev-
erything there is to say about the subject (at least in terms of the language
of the theory), while one may always add new facts to an incomplete theory.
Some subjects, for example number theory, possess no finite complete axiom-
atizations. One may always find some truths of arithmetic not entailed by a
given finite axiomatization.

3.4 Decidability

A theory is decidable if the set of sentences it entails is recursive, that is, if
there is an effective procedure that determines whether or not a sentence is a
consequence of the axioms. Every finite complete set of axioms is decidable,
but in general, decidable theories are rare, and the decision procedures for most
decidable theories are either apparently or provably intractable, so ordinarily
the issues of complexity discussed below are more important than decidability.

3.5 Complexity

While the preceding properties of theories are all absolute notions, either pos-
sessed or not by an individual theory, questions about complexity concern
tradeoffs among equivalent axiomatizations.

The first questions concern the size of the axiomatization. Is there a finite
axiomatization of the subject? Or is it not finitely axiomatizable? Are the
axioms independent, or are some redundant? In general, it may be difficult to
answer these questions. In simple cases, one demonstrates finite axiomatizabil-
ity by exhibiting a finite axiomatization, and one demonstrates independence
by exhibiting models of each subset of axioms falsifying the remaining axioms.
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In artificial intelligence, we are especially interested in theories possessing
finite (or perhaps recursive) sets of axioms, and if the subject matter does not
admit such an axiomatization, we must live with that and choose some small
partial axiomatization to work with. One can think of partial axiomatizations
as approximations to the intended theory (though there may be other ways of
approximating a theory too).

In foundational studies, logicians ordinarily are also concerned that the
axioms be independent, as this reduces the number of cases that must be con-
sidered in proving properties of the theory. In applications, where the concern
is more on using the theory than on proving properties of the theory, inde-
pendence need not be as important. Indeed, when developing a formalization
of a subject, one should not worry about independence at all, unless one is
too slowed down by excessive lists of redundant axioms. The axiom set may
always be simplified later.

The next questions about complexity concern the difficulty of proving con-
sequences of the theory using the axioms and rules. Of course, if the theory is
not decidable, some consequences are infinitely difficult to determine. But for
those consequences that are provable, one may ask how costly are the proofs.
As is known from the theory of computational complexity, this depends on
both the size of the proofs and how frequently proofs occur among possible
derivations. Both of these factors are influenced by the size and form of the
axioms and rules, so that questions like independence of axioms, though not
pressing in formalizing a subject, may be crucial in efficiently applying it.

4 Comparing theories

4.1 Relative strength

The first way to compare two theories is by looking at their sets of models.
If two theories T1 and T2 have exactly the same set of models, they are said
to be equivalent (or equipollent, or equal strength). If every model of T1 is
also a model of T2, but not vice versa, we say that T2 is weaker than T1 (or
T1 is stronger than T2). Weaker theories have more models; stronger theories
fewer. If T1 is not weaker, stronger, or equivalent to T2, the two theories are
incomparable.

The easiest way of weakening a theory is to remove axioms. The smaller set
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of axioms will have at least as many models as the larger. (If it has the same
models, the removed axioms were redundant.) Conversely, a theory may be
strengthened by adding nonredundant axioms. (If the new axioms make the
theory inconsistent, it will have no models, and cannot be made any stronger.)

4.2 Expressiveness

We may also compare theories by comparing the expressiveness of their lan-
guages. If L1 and L2 are two languages, and there is a set of definitions D

defining every term of L1 as an expression of L2, such that for every theory
T1 in L1 and T2 in L2, T1 is equivalent to T2 ∪ D, then L1 is reducible to L2.
This means that the language L1 is no more expressive than L2.

4.3 Reducibility

Another way of looking at relative strength is as reducibility of one theory
to another. Suppose that T1 and T2 are expressed in languages L1 and L2

respectively. Then if there is a set of definitions D defining every term of T1

in L2 such that T1 is equivalent to T2 ∪ D, we say that T1 is reducible to T2.
(Individual theories may be reducible without supposing their languages are.)
Logical reducibility turns out to be related to relative strength: T1 is stronger
than T2 if and only if T1 is reducible to T2, and T2 is not reducible to T1, and
T1 and T2 are reducible to each other if and only if they are equivalent.

4.4 Relative assessments

Reducibility provides a way of comparing many properties of theories. If T1

is reducible to T2, and if T1 is consistent if T2 is, then we have demonstrated
relative consistency, consistency of T1 relative to T2. Similarly, this reduction
indicates the relative completeness, relative categoricity, or relative decidabil-

ity of T1 if one can prove T1 complete, categorical, or decidable (respectively)
under the assumption that T2 is complete, categorical, or decidable (respec-
tively).

Refined notions of reducibility also play a role in computational complexity.
If T1 is reducible to T2, then the problem of answering questions in T1 can be
reduced to the problem of answering questions in T2, and we may judge the
relative complexity of T1 by considering the complexity of T2 and the costs
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of translation. For example, if queries in T1 may be translated into queries
in T2 in time polynomial in the size of the original query, we say that T1 is
polynomial-time reducible to T2.

4.5 Approximation

These ways of comparing theories provide ways—perhaps very weak ways—of
saying that one theory approximates another. In cases in which the subject is
not finitely axiomatizable, or is not feasibly decidable, we may have to employ
more tractable theories that yield useful approximations. The least interest-
ing notion of approximation is that of what can be answered in 10 steps or 10
seconds of reasoning in the ideal theory. Such approximation by amputation
normally yields chaotic results, but is widely used in artificial intelligence as
the principal means of approximate reasoning. Usually better means of ap-
proximation include using more tractable weaker or stronger theories (if any
exist), using simplified theories that omit some of the complicating aspects of
the subject, using probabilistic algorithms that compute correct answers with
known chances of failures or error, and using more tractable theories whose
answers are close to the exact ones (as in approximation algorithms for the
traveling salesman problem). See [Harel 1987] for more on these ideas.

5 Specialized logics

One of the central ideas of modern logic is to pick a class of structures—the
intended models—and to study the logic of these structures, that is, study the
satisfaction relation M |= φ for models M ranging over this class. Such log-
ics are called model-theoretic logics, logics embodying specific concepts. (See
[Barwise 1985].) First-order logic, which builds in almost nothing, is inter-
esting mathematically, but relatively limited in the concepts it can express.
For many interesting subjects, one must depart from first-order logic. (This
issue, like the relation of logic to psychology, is also controversial, as at least
one prominent philosopher, W. V. O. Quine, has argued for decades that first-
order logic is all anyone should need. There is growing evidence he is wrong
on this point.)

From this point of view, a theory is just the set of all sentences true of some
class of structures, and an axiomatization of the theory is some equivalent set
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of sentences. The question of completeness becomes the question of whether
the valid sentences of the logic are recursively enumerable. Concepts whose
logic is incomplete are not necessarily bad, merely very complex.

5.1 Logics of mathematical concepts

For example, some standard logics are best thought of as logics of mathemat-
ical concepts. Second-order logic, in which one can quantify over predicates
and functions as well as individuals, is logic with set theory built in. Monadic
and weak second-order logic are restricted variants of this. Logicians have
also studied logics of probability theory that build in measure theory and have
quantifiers like “has at least probability r” for each r > 0. The collection [Bar-
wise and Feferman 1985] surveys these sorts of logics and their construction,
from a logician’s point of view.

5.2 Logics of logical concepts

Logics have been developed for several sorts of logical or computational rea-
soning. For instance, relevance logic [Anderson and Belnap 1975] builds in the
concept of strict implication (in which the conclusion must have something
to do with the antecedent). Very roughly speaking, intutionistic and con-
structive logics [Beeson 1985] build in notions of certainty, accumulation, and
constructibility of conclusions, as do modal logics of provability [Boolos 1979].
And other modal logics of necessity and possibility [Chellas 1980], conditionals
and hypotheticals [Lewis 1973] build in metaphysics, theories of what sorts of
worlds are possible and how these different possible worlds are related. (See
also [Turner 1984].)

5.3 Logics of computation and time

Some logics build in theories of non-mathematical, non-logical subjects. For
example, temporal logics [Rescher and Urquhart 1971] build in theories of
time, and have been discussed much in both artificial intelligence and com-
puter science. In the latter they form one element of logics of programs [Harel
1979]—themselves theories of another subject matter, the classes of compu-
tational trajectories expressible in specific programming languages. (See also
[Turner 1984].)

15



5.4 Logics of psychological concepts

But for artificial intelligence, the more interesting sorts of specialized logics
are those building in either psychological notions or specific subject matters.
While mathematicians have mainly studied logics of mathematical concepts,
philosophical logicians have also studied logics of psychological (or pseudo-
psychological) concepts. For example, there are numerous logics of belief,
knowledge, desire, intent, obligation, and a large literature on each. In a logic
of belief, for instance, the language typically includes a modal operator Bel, so
that Bel(p) means that p is believed. The logic also includes rules and axioms
for drawing conclusions about the agent’s beliefs from such statements, such
as the rule

Bel(p ∧ q) ` Bel(p) ∧Bel(q).

There have been a large variety of logics of belief (“doxastic” logics) proposed,
mostly because no one agrees on what beliefs should behave like. Each doxastic
logic builds in a different conception of beliefs. The same confusing situation
holds true for logics of knowledge, desire, etc. as well. (See [Rescher 1968].)

Artificial intelligence has also developed logics for special sorts of psy-
chological structures. For example, logics of defaults [Reiter 1980] and non-
monotonic logics ([McDermott and Doyle 1980], [Moore 1983]) are logics of
simple rules for making assumptions and of the conclusions these rules yield.
(See also [Doyle 1983], [Doyle 1986].) Such assumptions also appear in some
inheritance systems as well (see [Touretzky 1984]), which are logics of concepts
like “part of,” “subclass of,” and “instance of.” One might think of these in-
heritance and default logics as logics of prototypes or natural kinds. Natural
kinds include things like lemons, lions, life, and money—things that everyone
is familiar with, but which do not admit precise definitions because they admit
many sorts of exceptions and variants—we just know them when we see them,
and may argue about borderline cases. There are big literatures on natural
kinds in both philosophy and psychology.
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A Elementary logic

We will not give an exposition of elementary logic here. Instead, we simply give
lists of fundamental notions, and leave to the reader the exercise of checking
his familiarity with each. Definitions and discussions of these notions may be
found in most textbooks, for example [Margaris 1967]. See also [Barwise 1977]
and [Siekmann and Wrightson 1983].

A.1 Languages

symbols, constants, functions, predicates, propositions, variables, literals, con-
nectives, quantifiers, operators, terms, wffs, sentences, schemata, bounded
quantification and sorts, type theory, first and second order logic, infinitary
logic

A.2 Models

interpretations, satisfaction, validity, tautology, contradiction, contingency,
entailment, compactness, Löwenheim-Skolem theorems, finite axiomatizabil-
ity, recursive axiomatizability, compactness, truth functionality, modality, Her-
brand universes

A.3 Proofs

axioms, rules, natural deduction, soundness, completeness, normalization, con-
structibility, deduction theorem, provability, equality, Gödel incompleteness
theorem, reflection principles
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A.4 Mechanization

disjunctive normal form, conjunctive normal form, Horn clauses, matrix, Skolem
functions, unification, subsumption, resolution, restricted resolution (locking,
Horn), completeness, PROLOG, ML, ERGO
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