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Abstract

Framing traditional disputes between computational and bi-
ological approaches to understanding cognition in terms of
a divide between natural and engineering inspirations artifi-
cially restricts the notion of nature to biology. One need not
restrict natural inspiration to biology, however. One can find
common ground between the two approaches in mechanics,
which underlies and provides important extensions to both
conceptions.

Introduction
The computational conception of cognition has come in for
criticism on several grounds, including undesirable brittle-
ness in capacities; the large efforts needed to manually for-
malize and represent human knowledge; the nonuniformity
evident in needing different learning methods for each dif-
ferent representation and task; and a lack of direct con-
nection with neurophysiological realizations (though some
count this as a strength rather than as a weakness). These
weaknesses of the computational conception are often con-
trasted with the strengths of biological conceptions, which
in the popular artificial neural network frameworks have
boasted of robust behaviors insensitive to small perturba-
tions in situation or mental state; relatively universal and
uniform learning methods, at least in comparison to com-
putational conceptions; and structures that fit well with both
animal physiology and evolutionary theories.

Critics of biological conceptions of cognition in turn
have pointed out that unstructured neural conceptions lack
ready interpretation or explanation in linguistic terms; that
uniform learning methods sometimes require long training
times in comparison with specific symbolic methods; and
that universality of learning methods is trivial to obtain.
These weaknesses of biological conceptions are in turn con-
trasted with notable strengths of computational conceptions,
namely expressive and independently intelligible represen-
tations of statements in natural and formal human languages;
ready provision of explanations of mental states and their
changes; straightforward cognitive computations that appear
close to some introspective accounts of human experience;
and direct provision for innate abilities and structure.
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I believe that some of the respective strengths of the bio-
logical and computational approaches come from the same
natural source, namely mechanics, and that one can seek
fruitful combinations of the two and add further strengths
by looking to concepts of mechanics that have not played
much of a role in either approach to date.

Cognitive Mechanics
The brief position statement offered here draws on Extend-
ing Mechanics to Minds (Doyle 2006), which applies mod-
ern axiomatic rational mechanics to psychology and argues
that mechanical concepts, such as force, mass, and work,
provide a useful vocabulary supplementing ones from com-
putation and neurophysiology for describing and character-
izing cognition and other mental processes.

Only a few of the axioms of modern rational mechanics
(Noll 1958; 1973; Truesdell 1991) embed assumptions about
the continuum nature of space and time. One can separate
these continuum assumptions from the rest of the content
to obtain axioms that characterize almost all of the familiar
properties of mechanical concepts in a way that is indepen-
dent of continuum assumptions. The resulting mechanics re-
produces standard mechanics as a special case, in which the
familiar continuum assumptions need apply only to physical
space and time.

The broadened mechanics also applies to nontraditional
mechanical systems that characterize time, space, mass, and
force with discrete structures that are mathematically quite
similar to the vector space structures used to characterize
traditional mechanics. Some common formalizations of dis-
crete cognitive architectures studied in artificial intelligence
can be recast in these structures and observed to satisfy the
mechanical axioms. Minds that satisfy the axioms of me-
chanics are mechanical systems, so use of mechanical con-
cepts to describe such minds involves no use of metaphor.

Hybrid combinations of discrete and continuous mechan-
ical systems, such as persons with bodies and minds that
each form mechanical systems, can also form mechanical
systems in the broadened mechanics.

Just as physical materials appear in different kinds with
different characteristics, so also do mental materials making
up different kinds of minds. In particular, cognitive architec-
tures with different characteristics can correspond to differ-
ent mechanical materials. Indeed, physical materials appear



in such variety that a particular mental material can be more
similar to a particular physical material than that physical
material is to some other physical material.

Transcending Rigid Kinematics
Development of Turing’s (1936) mathematical model of
an intelligent human mathematician engaged in calculation
produced the modern theory of symbolic and numeric com-
putation, in which discrete symbols and rules govern dis-
crete movement through finite or infinite machine states.
In developing its application to cognition, one can replace
symbols with logical or quasi-logical statements, behav-
ioral rules by inference rules, and machine configurations
by memory lists and structures, and one can combine such
discrete structures with finite numerical values to obtain
Bayesian networks and update rules.

At its base, however, Turing’s computational conception,
like the earlier calculation-oriented efforts of Babbage and
Lovelace, views thinking in terms of movements and con-
figurations of clockwork-like machines. In traditional me-
chanical clocks, of course, gears shift from one configura-
tion to another in discrete steps. Modern stored-program
computers behave much the same, except that the configura-
tions are those of discrete switching circuits. In clocks, as in
computers, the motive power that produces these changes of
configuration is irrelevant to the operation except when the
power fails and the machine stops.

From a mechanical point of view, the computational ap-
proach is limited to properties of rigid kinematical systems.
The discrete configurations correspond to symbols, and ex-
plicitly so in Newell and Simon’s (1976) physical symbol
system hypothesis about the nature of intelligence. This
rigid kinematical approach contributes to the observed brit-
tleness of computational approaches. In the mechanical
world in which we live, most things deform a bit when sub-
ject to ordinary forces, and few things exhibit perfect rigid-
ity. Turing insisted explicitly on something close to inde-
formability in his model of computation, basing the restric-
tion to finite tape alphabets on the need to avoid one symbol
shading off into another, just as a deformed “j” can resemble
an “i”.

In contrast, neural models of cognition following from
the work of McCulloch and Pitts (1943) and von Neumann
(1958) regard the imprecision of symbol boundaries as con-
tributing to robustness. Even though one can sometimes
read or design symbols into the structures and states of neu-
ral networks, as in (Touretzky and Hinton 1985), one usu-
ally expects the meaning of concepts to shift somewhat with
changes in one’s environment or activities. This sort of de-
formation is offered as a strength of neural net approaches.

Indeed, models of some types of learning explicitly in-
volve mathematical structures found in the mechanics of
deformable materials. Construction of support-vector ma-
chines, for example, involves computing a Gram matrix
from a set of data points in the course of finding a separating
embedding of the original data into a larger space. In me-
chanics, the intrinsic configuration of a body consists of the
set of distances between each pair of body points. Deforma-
tions of bodies consist of changes in intrinsic configurations.

The Gram matrix of a body of data is one representation of
the intrinsic configuration of the data, so the support-vector
technique amounts to finding a deformation of the body of
data that separates the classes of interest.

Characterizing Realistic Dynamics
Many neural models are tied to a specific level of detail
and do not in themselves support abstract and higher-level
characterizations of mind. Modern mechanics, in contrast,
gives central roles to constitutive assumptions that charac-
terize properties, such as elasticity, incompressibility, polar-
ization, and rigidity, that differentiate the variety of special
types of materials and that are critical to understanding be-
haviors independent of the precise identity of the materials
exhibiting them.

One example of an important mechanical property is men-
tal inertia or resistance to change. Neurophysiological an-
swers to questions about how minds change primarily in-
volve schemes of neural parameter adjustments, and to a
much smaller extent, ideas about growth or death of neurons
and neural structures. Although such physiological changes
might mediate mental changes, they do not answer questions
about mental change any more than sets of character inser-
tions and deletions answer questions about how Lincoln re-
vised drafts of his Gettysburg address.

Even foregoing questions about motivations of change,
neural biology does not provide good answers to questions
about the effort, difficulty, or rate of change. These play
major roles in understanding realistic notions of rationality.
The idealized rational agent assumed in economics and epis-
temology exhibits perfect epistemic omniscience and con-
sistency, and is capable of assimilating new information and
making perfect decisions instantaneously. Realistic rational-
ity, in contrast, suffers limitations: reasoning and delibera-
tion require effort and concentration, actions must be taken
despite persistent inconsistency and ignorance, and learning
takes time and slows as habits accumulate.

Mechanics provides concepts for understanding these
limitations in natural terms (Doyle 2009). Some limitations
arise from the mental mass associated with some aspects of
memory. All mass generates inertial forces that limit the
motion resultant from a given force. Other limitations arise
from bounds on the amount of work that can be performed in
effecting change. Mechanics measures work in terms of the
force applied across the distance traveled. This notion pro-
vides a natural measure of effort in mental mechanical sys-
tems as well, which in simple kinds of minds corresponds to
the number of changes to memory made in the course of rea-
soning. Some limits on the rate of work stem from bounds
on the magnitude of forces acting in a system. Natural mate-
rials generate forces bounded by the size and mass of bodies,
and such limitations are evident in realistic mental materi-
als as well, in which reasoning rules or other mechanisms
change bounded numbers of conclusions and in which sen-
sor dimensionality and Shannon channel capacity limit the
magnitude of forces.

Some mental materials exhibit forms of constitutional
rigidity, such as cognitive architectures in which some types
of conclusions are always drawn automatically regardless
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of the rules or other knowledge possessed by the reasoner.
Elastic and refractory forces are exhibited by other mental
materials. In reasoners making use of nonmonotonic default
rules and dependency-based revision and restoration opera-
tions, for example, the “rest configuration” of defeated de-
fault assumptions can be restored on the removal of the as-
sumption defeaters, and the existence of alternate support for
conclusions can resist removal of the conclusion in the first
place. The common multiplicity of conclusion sets gener-
ated by multiple nonmonotonic defaults means that removal
of deforming defeaters can let the reasoner rebound to men-
tal states other than those existing prior to imposition of the
defeaters. The elasticity characteristic of default reasoning
is thus also often accompanied by some amount of plas-
ticity. Rigidity and elasticity can aid in reasoning, but can
also impede it. In particular, when reasoning habits gener-
ate distracting conclusions that divert the reasoner from its
goals, focusing attention on those goals requires generation
of forces to counteract the distractions. In such cases, both
the creation and removal of the distraction involve work on
the part of the reasoner.

Conclusion
One can trace some of the comparative strengths and weak-
nesses of computational and biological approaches in arti-
ficial intelligence to the provision for or lack of important
characteristics of mechanical systems. As one might ex-
pect from the kinematic appearance of computation, some
kinematic characteristics of materials are easier to identify
in computational approaches than in superficial biological
models, and account for some of the advantages of compu-
tational relative to biological approaches. Similarly, some
continuum characteristics of materials are more easily iden-
tified in neurophysiological models, and account for some of
the advantages of biological over computational approaches.

Mechanics provides concepts including mass, force,
work, and elasticity that go beyond the standard con-
cepts provided by current computational and biological ap-
proaches. Augmenting computational and biological analy-
ses with mechanical concepts promises to illuminate better
the full richness of mental materials and phenomena and so
improve our understanding of mind. Fulfilling this promise
will likely require progress on developing the mathematical
analysis of discrete and hybrid mechanics in ways that paral-
lel past progress on the mathematical analysis of continuum
physics.
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