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Abstract
Logical epistemology unduly sways theories of thinking that formulate problems of nonmon-

otonic reasoning as issues of nondeductive operations on logically phrased beliefs, because the
fundamental concepts underlying such reasoning have little to do with logic or belief. These for-
mulations make the resulting theories inappropriately special and hide the characteristic structures
of nonmonotonic reasoning amid many unrelated structures. We present a more direct mathe-
matical development of nonmonotonic reasoning free of extraneous logical and epistemological
assumptions, and argue that the insights gained in this way exemplify the benefits obtained by ap-
proaching psychology as a subject for mathematical investigation through the discipline ofrational
psychology.

For Joseph A. Schatz, teacher and friend

1. Reasoning, logic, and psychology

Nonmonotonic reasoning, the study of making and revising assumptions in a reasoned or principled
way, needs little introduction in artificial intelligence today thanks to years of extensive exposition,
analysis, and application. In spite of an admirable history of progress, however, the subject stands
in need of some rethinking and redirection as the strengths and limitations of the accepted theories
become clearer. This paper seeks to further this rethinking and redirection by presenting the founda-
tions of nonmonotonic reasoning through a mathematical and philosophical approach closer to the
concepts and methods of modern physics and rational mechanics than to the standard formulations
of artificial intelligence. I believe these concepts and methods, which seek to find the most ap-
propriate means for describing and understanding psychological structure and behavior, will prove
productive for rethinking other parts of artificial intelligence as well. This introduction thus attempts
to set out some of the motivations for this rethinking and to motivate the methods underlying the
formal treatment.

This paper celebrates the twentieth volume ofFundamenta Informaticae. The year of its writ-
ing (1993) also marks the twentieth anniversary of my involvement in the field of artificial intelli-
gence; the fifteenth anniversary of the appearance of the original nonmonotonic logic (McDermott
& Doyle, 1980); and the tenth and fifth anniversaries (respectively) of the appearance of my mathe-
matical monograph (Doyle, 1983c) and my foundational monograph (Doyle, 1988), from which the
present paper derives and upon which it improves, and looking back from these anniversaries has
led me to include some personal interpretations of their history in this introduction.

1.1 Nonmonotonic reasoning

Though the reader will likely find the notion familiar, a few words about the term “nonmonotonic
reasoning” should aid in understanding the discussion to follow.
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Intuitively speaking, nonmonotonic reasoning refers to reasoning involving nonadditive changes
in beliefs, preferences, intentions, and other mental attitudes. The intuitive notion, however, is
meaningless on its own because reasoning is an activity, and activities are not inherently mono-
tonic or nonmonotonic; any monotonicity and nonmonotonicity of reasoning must be relative to
how we view the reasoning in terms of aspects of mental states. In the usual usage in theoretical
artificial intelligence, one views mental states as consisting of sets of mental attitudes and reasoning
as a process that fills out and changes these sets over time. One can thus identify two very differ-
ent senses of nonmonotonicity of reasoning:temporalnonmonotonicity, in which mental attitudes
may appear and vanish over time, andlogical nonmonotonicity, in which filling out larger sets of
attitudes may yield fewer conclusions than filling out smaller sets. Mathematically, temporal non-
monotonicity compares mental attitudes as time increases, while logical nonmonotonicity compares
consequences as mental attitudes increase.

Temporal nonmonotonicity may occur routinely and unexceptionally, for example through di-
rect temporal variation of mental attitudes by perceptual or cognitive systems that add and subtract
attitudes to reflect changes or anticipated changes in the world (as might happen if some of the atti-
tudes describe the contents of the retina). Logical nonmonotonicity may occur because the reasoner
derives some attitudes as conclusions from others as long as the right circumstances obtain. In the
canonical example, the reasoner infers that Tweety flies from the information that Tweety is a bird,
but not from the information that Tweety is also a penguin, information that defeats or undercuts the
usual conclusion. In general, however, the division between these two forms of nonmonotonicity
is not sharp, as one may draw conclusions over time to convert logical nonmonotonicity into tem-
poral nonmonotonicity, or replace mental simulations with atemporal reasoning or logics to convert
temporal nonmonotonicity into logical nonmonotonicity (cf. (Makinson & Gärdenfors, 1991)).

Theorists and practitioners in artificial intelligence recognized the need for logically nonmon-
otonic reasoning early on, motivated by problems of reasoning about knowledge and actions, by
the desire to make plausible commonsense inferences, and by the desire to speed problem-solving
searches by making quick decisions about where to search that would yield information useful for
guiding the search even if proven wrong. They suggesting ways of expressing nonmonotonic reason-
ing rules (e.g., (McCarthy & Hayes, 1969; Sandewall, 1972)) and implementing reasoning systems
that performed versions of these (e.g., (Sussman, Winograd, & Charniak, 1971)), but rigorous and
formal theories appeared later, for unlike ordinary logic, in which one takes contradictions to indi-
cate flawed axioms, useful commonplace rules of nonmonotonic reasoning can provide conflicting
conclusions in some cases, conflicts that call for adjudication, perhaps case by case, rather than for
abandonment or revision of the conflicting rules. In another canonical example, the reasoner infers
that Nixon is a pacifist because Nixon is a Quaker, but also infers Nixon is not a pacifist because
Nixon is a (US) Republican, and has to decide which of these reasonable conclusions to accept
while keeping the rules that led to them. The early proposals offered no precise ways of treating
such conflicts, even when anticipated, as identifying coherent notions of nonmonotonic conclusions
proved a perplexing task.

I formulated perhaps the first rigorous solution to this problem in 1976 as the two fundamental
principles of my original reason maintenance system or RMS (Doyle, 1976, 1979) (renamed so from
“truth maintenance system” or TMS in (Doyle, 1980)), which introduced the now-familiar notion of
nonmonotonic justification. (Some may also consider McCarthy’s (1977) probably contemporane-
ous early notion of circumscription a solution to this problem, or even credit the older logical theory
of implicit definition (Doyle, 1985).) The RMS represents mental attitudes (or other representa-
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tional or procedural items) by structures callednodesthat the RMS labels as eitherin or out (of the
current state). The RMS also records sets ofjustificationsor reasonsfor each node, most of which
express simple boolean combinations of the labelings of nodes we denote as “A \\ B ‖− c” and read
as “A without B givesc”, meaning that the nodec should bein if each node in the setA is in and
each node in the setB is out. The RMS then seeks to construct labelings for the nodes from these
justifications, labelings that satisfy two principles: a “stability” principle of labeling each nodein if
and only if one of its reasons isvalid in the labeling (i.e., expresses hypotheses “A withoutB” that
match the labeling), and a “groundedness” principle demanding that labelings provide each node la-
beledin with a noncircular argument in terms of valid reasons. The structure for justifications given
above makes both of these principles perfectly unambiguous. Indeed, these principles convert non-
monotonic reasoning tasks into problems for algorithmic analysis, and different versions of RMS
explored different graph-theoretic techniques for analyzing systems of nodes and justifications.

1.2 Logical formalizations

The fundamental RMS principles led, in time, to a variety of formalizations of the stability and
groundedness notions. The initial and most abidingly popular formalizations clothed these prin-
ciples in logical garb: nonmonotonic logic (McDermott & Doyle, 1980) and the logic of defaults
(Reiter, 1980), together with the circumscription rule of inference (McCarthy, 1977, 1980), which
as a class of inference operators rather than a “logic” has a somewhat different character from
nonmonotonic and default logics. Each of these theories formalizes nonmonotonic reasoning by
encoding groundedness and the presence and absence of knowledge in terms of logical provability
and unprovability, or in terms of logical consistency instead of provability. For example, the sim-
plest transcription of the canonical example into nonmonotonic logic translates the inference as the
implication b ∧ ¬L¬f → f , whereL stands for the provability modality,b stands for Tweety’s
birdness, andf for Tweety’s flying. A similar transcription of RMS justifications translates them
into the forma1 ∧ . . . ∧ am ∧ ¬L¬b1 ∧ . . . ∧ ¬L¬bn → c.

Formalizations, as mathematical characterizations of ideas, may be either good or bad charac-
terizations. The initial formalizations of nonmonotonic reasoning, along with their monotonously
logical subsequent variants, improvements, and extensions, proved very good as ways of making the
theoretical problems of logically nonmonotonic reasoning both interesting and accessible to a wider
audience than artificial intelligence theoreticians. This accessibility and advertisement encouraged
the involvement of many brilliant thinkers in the problems of artificial intelligence, and produced
a large and vigorous literature that has significantly increased our understanding of nonmonotonic
reasoning. It seems doubtful we would understand as much today had these formalizations not been
developed and explored as they have.

At the same time, the logical formalizations proved very bad as conceptual characterizations
of nonmonotonic reasoning because the fundamental concepts of nonmonotonic reasoning have
little to do with the concepts of logic, which in these formalizations obscure and mislead one from
attending to the concepts of interest. Understand that this doesnot mean the logical formalizations
have no value, even as conceptual characterizations, for a bad formalization may serve well enough.
But the logical formalisms deserve reconsideration because they highlight and enshrine at their
core things essentially unrelated to nonmonotonic reasoning. We enumerate only three of the most
important inappropriate aspects of the logical formalizations.
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In the first place, the logical formalizations convert what in many systems is a fast and com-
putationally trivial check for presence and absence of attitudes into a computationally difficult or
impossible check for provability, unprovability, consistency or inconsistency. This inaptness seems
especially galling in light of the initial problem-solving motivations for nonmonotonic assump-
tions, for which assumptions served to speed inference, not to slow it (cf. (de Kleer, Doyle, Steele,
& Sussman, 1977; Ginsberg, 1991)).

In the second place, the logical formalizations impede development of realistic approaches to
reasoning about inconsistent information. Standard logics make inconsistent theories trivial, and the
use of logical provability or consistency to encode inferential permissions and guidance means that
nonmonotonic theories must be consistent as well in order to be useful. But in practice, reasoners
must deal with inconsistent information all the time. They may try to remove some inconsistencies
when they deem the inconsistencies important enough to warrant the effort, but even so may take
time to remove them, occasionally even a long time, and must keep operating reasonably throughout
this process. A theory of reasoning basing the very definition of mental state on logical consistency
requirements makes representation of such processes impossible.

In the third place, the logical formalizations encourage the view that nonmonotonic rules and
defaults express beliefs or factual information, even though reasoning, and nonmonotonic reasoning
in particular, may involve desires, intentions, and other mental attitudes besides belief (cf. (de Kleer
et al., 1977; Doyle, 1980; McCarthy & Hayes, 1969; McDermott, 1978)). Now no one disputes that
some nonmonotonic rules carry or presume some beliefs, but taking this special case as the general
one has proven very misleading. For example, some theories attempting to provide guidance about
choosing from among the possible interpretations of complex sets of nonmonotonic rules interpret
these rules as qualitative statements about highly likely conditions. While high conditional proba-
bilities of the conclusions may motivate adoption of some defaults and thus deserve attention as a
special case, this interpretation does not even make sense for rules reasoning with other mental atti-
tudes, and might indicate the wrong conclusions for all we know now. But such theories have been
proposed as theories of nonmonotonic reasoning in general, not as theories of special cases. Non-
monotonic theories based on logical consistency provide another example with the same character.
These theories convert reasoning about reasoning generally into reasoning about the consistency
of beliefs. Now while one may motivate a number of reasonable principles for guiding reasoning
about beliefs in terms of avoiding inconsistency, these principles simply do not apply to reasoning
about desires and some other attitudes. The conclusions thus motivated hardly seem appropriate for
general use without much further argument.

It is tempting to point the finger of blame for these mistakes elsewhere, even back to McCarthy
and Hayes’ (1969) original brief suggestion, but I bear much responsibility for these misleading
formalizations due the initial nonmonotonic logic I developed with Drew McDermott in 1978 (Mc-
Dermott & Doyle, 1980). I well understood the distinction between the underlying RMS ideas and
the logical encoding, and was quite pleased when Reiter’s (1980) default logic later remedied a
number of the unsatisfying characteristics of our original nonmonotonic logic through an approach
closer to the RMS. Nevertheless, I was for years as encouraged as anyone in thinking that some logic
would eventually provide the right formulation for these ideas—at least until I undertook in 1981
to develop logics capturing the RMS approach even more precisely. I soon found a great variety of
possible schemes of reasoning, which suggested that the fundamental ideas were best isolated and
pursued independently rather than attempting to formulate each variant as a special quirky logic.
Mathematical classification seemed more appropriate than philosophical or metaphysical proposal,
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especially as many of the dozens (if not hundreds) of the schemes imaginable seemed well suited to
some special purpose, rather than some logic dominating the rest.

1.3 Rational psychology

Eventually it became clear that in spite of the great progress made through exploiting logical tools
and theories in artificial intelligence, one cannot expecta priori that the most appropriate theory
of psychology should have much to do with logic or should necessarily make extensive use of
logical concepts. Psychology, as a subject for investigation, includes the study of many aspects
of thought, feeling, and behavior, while standard logic mainly idealizes only part of one sort of
mental activity, reasoning about facts or beliefs, and clearly does not address notions like intent,
desire, and preference, nor even the relations between such attitudes and reasoning in terms of
beliefs (to say nothing about its silence on love, fear, and other feelings). This is not to say one
cannot cast parts of these larger theories in logical terms too; this enterprise goes back to Aristotle,
and has been investigated diligently in modern philosophical logic to good effect. But even here,
one finds no reasona priori to suppose that ordinary logic provides the most appropriate basis for
these investigations. The beautiful theories of modern mathematical logic constitute a triumph of
conceptual analysis; but while logic is great, it isn’t psychology, and to use G. A. Miller’s (1986)
vivid metaphor, instead of carving up the subject of psychology at its joints and clearly revealing
the structure of psychology’s conceptual components, standard uses of logic may in fact dismember
psychology, carving it up into ill-shapen lumps that reveal little of the attraction of the subject.

The rational mechanics of Newton and its modern renewal by Truesdell (1958, 1977) and his
contemporaries provide a model for a more productive approach. Rational mechanics is a part of
mathematics, the conceptual investigation of mechanics. “Rational” here indicates investigations
based on reason alone, rather than on experiment, engineering, or computation, the rational anal-
ysis of the concepts and theories whose applicability and feasibility are studied in experimental,
engineering, and computational projects. We call the corresponding part of mathematics devoted
to the study of psychologyrational psychology(Doyle, 1983d) (a term used by James (1892) and
earlier writers to refer to philosophical psychology). Rational psychology is not the study of rational
agents, but instead the mathematical approach to the problems of agents and their actions, whether
one thinks these agents and actions rational or irrational. It aims to understand psychological ideas
through mathematical classification of all possible minds or psychological systems, to describe and
study mental organizations and phenomena by the most fit mathematical concepts, seeking the best
(most appropriate, illuminating, edifying, powerful, . . . ) ways of formalizing psychology. It ex-
cludes the problem of identifying important psychological phenomena except as a byproduct of
organizing ideas about psychologies into a coherent mathematical whole.

The mathematical formulation of nonmonotonic reasoning presented below resulted from this
shift in focus from logic to conceptual analysis, with many of the central concepts and results of
the new formulation first circulated in my monograph (Doyle, 1983c), a dense exposition short on
explanation that revealed the mathematical structure of the subject but doubtless exceeded the tol-
erance of most potential readers. That monograph introduced the notion ofsimple reason, which
resembles a RMS justification or a propositional default in the logic of defaults, but which appears
as a conclusion as well as as a rule, and which so also resembles one of Minsky’s “K-lines” (Minsky,
1980). Simple reasons formed the focus of the original exposition, which deliberately presented the
core of the developmenttwice—once for simple reasons alone (no mention of any logical structure),
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and then again for states closed with respect to a compact abstract deducibility relation—to drive
home the irrelevance of even minimal logical notions to the central mathematical structures of rea-
soned assumptions. That presentation also deviated from logic in embracing a wide conception of
semantics and meaning as the theory of pure designation, without requiring the compositionality of
meanings usually demanded by logical theories. It also hewed close to the RMS conception in mak-
ing no assumptions that reasoned entities represented beliefs, or that presence or absence amounted
to consistency or inconsistency, or that contrary beliefs should not be held indefinitely, or that any
mental entities were inherently contradictory with any others. At the same time, it followed logic in
aiming to describe reasoning agents regardless of computability, in seeking to describe the mind of
God as well as the mind of Man. The present exposition also draws on my later monograph (Doyle,
1988), which provided better development of the motivation, better forms for some of the concepts,
and better notation.

This paper omits treatment of many important topics addressed in (Doyle, 1983c) and (Doyle,
1988), in their numerous sequelae, and to some extent in (Doyle, 1980). We have omitted most
discussion of the motivations for nonmonotonic reasoning in particular and the basic structures of
mental architectures in general; of the nature of meaning and the structure of semantical theories;
of “psycho-logics” derived from the state spaces of agents; of uniformly defeasible reasons; of the
theory of denials and contradictions; of logical encodings of reasoning; of psychological attitudes;
of conservatism and other topics concerning the evolution of mental states; of probabilistic con-
structions over trajectories and their relation to reasoning and the strength of mental attitudes; of
the failings of practical systems like the RMS; of social, economic, and political structures within
minds; of most connections with ideas from economics; and of reflection, deliberation, and ac-
tion. The mathematical formulations of these topics presented in the earlier works sometimes need
emendation, but generally fit well into the framework elaborated here.

This paper seeks to present the fundamental concepts and results about nonmonotonic reasoning
in a setting free of unnecessary logical ornament. Section 2 introduces the notion of framings as
different ways of viewing mental states, while Section 3 presents the underlying tools for describing
the constitution or special structure of mental states, including the notion of satisfaction system used
to express half of the RMS stability principle. Section 4 introduces simple reasons in semantic terms,
as elements of mental states bearing certain constitutive meanings rather than as exhibiting specific
structures, and develops canonical descriptions for them. Section 5 introduces constitutions for
reasoning that express the other half of the RMS stability principle as well as the RMS groundedness
principle, while Section 6 analyzes some of the structure of reasoned states.

2. Framings

We focus in this paper on aspects of mental states that shape or guide the course of reasoning. We
do not presume to possess a full characterization of instantaneous mental states, nor do we make
special assumptions about the nature of mental states. We instead cast the discussion instead in
terms of representations of instantaneous states (mental or otherwise) that distinguish the structures
of interest and focus on properties of structures with such representations. In doing so, we take care
to differentiate between the activities of the reasoner and our descriptions of such actions, and to
identify structures of reasoning in terms of their role in the reasoner’s activities rather than in terms
of how we represent them. That is, how we choose to talk about the reasoner and its reasoning
should not affect what these things actually are.
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We writeS to denote the set of all possible instantaneous states of the agent or agents in ques-
tion: in particular, the set of states reflecting all and only those distinctions relevant to the reasoning
activities of interest. Ordinarily we know more ways of distinguishing states, and conceive of a
larger setΩ of all possible instantaneous states, so that each state inS covers one or more states in
Ω. In practice, we have no direct access to or complete knowledge ofS (or Ω), and must instead
work with various representations ofS chosen to reflect the essential characteristics ofS in a way
amenable to reasoning and analysis. We call such faithful representationsframings.

Definition 1 (Framings) A framingof S is a one-to-one functionφ : S → S ′ taking states inS to
representations in a setS ′. We callφ exactjust in case it is onto as well.

A framing thus provides a unique representation of each state, directly representing the chosen
space of states without blurring distinctions or introducing new ones. It ensures thatS captures
only distinctions of interest since states inΩ differing only in irrelevant ways map to the same
representation, and hence must be identified inS. An exact framing, moreover, indicates an iso-
morphismS ∼= S ′, so that every difference among representations indicates a difference among
states.

Two common types of framings provide the basic tools of our discussion:multiattributeand
elementalframings. Multiattribute framings describe complex worlds in terms of several attributes
at once, mapping each states to a vectorφ(s) = (φ1(s), φ2(s), . . .) of attribute values, where
the component attribution functionsφi : S → Ai mapS to component attribute spacesAi. For
example, common framings of physiological states assign vectors of height, weight, blood pressure,
heart rate, etc. to each person. Elemental framings, on the other hand, describe states as consisting of
sets ofstate components. An elemental framing ofS over a set of componentsD is then a function
φ : S → P(D), representing each states by a setφ(s) ⊆ D. For example, we often frame mental
states in terms of a set of beliefs, desires, intentions, and other attitudes. Elemental framings may
of course be viewed as particular multiattribute framings, with each state component corresponding
to a distinct boolean attribute taking on the two values “present” and “absent”. Conversely, we may
view any strictly boolean multiattribute framing as an elemental framing. But conceptually and
notationally the set-theoretic view seems more apt in many cases.

Elemental framings are especially natural in artificial intelligence, which often constructs agents
with mental states consisting of sets of representations (symbolic or otherwise), for example, sets of
statements in a logical language, sets of data-structures, or sets of active “mental agents” in a society
of mind (Minsky, 1980). In such cases, we may choose trivial elemental framings that simply consist
of the representations explicitly contained in the state; that is, in such cases, elemental framings need
not simply provide ways of viewing states, but may actually provide the states themselves.

3. Constitutions

As a practical matter, one ordinarily chooses attributes or state components on the basis of consid-
erations independent of the details of the full state space, indeed, independent of the specific agent
in question; one usually chooses these descriptors to facilitate characterization of agents in some
general class. Consequently, convenient and useful multiattribute and elemental framings rarely
prove exact, that is, not every set of state components represents a possible state of the agent. This
inexactness poses problems, both for external analysts and for deliberative agents reasoning about
their own states and actions, since reasoning that considers every attribute vector or set of state
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components a possible state will err in some cases. To avoid these errors, we need to distinguish
those representations that actually correspond to states from those that do not.

One way to distinguish representations of actual states from imposters is to describe aconsti-
tution over the set of possible representations, a set of “laws” or restrictions on the constitutionally
admissiblecombinations of attribute values or state components. For example, a constitution for
an ideal psychological agent framed in terms of standard mental attitudes might restrict framings
to those in which the set of beliefs is always deductively closed. We add these restrictions until
only representations of actual states remain, until the framing between states and the constitution-
ally admissible representations is exact. While one may construct constitutions for mental states as
a way of specifying the design of some agent, we here do not seek to prescribe some psychology,
only to identify, understand, and classify special psychologies, with particular attention to the ones
we find most interesting. These special mental constitutions thus correspond directly to the consti-
tutive assumptions used in rational mechanics to identify special classes of physical materials (cf.
(Truesdell, 1977)).

3.1 Bounding systems

At their most abstract, constitutions simply set out the imageφ(S) of the framing under consider-
ation. The mapφ indicates an isomorphism ofS with φ(S), so the constitutionφ(S) permits one
to ignoreS itself and simply work with the representations inφ(S). Constitutive assumptions or
systemic laws with respect to elemental framings then correspond to upper bounds on the image
φ(S), which we formalize in the notion ofbounding system.

Definition 2 (Bounding systems)A bounding systemB on a setD consists ofD together with a
setB ⊆ P(D). If S ∈ B, we sayS is bounded(with respect toB).

Thus using bounding systemsB,B′, . . . overD to express constitutive assumptions means we re-
quire any admissible framingφ : S → P(D) to satisfyφ(S) ⊆ BB ∩ BB′ ∩ . . .. Naturally, we may
collapse several bounding systems over a set to a single bounding system by taking the intersection
of the several bounding sets as the combined bounding set.

We move beyond this abstract notion in three ways, each of which introduces new notions
with which to describe bounding systems or constitutive assumptions with respect to elemental
framings. The first way of expressing constitutional restrictions views state components as bearing
an internal “logic”, with the constitutionally admissible states satisfying closure and consistency
conditions with respect to this logic of state components. We formalize this method for expressing
constitutional restrictions using the notion ofinformation systems(Scott, 1982), which builds on
Tarski’s theory of closure operators to abstract the structure of logical theories. The second way
views at least some state components as having regulatory force, that is, as principles adopted by
the agent for guiding its own reasoning, with the constitutionally admissible states satisfying the
principles expressed by all the regulatory state components they contain. We formalize this in the
notion ofsatisfaction system(Doyle, 1988), a clarified version of the original notion of “admissible
state semantics” (Doyle, 1983c) developed to abstract traditional conceptions of deliberation and
self-control. Finally, the third way of expressing constitutional restrictions views at least some
state components as having motivational import, that is, as expressing the preferences, desires, or
motivations of the agent in its reasoning to complement the intentional or regulatory import of
satisfaction systems and logical import of information systems. We formalize this in the notion of
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preference systems, which bear some similarity to assignments of preferences to agents in political
economy.

Though we employ abstract logics in describing the constitutions of agents, this serves to show
the compatibility of logical notions with the theory of nonmonotonic reasoning rather than any
necessity of logical notions for the theory. Indeed, the concepts of nonmonotonic reasoning make
sense even for trivial abstract logics (nothing inconsistent and nothing new entailed), relying in
essential ways on satisfaction and preference systems as the sources of theoretical structure.

3.2 Information systems

Many formal treatments of artificial intelligence systems employ logics to describe the beliefs of
the agent by translating or rerepresenting the components of the agent’s states as sentences or for-
mulas in a logical language when the states are not already constructed as sets of logical formulae.
This step of translation introduces the extra complication of a second language and the chore of
translation, and, since most logics yield infinite sets of conclusions from finite sets of axioms, may
prove hard to invert, making it difficult to determine the composition of the agent’s state from ax-
ioms about it. We may avoid these unnecessary complications by seeking instead logics of states
that capture their structure directly, that is, logics which characterize the important aspects of the
structure of states that remain invariant under any rerepresentation in terms of different languages.
Such logics, calledinformation systemsfollowing Scott (1982), have already been developed for
use in the theory of computational domains and data types.

Definition 3 (Information systems) An information systemI over a setD consists ofD together
with a setC ⊆ Pf (D) of finite subsets ofD (the “consistent” finite subsets), and a relatioǹon
C × D (the “entailment” relation), such that for eachx, y ∈ D and X, Y ⊆ D, C and` satisfy
(writing X ` y to mean(X, y) is in `)

1. If X ⊆ Y ∈ C, thenX ∈ C,

2. If y ∈ D, then{y} ∈ C,

3. If X ` y, thenX ∪ {y} ∈ C,

4. If x ∈ X, thenX ` x, and

5. If Y ` x for all x ∈ X, andX ` y, thenY ` y.

We say that a setX ⊆ D is consistentiff each finite subsetY ⊆ X is consistent according toC;
(deductively) closediff x ∈ X wheneverY ⊆ X andY ` x; and anelementof the information
system iff both closed and consistent. We writeE(I) to denote the set of elements ofI. If ∅ ` x, we
sayx is a tautologyin I.

As we apply them here, each information system captures a logic of state components that we use to
express closure and consistency constraints on state representations. Information systems view each
element ofD as a “proposition” about states, and each set of elements as a partial description of
some state, with bigger sets representing better descriptions. The conditions on consistency and en-
tailment state that subsets of consistent sets are consistent; that each element is itself consistent; that
addition of entailed elements preserves consistency; that consistent sets entail their own members;
and that entailment is transitive. This is clearer if we extend the notation of entailment in the natural
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way to say thatX ` Y iff X ` y for eachy ∈ Y , in which case the last condition can be rewritten
asX ` Z wheneverX ` Y andY ` Z. ClearlyD is closed, as are intersections of closed sets.
Each information system thus determines a bounding system, namely(D, E(I)), and we use such
bounding systems below to require that admissible constitutional states correspond to “theories”
(deductively closed and consistent sets) with respect to the constitutive information system.

Each information system gives rise to a closure operatorΘ similar to the usual deductive closure
operatorTh of ordinary logic.

Definition 4 (Closures) We defineΘ(X), theclosureof X, by

Θ(X) def= {x ∈ D | ∀Y ⊆ D [(X ⊆ Y ∧ x ∈ X ∧ Y ` Y ) → x ∈ X]}, 1

and broaden the notationX ` x to meanx ∈ Θ(X).

The closure of a set is thus its the least closed superset. Domain theory usually restricts attention
to closures of consistent sets, but we find it useful to employ the unrestricted notion as well. The
operatorΘ exhibits properties similar to those ofTh, and one easily checks thatΘ is monotonic
(Θ(A) ⊆ Θ(B) wheneverA ⊆ B ⊆ D), idempotent (Θ(Θ(A)) = Θ(A)), and identifies the closed
sets as its fixed points (A is closed iffA = Θ(A)).

Many notions of entailment and consistency fit within the framework of information systems.
The ordinary logical notions of consistency and entailment clearly satisfy these axioms. To model
agents with no ability to reject inconsistencies, we may take the minimal notion of consistency
which considers all finite sets, and hence all sets, as consistent. Similarly, to model agents with no
(automatic) inferential powers, we may take entailment to be simple containment (X ` y iff y ∈ X),
a minimal notion that considers all sets deductively closed. When bothC and` are minimal, every
set is closed and consistent, that is,E(I) = P(D). Alternatively, if some elementsx have explicit
contraries that we denote¬x, one may chooseC to capture only lack of overt inconsistency, so that
X ∈ C iff X is finite and there is nox ∈ X such that¬x ∈ X as well. Similarly, presuming some
notion of logical structure of elements one may choose` to capture only propositional deduction,
or only Modus Ponens (X ` y iff either y ∈ X or there is somex ∈ D such thatx ∈ X and
x → y ∈ X), or only ground instantiation (X ` y iff either y ∈ X or y is a ground instance of
somey′ ∈ X), or entailment in modal, relevance, or probabilistic logics, or logics of partial data
structures, for which deductive closure amounts to filling in missing but implied “fields” to complete
the data structure. In addition, one may always choose` so that some set of attitudes is present in
every state as an unchangeable background to the agent’s reasoning. These tautologies need not just
be real logical tautologies, but instead may be substantial attitudes or “axioms”.

Efficient mechanizability of a constitution (in the physical sense as well as the computational
sense) often depends on the “locality” of the conditions imposed on states by constitutions, since
local conditions involving a small or bounded set of state components often can be checked by a
simple circuit or computational procedure with bounded effort, while global conditions on states
may require unbounded effort to verify. We therefore usually seek to find constitutions that express
conditions as locally as possible. We will not develop a precise theory of local and global properties
or their relation to mechanizability in this paper (see, for example, (Abelson, 1978) for one such
theory). We do, however, make use of the related notion of compactness already familiar in logic
and topology.

1. Added in the reprinting: The definition given in the original,Θ(X)
def
= {x ∈ D | ∃Y ∈ C Y ⊆ X ∧ Y ` x}, was

incorrect, and has been replaced in this version.
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Definition 5 (Compact information systems) We call an information systemcompactjust in case
wheneverA ` {e} in it, there exists a finiteC ⊆ A such thatC ` {e}.

Not all information systems are compact since logics correspond to information systems and some
logics, such as dynamic logic, are not compact. Clearly, though, any information system with a
trivial entailment relation (X ` x iff x ∈ X) is compact.

3.3 Satisfaction systems

Standard constitutions for physical systems consist of the physical laws of nature, and we ordinarily
view these laws as quite separate from the entities they relate. In psychological systems, however,
it seems natural to employ laws of a somewhat different character, laws represented by state com-
ponents themselves. That is, we interpret some state components as restrictions on possible states,
as indicating bounds on the composition of the states in which the components occur, so that the
states themselves set out part of their own constitution. This same point of view applies to physical
systems as well, but it seems most natural for the intentional systems of psychology, especially in
formulating constitutions for deliberating agents that restrict or guide their future behavior by adop-
tion of plans or intentions regarding that behavior. Both senses fit (retrospectively, at least) within
Boole’s notion of “laws of thought”, with state-inspecific restrictions capturing fixed legal consti-
tutions of the agent, and state-specific restrictions capturing variable laws and amendments to the
fixed constitution. To formalize interpretations of some mental components as bearing constitutive
meaning, we employ the notion ofsatisfaction system.

Definition 6 (Satisfaction systems)A satisfaction systemS overD consists ofD together with a
meaning function[[ ]] : D → P(P(D)) that we extend to a function over subsets ofD by[[∅]] = P(D)
and [[X]] =

⋂
x∈X [[x]] for each nonemptyX ⊆ D. We say that a setX ⊆ D is satisfyingor

component-admissibleiff X ∈ [[x]] for eachx ∈ X, and writeQ(S) for the set of all satisfying sets.

Intuitively, the meaning[[x]] of an elementx is the set of possible states that satisfy the constitutive
intent, if any, of the element. Ifx has no constitutive import and places no restrictions on possible
states containing it, we may take[[x]] = P(D). Satisfying sets are then just sets that satisfy the
constitutive import of each of the elements they contain, that is, setsX ⊆ D such thatX ∈ [[X]].
Note that the definition permits unsatisfiable elements (elementsx such that[[x]] = ∅) which may
not appear in any satisfying state. Each satisfaction systemS overD thus determines a bounding
system, namely(D,Q(S)).

The theory of nonmonotonic reasons elaborated below provides an important example of self-
specification, interpreting a reasonA \\ B ‖− C as requiring satisfying states to contain each
element ofC if they contain each element ofA and contain no element ofB.

In practice, most interesting satisfaction systems concern only local conditions on finite por-
tions of states, even when the states themselves may be infinite, much as many traditional logical
consistency and closure conditions exhibit compactness properties. We define an analogous notion
of compactness for satisfaction systems as follows.

Definition 7 (Compact satisfaction systems)If G ⊆ D, we writeπG : P(D) → P(G) to denote
both the natural projection function of subsets ofD onto subsets ofG and its lifting to sets of subsets.
We say that[[d]] hasbasisG ⊆ D just in caseS ∈ [[d]] iff πG(S) ∈ πG([[d]]) for everyS ⊆ D, and
that [[ ]] has basisG iff [[d]] has basisG for eachd ∈ D. We then say that a satisfaction system is
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compactiff for eachd ∈ D, whenever[[d]] has basisG there exists a finiteG′ ⊆ G such that[[d]] has
basisG′.

Clearly, every meaning has basisD, so every component meaning of a compact satisfaction systems
has a finite basis. Not all interesting meanings have finite basis; in particular, the meaningP(D) \
{∅} expressing only nonemptiness of states does not have finite basis ifD is infinite. However, the
trivial meaningP(D) has finite (indeed, empty) basis, so the trivial satisfaction system assigning
this meaning to each element is compact.

3.4 Preference systems

In addition to interpreting some elements of mental states as expressing intentional information
about the agent’s commitments (or its designer’s), psychological theories also commonly interpret
some elements as expressing evaluative information conveying the agent’s (or designer’s) desires
and preferences (relative desires). We treat some of this information through the notion ofpref-
erence system, which formalizes the interpretation of state components as expressing preference
information.

Preference systems build on a notion of preference related to the notion standard in economics
and decision theory.

Definition 8 (Preferences)A partial preference preorder∼� over a setX is a reflexive (x ∼� x) and
transitive (x ∼� z wheneverx ∼� y andy ∼� z) binary relation onX. If x ∼� y, we say thatx is
weakly preferredto y. If x andy are weakly preferred to each other, we writex ∼ y and say that
x andy are indifferent. If x is weakly preferred toy but y is not weakly preferred tox, we write
x � y and say thatx is strictly preferredto y. If none of these cases hold, we say thatx andy are
preferentially unrelated.

Clearly, indifference is an equivalence relation, and partitions the base set into a set of indiffer-
ence classes. The identity relation is the smallest preference preorder on a set. It leaves all distinct
elements preferentially unrelated, and hence has the largest number of indifference classes of ele-
ments (one for each element). The complete relation is the largest preference preorder. It makes all
elements indifferent, and has the smallest number of indifference classes (just one).

Definition 9 (Preference system)A preference systemP overD consists ofD together with a

mapping∼� taking eachd ∈ D to a partial preference preorder∼�d
def= ∼�(d) overP(D).

We take constitutional preferences to have a quite different character than the constitutive inten-
tions of satisfaction systems. Satisfaction systems capture the notion of aiming to satisfy all one’s
intentions at once, and define satisfying states as those states satisfying all of the intentions they
contain. That is, satisfying states must express consistent sets of intentions. In contrast, we view the
preferences expressed via preference systems as forms of desires, which need not be all consistent
or satisfied, even in rational agents. In consequence, one cannot reasonably require that constitu-
tionally admissible states satisfy (in some sense) all the preferences they express, and must settle
for states that areoptimal in the sense of satisfying as many preferences as possible.

Definition 10 (Optimal sets) If S ⊆ D andR ⊆ P(D), we say thatS is (Pareto) optimalin the
rangeR with respect to a preference system∼� overD just in case whenever we haveS′ �d S for
someS′ ∈ R andd ∈ S′, we also haveS �e S′ for somee ∈ S.

12
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That is,S is optimal inR if every preference for some set inR expressed by the other set can be
countered by a preference forS expressed byS. Clearly, if R′ ⊆ R andS is optimal inR, thenS
is also optimal inR′. Thus ifS is optimal inP(D), it is optimal in every range.

We do not identify any standard constitutional restriction based on optimality due to the variabil-
ity of range within one judges optimality, and instead consider optimality with respect to specific
classes of preferences and specific ranges. We hope further investigation either identifies natural
choices of range for constitutional restrictions, or explains why such choices do not exist.

3.5 Basic constitutions

Our basic notion of constitution combines bounds expressed by satisfaction and information systems
with general bounds.

Definition 11 (Basic constitution) A basic constitutionΣ overD consists of an information system
I = (D,`, C), satisfaction systemS = (D, [[ ]]), and bounding systemB = (D,B) overD, with the
admissible statesA(Σ) of the constitution being the states jointly characterized byE(I),Q(S), and
B(B), that is, the setsS ⊆ D such thatPf (S) ⊆ C, S = Θ(S), S ∈ [[S]], andS ∈ B.

The notion of basic constitution recasts the notion of admissible state semantics of (Doyle, 1983a,
1983c) in simpler terms. The treatment in (Doyle, 1983c) assigned constitutive intentional meaning
to elements and judged states satisfying or not just as in the present treatment, and also provided
what we now call a bounding system through an arbitrary restriction setR ⊆ P(D). The main
difference in formulation concerned the background logic, which was not distinguished explicitly in
an information system. The specific theories developed in (Doyle, 1983c) instead defined restriction
sets consisting of the sets closed with respect to a compact closure operator, ignoring any notion of
consistency not expressed by the satisfaction system meanings.

In many cases, we do not need the full generality of basic constitutions, and characterize states in
terms of only one or two of the information, satisfaction, or bounding systems of a basic constitution.
We give names to these special constitutions as follows, summarizing the nomenclature in Table 1.

Definition 12 (Special constitutions)We call a basic constitution overD logical just in case its
information system characterizes its admissible states;satisfyingjust in case its satisfaction system
characterizes its admissible states;logically satisfyingjust in case its information and satisfaction
systems jointly characterize its admissible states;unstructuredjust in case its bounding system
characterizes its admissible states, andtrivial just in case all subsets ofD are admissible states. We
call a state spaceS logical, satisfying, logically satisfying, or trivial with respect to an elemental
framingφ overD if φ(S) can be characterized by a logical, satisfying, logically satisfying, or trivial
constitution overD.

Satisfying constitutions, in which the states themselves explicitly express all restrictions on states,
have a certain philosophical attraction, and recall efforts in artificial intelligence towards construct-
ing completely “self-descriptive” machines (e.g., (de Kleer et al., 1977; Doyle, 1980; McDermott,
1978; Minsky, 1965)).

Although the different parts of basic constitutions sometimes permit one to shift restrictions
from one subsystem to another, different subtypes of constitutions have different expressive powers.
We begin by characterizing the simplest constitutions, the trivial ones.

Theorem 13 (Trivial constitutions) A basic constitutionΣ is trivial iff
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if A(Σ) is thenΣ is

E(I(Σ)) logical
Q(S(Σ)) satisfying

E(I(Σ)) ∩Q(S(Σ)) logically satisfying
B(B(Σ)) unstructured

P(D) trivial

Table 1: Special constitutions

1. B(Σ) = P(D),

2. C = Pf (D) and` is3 (i.e.,∈−1), and

3. {X ⊆ D | d ∈ X} ⊆ [[d]] for everyd ∈ D.

PROOF: SupposeΣ is a basic constitution overD.
(If) Suppose conditions (1)–(3) hold. The first part of condition (2) implies that all sets are con-

sistent, while the second part implies that all sets are closed, henceE(I(Σ)) = P(D). Furthermore,
condition (3) implies thatx ∈ [[d]] for eachd ∈ X ⊆ D, so everyX ⊆ D is satisfying, hence
Q(S(Σ)) = P(D). ThusA(Σ) = P(D).

(Only if) SupposeA(Σ) = P(D). SinceA(Σ) = B(Σ) ∩ E(I(Σ)) ∩Q(S(Σ)), we clearly have
B(Σ) = P(D), which is condition (1), as well asE(I(Σ)) = Q(S(Σ)) = P(D). Since every set
is consistent, so is every finite subset ofD, so we haveC = Pf (D). Next, if we haveX ⊆ D and
X ` e for somee /∈ X, thenX is not closed, henceX /∈ E(I(Σ)). Since everyX is closed, this
means̀ is 3. Finally, if d ∈ X /∈ [[d]], thenX is not satisfying, henceQ(S(Σ)) 6= P(D). But
everyX is satisfying, soX ∈ [[d]] wheneverd ∈ X, hence{X ⊆ D | d ∈ X} ⊆ [[d]]. 2

We may characterize the expressive power of satisfying constitutions quite easily.

Theorem 14 (Satisfying constitutions)A state spaceS is satisfying with respect to an elemental
framingφ overD iff ∅ ∈ φ(S).

PROOF: Let φ be an elemental framing ofS overD. If ∅ ∈ φ(S), define[[ ]] overD so that
[[d]] = φ(S) for everyd ∈ D. Then nonempty subsets ofD are satisfying iff they are inφ(S), and
∅ is both satisfying and inφ(S), henceφ(S) is exactly the set of satisfying states, soS is satisfying
with respect toφ. Conversely, ifS is satisfying with respect toφ, then∅ ∈ φ(S) since∅ is always
satisfying. 2

Thus satisfaction systems alone cannot characterize all interesting elemental framings, since they
cannot express bounding systems that require nonemptiness of state representations. More gen-
erally, even if∅ /∈ φ(S), the meaning function constructed in the proof of Theorem 14 yields
φ(S) ∪ {∅} as the set of satisfying sets (though this encoding makes all restrictions global and may
convert meanings of finite basis into meanings of infinite basis sinceφ(S) also need not have finite
basis). In consequence, any state space may be characterized by a satisfaction system together with
the bounding system consisting of all nonempty sets of state components, that is(D,P(D) \ {∅}).
Unfortunately, one cannot always achieve the same effect using logical restrictions instead of gen-
eral bounds.
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Theorem 15 (Nonemptiness)If φ(S) = P(D) \ {∅} andD has at least two elements, thenφ(S)
is not logically satisfying.

PROOF: Supposeφ(S) is jointly characterized by a satisfaction and information system,D has at
least two elements, and∅ /∈ φ(S). Since∅ is always satisfying, we must have∅ 6= Θ(∅). Now the
set of tautologiesΘ(∅) either contains at least two state components or does not. If it contains at
least two, then no set{d} consisting of only one tautology is closed, henceφ(S) 6= P(D)\{∅}. On
the other hand, if there is just one tautology{d}, then no{d′} is not closed whend 6= d′, so again
φ(S) 6= P(D) \ {∅}. 2

Thus basic constitutions for some state spaces must have nontrivial bounding systems expressing at
least the condition of nonemptiness, that is,(D,P(D) \ {∅}).

We have no complete characterization of how logical and satisfying constitutions differ in ex-
pressive power. One observes immediately that some logical state spaces are not satisfying, since
the empty set is always satisfying, but if a state space is characterized by an information system con-
taining tautologies, then∅ /∈ φ(S). Conversely, some satisfying state spaces are not logical, since
a satisfaction system may assign[[d]] = ∅, in which case no state containsd, even though we must
have{d} ∈ C by the axioms for information systems. We also observe without proof that if[[d]] 6= ∅
for everyd ∈ D, then one can construct an information system from[[ ]] by definingC to contain
those finite setsX ⊆ D such that[[X]] 6= ∅, and by definingX ` x to hold just in case[[X]] ⊆ [[x]].
Unfortunately, the elements of this constructed information system have no particular relation to
the satisfying sets of the original satisfaction system. While satisfying states must be consistent in
the constructed information system, they need not be closed, and conversely, consistent closed sets
need not be satisfying.

3.6 Preferential constitutions

We obtain a larger conception of constitution by augmenting basic constitutions with preference
systems to obtainpreferentialconstitutions.

Definition 16 (Preferential constitutions) A preferentialbasic constitution combines a basic con-
stitutionΣ overD with a preference system∼� overD.

Unlike the way in which the information, satisfaction, and bounding systems of basic constitutions
restrict the states admissible with respect to the constitution, we do not require that the preference
system of a preferential basic constitution yields any restrictions on admissible states, though spe-
cific preferential basic constitutions may in fact restrict admissible states to those satisfying certain
preferential conditions. The most natural candidates for such preferential restrictions are optimality
with respect to specific classes of preferences and ranges. Accordingly, we define optimality of
constitutions with respect to specific classes of preferences by considering whether all admissible
states are optimal among admissible states.

Definition 17 (Constitutional optimality) A basic constitutionΣ overD is optimal with respect
to a preference system∼� overD just in case eachS ∈ A(Σ) is optimal inA(Σ) with respect to∼�.

Clearly, one can always find constitutions optimal with respect to any preference system, since if∼�
is a preference system overD, the unstructured basic constitutionΣ overD such thatB(Σ) = {S}
for someS ⊆ D is trivially optimal.
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Preference systems preferring satisfying states to unsatisfying states provide natural connections
between satisfying constitutions and optimal constitutions.

Definition 18 (Satisfaction preferences)Thepure satisfaction preferencesystem corresponding to
a satisfaction system(D, [[ ]]) is the preference system(D,∼�) such that for eachd ∈ D andS, S′ ⊆
D, we haveS �d S′ just in caseS ∈ [[d]] and S′ /∈ [[d]], andS ∼d S′ just in caseS ∈ [[d]] iff
S′ ∈ [[d]]. Theweak present satisfactionpreference system definesS �d S′ just in cased ∈ S ∈ [[d]]
but notd ∈ S′ ∈ [[d]] (that is, eitherd /∈ S′ or S′ /∈ [[d]]), while thestrong present satisfaction
preference system definesS �d S′ just in cased ∈ S ∈ [[d]] butd ∈ S′ /∈ [[d]]. We call sets optimal
in some range with respect to the (weak, strong present) satisfaction preference system(weakly,
strongly present) satisfaction optimalin the range.

We then have the following result.

Theorem 19 (Satisfaction optimality) Every satisfying constitution is optimal with respect to the
corresponding strong present satisfaction preference system.

PROOF: Let Σ be a satisfying constitution overD, and let∼� be the strong present satisfaction
preference system overD corresponding to the satisfaction system ofΣ. Strong present satisfaction
optimality ofS means that wheneverd ∈ S′ ∈ [[d]] andd ∈ S /∈ [[d]] for S′ ∈ Q(Σ), then for some
e ∈ S ∈ [[e]] we havee ∈ S′ /∈ [[e]]. But sinceS is satisfying,d ∈ S /∈ [[d]] never obtains, soS is
trivially optimal amongQ(Σ). 2

Thus every satisfying state is strongly present satisfaction optimal among satisfying states. The
converse, however, does not hold in general. For example, ifD = {d} and[[d]] = {∅}, then∅ is the
only satisfying state, andD is trivially strongly present satisfaction optimal in{∅} since there is no
x ∈ ∅ ∈ [[x]].

4. Reasons

We may use the notions of satisfaction and preference systems to identify the entities we callrea-
sons, which cover all or part of familiar notions of monotonic and nonmonotonic justifications of
reason maintenance systems, default rules of default logic, and modal default rules of nonmonotonic
logics, as well as some notions of taxonomic inference and virtual context mechanisms. We identify
reasons by their constitutive import, in terms of the role they play in the agent’s constitution, rather
than in terms of mere overt structural or syntactic appearances, which vary far too much to accom-
modate other concerns to serve as useful guides to understanding. That is, reasons need not reflect
any overt structures in the unframed states themselves. They instead form part of the metalanguage
in which we discuss agent states. The agent’s “language of thought”, if any, need not express rea-
sons in the same way, and we may thus find reasons in neural networks, business organizations, or
even literary works, as well as in traditional sentential or computational systems representing them
as straightforward data-structures that directly suggest their characteristic interpretation.

We will not develop the theory of reasons here in its full generality. Instead we focus attention
on simplereasons, which we denote by expressions of the formA \\ B ‖− C, read “A without
B gives C”, meaning roughly that if the “antecedent” items inA are present in a state but the
“qualification” items inB are not, then the “conclusion” items inC should be present as well. One
can extend much of the development below to cover more general reasons that also specify a set of
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conditionally “denied” itemsD, notatedA \\ B ‖− C \\ D, but we generally avoid that additional
complexity here.

4.1 Ranges and range conditionals

Our analytical language expresses reasons in terms of the notions ofpropositional rangesandrange
conditionals. Propositional ranges provide a simple way of identifying a restricted range of sets of
state components to consider, namely those sets that lie between a “lower bound” set and an “upper
bound” set (expressed in terms of its complement).

Definition 20 (Propositional ranges) A propositional rangeoverD is a setR ⊆ P(D) such that
for someA,B ⊆ D and everyS ⊆ D we haveS ∈ R iff A ⊆ S andS ∩ B = ∅ (alternatively

writtenS ⊆ B, whereB
def= D\B), in which case we writeA \\ B (read “A withoutB”) to denote

the range, that is,

A \\ B
def= {S ⊆ D | A ⊆ S ⊆ B}.

We call an elementd ∈ D a propositional rangewith respect to a satisfaction system(D, [[ ]]) iff [[d]]
is a propositional range overD.

Algebraically, of course, a range consists of the full sublattice ofP(D) between two points ofP(D),
which we may think of as the set{A ∪ S | S ⊆ D \ (A ∪ B)}. In particular,∅ \\ ∅ represents the
complete rangeP(D).

We first observe that expressions likeA \\ B characterize ranges pretty well. Empty ranges
admit some variability of expression, but a variability easily recognized, as seen in the following
theorem.

Theorem 21 (Empty ranges)A rangeA \\ B is empty iffA andB intersect.

PROOF: Clearly, if A ∩ B 6= ∅, thenA \\ B is empty. Conversely, ifA \\ B = ∅, then by
definition for eachS ⊆ D we have eitherA 6⊆ S or S ∩B 6= ∅. If we chooseS = A, thenA ⊆ S,
so we haveA ∩B 6= ∅ as desired. 2

Nonempty ranges, in contrast, have exactly one expression of the formA \\ B.

Theorem 22 (Unique representation)If A \\ B = A′ \\ B′ 6= ∅, thenA = A′ andB = B′.

PROOF: SupposeA \\ B = A′ \\ B′ 6= ∅. By Theorem 21 we haveA ∩B = A′ ∩B′ = ∅. Thus
A ∈ A \\ B, soA ∈ A′ \\ B′, soA′ ⊆ A. But we also haveA′ ∈ A′ \\ B′, soA′ ∈ A \\ B, so
A ⊆ A′, henceA = A′. We next observe thatB \B′ must be empty, since ifx ∈ B \B′, we would
haveA∪ {x} ∈ A′ \\ B′ butA∪ {x} /∈ A \\ B, contrary to hypothesis. A similar argument shows
thatB′ \B must be empty, soB = B′. 2

To summarize, all propositional ranges have unique representations in terms of disjoint lower and
upper bounds, except for the empty range, for which any overlapping bounds provide a representa-
tion.

In addition to ranges themselves, our analysis also makes heavy use of conditionals formed from
ranges, which we callrange conditionals.
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Definition 23 (Range conditionals)A range conditionalis a setR ⊆ P(D) such that for some
A,B, C, D ⊆ D, we haveS ∈ R iff either S /∈ A \\ B or S ∈ C \\ D, in which case we write
A \\ B ‖− C \\ D (read “A withoutB givesC withoutD”) to denote the range conditional, that
is,

A \\ B ‖− C \\ D
def= {S ⊆ D | S ∈ A \\ B → S ∈ C \\ D}.

If R = A \\ B ‖− C \\ ∅ for someA,B, C, we call the range conditionalsimpleand abbreviate it
A \\ B ‖− C. We call an elementd ∈ D a (simple) range conditionalwith respect to a satisfaction
system(D, [[ ]]) iff [[d]] is a (simple) range conditional overD.

That is, range conditionals stipulate that the “conclusions”C must be held and the “denials”D must
not be held if the “antecedents”A are held and none of the “qualifiers”B are held. Putting together
the definitions of propositional ranges and range conditionals, we see that the range conditional
A \\ B ‖− C \\ D means{S ⊆ D | A ⊆ S ⊆ B → C ⊆ S ⊆ D}, and the simple range
conditionalA \\ B ‖− C means{S ⊆ D | A ⊆ S ⊆ B → C ⊆ S}. We also observe that
if A = B = ∅, the range conditionalA \\ B ‖− C \\ D reduces to the rangeC \\ D, that is
A \\ B ‖− C \\ D = C \\ D.

In contrast to the unique representations of nonempty ranges, different range conditional expres-
sions may mean the same thing. The most obvious variability is that antecedents (qualifications)
may be added to or subtracted from the conclusions (denials) without changing the meaning.

Theorem 24 (Range reduction)For eachA,B, C, D ⊆ D, A \\ B ‖− C \\ D = A \\ B ‖−
(C \A) \\ (D \B).

PROOF: SupposeA \\ B ‖− C \\ D = A \\ B ‖− (C \ A) \\ (D \ B) for A,B, C, D ⊆ D. If
S /∈ A \\ B, thenS is in both conditional ranges, so supposeS ∈ A \\ B, that is,A ⊆ S ⊆ B.
If S ∈ A \\ B ‖− C \\ D, thenS ∈ C \\ D, hence we haveC \ A ⊆ C ⊆ S ⊆ D ⊆ D \B, so
S ∈ A \\ B ‖− (C \ A) \\ (D \ B). And if S ∈ A \\ B ‖− (C \ A) \\ (D \ B), thenC \ A ⊆
S ⊆ D \B. But sinceA ⊆ S ⊆ B, we haveA ∪ C ⊆ S andS ⊆ B ∪D, henceC ⊆ S ⊆ D, so
S ∈ A \\ B ‖− C \\ D. ThusA \\ B ‖− C \\ D = A \\ B ‖− (C \A) \\ (D \B). 2

Accordingly, we call a range conditional expressionA \\ B ‖− C \\ D reducedjust in case neither
A andC nor B andD overlap, that is,C \ A = C andD \ B = D. To avoid the complications
introduced by this variability, we ordinarily assume reduced expressions in the following.

As with trivial ranges, we may characterize trivial simple range conditionals in a simple way.

Theorem 25 (Trivial conditionals) For eachA,B, C, D ⊆ D, we haveA \\ B ‖− C \\ D =
P(D) iff eitherA ∩B 6= ∅ or C \A = D \B = ∅.

PROOF: SinceA \\ B ‖− C \\ D = {S ⊆ D | A ⊆ S ⊆ B → C ⊆ S ⊆ D}, it is clear
thatA \\ B ‖− C \\ D = P(D) if either A ∩ B 6= ∅ or C \ A = D \ B = ∅ hold. So suppose
A \\ B ‖− C \\ D = P(D) and thatC \ A 6= ∅ or D \ B 6= ∅. If C \ A 6= ∅, thenC 6⊆ A, and
sinceA ∈ A \\ B ‖− C \\ D, we know thatA /∈ A \\ B. But this can happen only ifA \\ B = ∅,
which by Theorem 21 occurs only ifA ∩ B 6= ∅. On the other hand, ifD \ B 6= ∅, thenD 6⊆ B,
soB 6⊆ D, and sinceB ∈ A \\ B ‖− C \\ D, we know thatB /∈ A \\ B. Again, this can happen
only if A \\ B = ∅, which by Theorem 21 occurs only ifA ∩ B 6= ∅. Thus in either case we have
A ∩B 6= ∅. 2
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In particular, this means that a reduced simple range conditionalA \\ B ‖− C is trivial iff either
A ∩B = ∅ or C = ∅.

Unlike nontrivial ranges, which have unique representations, some nontrivial simple range con-
ditionals have different representations: for example,∅ \\ {a, b} ‖− {c} = ∅ \\ {a, c} ‖− {b} =
∅ \\ {b, c} ‖− {a}. However, the following characterization of nontrivial simple range conditionals
shows that such ambiguity occurs only when some reduced representation has just one consequent
and some qualifiers, as in this example, and that the antecedents of any alternative representations
must coincide in any case.

Theorem 26 (Nontrivial conditionals) If A \\ B ‖− C = A′ \\ B′ ‖− C ′ 6= P(D), A, B, andC
are mutually disjoint, andA′, B′, andC ′ are mutually disjoint, thenA = A′ and either (1)B = B′

andC = C ′, or (2) |C| = |C ′| = 1, B \B′ = C ′, andB′ \B = C.

PROOF: SupposeA \\ B ‖− C = A′ \\ B′ ‖− C ′ 6= P(D), A, B, andC are mutually disjoint,
andA′, B′, andC ′ are mutually disjoint.

By nontriviality, we know that neitherC nor C ′ is empty. ThusA /∈ A \\ B ‖− C, so
A /∈ A′ \\ B′ ‖− C ′, henceA′ ⊆ A. Similarly, A′ /∈ A′ \\ B′ ‖− C ′, soA′ /∈ A \\ B ‖− C, hence
A ⊆ A′. ThusA = A′.

We also observe that if|C| > 1, thenC = C ′. To see this, suppose|C| > 1. If x ∈ C, then
sinceC has other elements, we haveA ∪ {x} /∈ A \\ B ‖− C, soA ∪ {x} /∈ A′ \\ B′ ‖− C ′, and
thusx /∈ B′. Since this holds for allx in C, we haveC ∩ B′ = ∅. SinceA ∪ C ∈ A \\ B ‖− C,
soA ∪ C ∈ A′ \\ B′ ‖− C ′. SinceC ∩ B′ = ∅, this meansC ′ ⊆ A ∪ C, and sinceA andC ′ are
disjoint, this meansC ′ ⊆ C. But we also haveA∪C ′ ∈ A′ \\ B′ ‖− C ′, soA∪C ′ ∈ A \\ B ‖− C
as well. ButA ∪ C ′ ∈ A \\ B, sinceC ′ ⊆ C andC ∩ B′ = ∅. ThusC ⊆ A ∪ C ′, soC ⊆ C ′, so
C = C ′.

We now prove the assertion by cases.
If C = C ′, suppose by way of contradiction thatB \ B′ 6= ∅, and letz ∈ B \ B′. Then

A ∪ {z} ∈ A \\ B ‖− C, soA ∪ {z} ∈ A′ \\ B′ ‖− C ′. Sincez ∈ B, the disjointness and equality
assumptions implyz /∈ C ′, soC ′ 6⊆ A ∪ {z}, thusA ∪ {z} /∈ A′ \\ B′, hencez ∈ B′, contrary to
hypothesis. A symmetric argument shows that we cannot haveB′ \B 6= ∅, so we concludeB = B′.

If C 6= C ′, we must have|C| = |C ′| = 1, since|C| > 1 or |C ′| > 1 imply that C = C ′.
Now if z ∈ B \ B′, thenA ∪ {z} ∈ A \\ B ‖− C, soA ∪ {z} ∈ A′ \\ B′ ‖− C ′, and since
A ∪ {z} ∈ A′ \\ B′, we haveC ′ ⊆ A ∪ {z}, which by the disjointness assumptions means
C ′ = {z}. Since this holds for every suchz, we see thatB \ B′ = C ′. A similar argument about
elements ofB′ \B shows thatB′ \B = C.

Summarizing, ifC = C ′, thenB = B′ as well, while ifC 6= C ′, we have|C| = |C ′| = 1,
B \ B′ = C ′, andB′ \ B = C. These constitute the two cases claimed in the statement of the
theorem. 2

While simple range conditionals prove important in the theory and practice of artificial intelli-
gence, they cannot express all interesting state specifications. In particular, they cannot exclude any
state component from admissible states.

Theorem 27 (Inclusivity) If D contains only simple range conditionals, thenD is satisfying.

PROOF: If D contains only simple range conditionals andd ∈ D with [[d]] = A \\ B ‖− C, then
A ⊆ D ⊆ B → C ⊆ D is trivially true, soD ∈ [[d]]. Since this holds for everyd ∈ D, D is
satisfying. 2
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Expressing more state spaces thus requires state components that do not represent simple range
conditionals (even trivial ones).

We earlier saw that the strongly present satisfaction optimal sets include the satisfying states.
Simple range conditionals, however, yield an exact correspondence between these notions.

Theorem 28 (Conditional satisfaction optimality) If D contains only simple range conditionals
andS ⊆ D is strongly present satisfaction optimal inP(D), thenS is satisfying.

PROOF: We prove the contrapositive. SupposeS ⊆ D is unsatisfying, that is, for somed ∈ D,
d ∈ S /∈ [[d]]. Now by Theorem 27,D ∈ [[d]], but for all e ∈ S, D ∈ [[e]] as well, soS is not
satisfaction optimal. 2

In light of Theorem 19, we conclude that when all state components are simple range conditionals,
sets are satisfying iff they are strongly present satisfaction optimal.

4.2 Simple reasons

We now definesimple reasonsin terms of range conditionals and preference systems.

Definition 29 (Simple Reasons)An elementd ∈ D is a (finite)simple reasonwith respect to a
satisfaction system(D, [[ ]]) and preference system(D,∼�) iff there are (finite) disjoint setsA,B, C ⊆
D such that

1. [[d]] = A \\ B ‖− C, and

2. For eachS, S′ ∈ [[d]] such thatA ⊆ S, S′, if S ⊆ B andS′ 6⊆ B, thenS �d S′.

We call each triple of setsA, B, C satisfying these conditions asimple reason interpretationof d,
and (abusing the notation slightly) writeA \\ B ‖− C to indicate their order. We say that a simple
reasond is trivial if [[d]] = P(D), and that it isnontrivialotherwise.

Thus a simple reason indicates both a range conditional stipulating that the “conclusions”C must
be held if the “antecedents”A are held and none of the “qualifiers”B are held, and a preference for
not holding any qualifiers if the antecedents are held. The preference order required of a reason in
this definition is both partial and considerably weaker than the total preference order assigned to the
corresponding default rule in (Doyle & Wellman, 1991). The present development does not require
us to stipulate a total order since the range conditional rules out some of the states compared by the
total preference order. The two interpretations agree, however, in that the the total order contains
the preference comparisons needed to identify simple reasons.

The constitutive preference employed in identifying reasons provides the simple range condi-
tional with a canonical form, which we see as follows. The first step towards this end comes directly
from our analysis of trivial range conditionals, which we use to characterize trivial reasons as ones
placing no restrictions on states.

Theorem 30 (Trivial reasons) [[d]] = P(D) iff d is a simple reason with reason interpretation
∅ \\ ∅ ‖− ∅.

20



REASONEDASSUMPTIONS ANDRATIONAL PSYCHOLOGY

PROOF: Clearly, if d is a simple reason with reason interpretation∅ \\ ∅ ‖− ∅, then [[d]] =
P(D), so suppose[[d]] = P(D). Then we clearly have[[d]] = ∅ \\ ∅ ‖− ∅. Furthermore,d
vacuously satisfies the second part of the definition of simple reason no matter what preference
order it indicates since there is noS′ with S′ 6⊆ ∅ = D. Thusd can be interpreted as the simple
reason∅ \\ ∅ ‖− ∅. 2

Note well that different trivial reasons may bear different preferential interpretations, for as the proof
of Theorem 30 noted, their preference interpretations cannot alter their interpretation as reasons.

For nontrivial reasons, we have a stronger characterization.

Theorem 31 (Nontrivial reasons) If d is a nontrivial simple reason, it has a unique simple reason
interpretation.

PROOF: Suppose[[d]] = A \\ B ‖− C = A′ \\ B′ ‖− C ′ 6= P(D), A, B, andC are mutually
disjoint,A′, B′, andC ′ are mutually disjoint, and for allS, S′ ⊆ D we have

1. If A ⊆ S, S′, S ⊆ B, andS′ 6⊆ B, thenS �d S′, and

2. If A′ ⊆ S, S′, S ⊆ B′, andS′ 6⊆ B′, thenS �d S′.

We first proveC = C ′. Suppose, by way of contradiction, thatC 6= C ′. Theorem 26 then indicates
thatB \ B′ andB′ \ B are nonempty, so letS = A ∪ (B \ B′) andS′ = A ∪ (B′ \ B). Clearly,
S 6= S′, and we haveS ⊆ B′ andS 6⊆ B andS′ ⊆ B andS′ 6⊆ B′. Applying the two enumerated
hypotheses above, this yieldsS �d S′ �d S, contradicting the properties of preference systems.
Thus we must haveC = C ′, so by Theorem 26, we also haveA = A′ andB = B′. 2

In other words, the preferential content of simple reasons disambiguates the associated range con-
ditional in those cases in which several range conditional expressions are possible. Putting these
results together gives us a useful canonical form for simple reasons.

Definition 32 (Canonical forms) The canonical formor representation of a simple reasond is
∅ \\ ∅ ‖− ∅ if d is trivial and is the unique interpretationA \\ B ‖− C otherwise. We write
d ⇒ A \\ B ‖− C to mean thatA \\ B ‖− C is the canonical representation ofd.

Clearly, the sets representing the canonical form of a finite simple reason are themselves finite.
The notationA \\ B ‖− C permits us to speak of the “same” reason even when we extend

D to a larger domain, since ifA,B, C ⊆ D andD ⊆ D′, we also haveA,B, C ⊆ D′. This
property greatly simplifies mechanizations of agents based on simple reasons expressed in this way,
since the domain of state components can be extended indefinitely without necessitating changes in
the representations of previously expressed reasons, even though their meanings change with each
enlargement of the set of state components.

The preferences associated with reasons would not deserve much attention if their only purpose
was to distinguish one reason from others indicating the same range conditional. In fact, their main
purpose lies in choosing among the alternative conclusions demanded by the constitutive meaning
of valid reasons.

Definition 33 (Validity) We say that a simple reasond ∈ D is valid in S ⊆ D (alternatively,S
validatesd) if the antecedent conditions of its canonical interpretation hold, that is, ifd ⇒ A \\
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B ‖− C andS ∈ A \\ B, and thatd is invalid in S (or S invalidatesd) otherwise. We say thatd is
presently validin S (or S presently validatesd) if d is valid inS andd ∈ S, and thatd is presently
invalid in S (or S presently invalidatesd) if d is invalid inS andd ∈ S. We writeV (d) to mean the
set of allS ⊆ D such thatd is presently valid inS. Using the same symbol, we writeV (S) to mean
the set of alld ∈ S such thatd is presently valid inS, andV (S) to mean the setS \ V (S) of all d
presently invalid inS.

The notions of validity and invalidity employed in (Doyle, 1983c) correspond to the notions of
present validity and present invalidity introduced here. These notions permit us to rephrase the
preference condition used to identify reasons in Definition 29 as saying that states validating the
reason are strictly preferred to states invalidating it when attention is restricted to sets in[[d]]∩ (A \\
∅). The constitutive preference thus provides the simple range conditional with a sense of direction.
Note that even presently invalid reasons can be satisfied; that is, we can haved invalid in S even
thoughS ∈ [[d]]. Clearly, ifd ⇒ A \\ B ‖− C is valid inS ∈ [[d]], thenC ⊆ S. More generally, we
use the notion of validity to identify the cases in which the reasonyieldsits conclusions.

Definition 34 (Yields) If c, d ∈ D andS ⊆ D, we say thatd (finitely) yieldsc in S just in cased
is a (finite) simple reason valid inS and has canonical representationA \\ B ‖− C with c ∈ C.
We say thatS yieldsc just in cased yieldsc in S for somed ∈ S. We writeθ(d, S) to mean the set

of all elements yielded byd in S, andθ(S) def=
⋃

d∈S θ(d, S) for the set of all elements yielded by
elements ofS in S.

Thus ifd ∈ V (S) andS ∈ [[d]], we haveθ(d, S) ⊆ S. We also note that one never needs conclusions
to yield themselves; they are independent of whether the state contains them or not.

Theorem 35 (Conclusion independence)If c ∈ θ(d, S), thenc ∈ θ(d, S \ {c}).

PROOF: If c ∈ θ(d, S), thend must have canonical representationA \\ B ‖− C and must be
valid in S with c ∈ C. Sincec /∈ A and c /∈ B, this meansd is also valid inS \ {c}, hence
c ∈ θ(d, S \ {c}). 2

However, we cannot strengthen this to conclude thatc ∈ θ(S \ {c}) wheneverc ∈ θ(S), since the
only reason yieldingc in S may bec itself.

It appears one can alternatively define simple reasons by replacing preference for validity by
preference for yielding conclusions, or possibly reduced conclusions. Such an approach would
represent an “altruistic” interpretation of reasons as opposed to the “self-interested” approach pre-
sented here, with reasons concerned about the “ends” of the reason (the conclusions being held)
rather than about the “means” by which these conclusions are held (this reason or some other).
However, this alternate definition also appears to introduce unnecessary distinctions among reasons
due to antecedents repeated in the conclusions. We do not explore it here.

We may identify several important special forms of simple reasons in terms of the canonical
form, defined here and summarized in Table 2.

Definition 36 (Special simple reasons)If a simple reason has canonical formA \\ B ‖− C, we
call the reasontrivial just in caseC = ∅; monotonicjust in caseB = ∅; nonmonotonicor defeasible
just in caseB 6= ∅; a premisereason just in caseA = B = ∅; and abasic assumptionjust in case
A = ∅ 6= B.
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if A \\ B ‖− C has the reason is

C = ∅ trivial
B = ∅ monotonic

A = B = ∅ a premise reason
B 6= ∅ nonmonotonic or defeasible

A = ∅, B 6= ∅ a basic assumption

Table 2: Special simple reasons

Monotonic reasons yield conclusions that cannot be defeated by enlarging the state, while nonmon-
otonic reasons yield conclusions that can be defeated by enlarging the state. Trivial reasons never
yield any conclusions at all, and are both finite and monotonic. Basic assumption reasons yield
defeasible assumptions that do not depend on the presence of any other assumptions in the state,
while premise reasons yield conclusions that do not depend on the presence or absence of anything
else in the state.

5. Reasoned constitutions

We identified reasons in part in terms of constraints they place on the states in which they appear.
But the constraints used to identify reasons capture only part of the full constitutional role of reasons.
Recall that the original RMS stability principle requires labeling a nodein if and only if the recorded
reasons contain a valid reason for the node. The meanings imputed to reasons so far ensure that each
consequence of a valid reason is in the state, but do nothing to ensure that every element of the state
has a valid reason for its presence, much less the RMS groundedness principle that one can identify
a set of valid reasons providing a well-founded argument for the element.

The RMS could require grounding arguments for nodes because it distinguished nodes and
reasons. In the present setting, we view reasons as state components that may appear as conclusions
like other state components. We therefore do not wish to require thateverystate component has a
valid reason for its presence, since all reasons themselves would then need reasons themselves, and
we would wind up with either infinite states containing infinite regresses or finite states containing
circular reasoning structures. To express less comprehensive formulations of this part of the role
of reasons, as well as to express the other half of the stability principle, we expand the notions of
framings and constitutions employed in the preceding to notions that permit one to consider some
elements of states as given and others as derived from the givens.

5.1 Constructive framings

Though quite apt for describing many computational systems, elemental framings consisting simply
of the representations explicitly contained in a state are not always the most useful framings of states
for analyzing sophisticated reasoning agents, as the set of components explicitly contained in a state
mainly serves to represent an “implicitly contained” state description upon which the agent (or
more precisely, the agent’s action-taking mechanisms) bases its actions. For example, one views
some frame-based and taxonomic representational systems as indicating “virtual” representations
in addition to those frames or statements actually present in the state (Doyle, 1983b; Fahlman,
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1979; Touretzky, 1986); one sometimes also views states consisting of sets of logical statements as
indicating their deductive closure (or their closure under a set of inference rules) (Konolige, 1985).
To analyze such agents, one does better to frame states in terms of two sets of state components; a
set ofmanifestcomponents explicitly contained or represented in the state, and a set ofconstructive
components implicitly stored or represented in the state and computed or derived from the manifest
components (Doyle, 1989).

Accordingly, we define aconstructiveframing to be a multiattribute framingφ : S → Sm × Sc

interpreting each state as a manifest state in a setSm and a constructive state in a setSc, and write
φm : S → Sm andφc : S → Sc to mean the corresponding projections of this mapping onto these
spaces. The most useful constructive framings for many artificial intelligence systems areconstruc-
tive elementalframings that combine a constructive framing ofS with elemental framings ofSm

andSc to yield a framingφ : S → P(Dm)× P(Dc). We say that a constructive elemental framing
is component compatibleif manifest state components may also be constructive state components,
that is, ifDm ⊆ Dc, and isextensionalif in addition constructive states always contain their corre-
sponding manifest states, that is, ifφm(s) ⊆ φc(s) for everys ∈ S. We call the framinguniform if
Dm = Dc.

Constructive framings may interpret distinct states as containing the same manifest or construc-
tive states. Distinct states sharing their constructive portions need not seem problematic except to
lawyers and others seeking to find intentional interpretations of behavior, as we may view the man-
ifest parts of one or both states as containing “redundant” components that do not change the con-
structive part. But distinct states sharing their manifest parts indicate that the construction process
involves nondeterminism, and so may pose problems for mechanizations of agents characterized in
this way. Theories of nonmonotonic reasoning provide good examples of this, for one ordinarily
permits nonmonotonic reasoning rules to conflict (recall the earlier example involving conflicting
rules about Quakers and Republicans), which gives rise to multiple possible interpretations of or
constructions from the manifest representations. We say a constructive framingφ is constructively
deterministicjust in case|φ−1

m (φm(s))| = 1 for everys ∈ S, and ismanifestly deterministicjust in
case|φ−1

c (φc(s))| = 1 for everys ∈ S.

5.2 Constructive constitutions

Basic constitutions do not apply directly to state spaces framed with elemental constructive fram-
ings, since these map states to pairs of sets rather than to single sets of state components. We
therefore extend the notion of basic constitution to that ofconstructiveconstitution by adding in
context-dependent orcontextualconstitutions that describe how manifest and constructive states
restrict each other.

Definition 37 (Contextual constitutions) A contextual constitutionΣ overD relative toD′ is a
mapΣ : P(D′) → Σ(D) taking each setS′ ⊆ D′ to a basic constitutionΣ(S′). We write the
varying parts of a contextual constitutionΣ(S′) in the formC(S′), `(S′), [[ ]](S′), andB(S′), and
define the set of elementsA(Σ) to contain just those pairs(S′, S) ∈ P(D′) × P(D) such that
S ∈ A(Σ(S′)).

Clearly, we may use unstructured contextual constitutions to describe any construction relation
whatsoever.
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Theorem 38 (General constructions)If R ⊆ P(D′)×P(D), there is a contextual constitutionΣ
overD relative toD′ such thatA(Σ) = R.

PROOF: For eachS′ ⊆ D′, takeΣ(S′) to be the unstructured basic constitution such thatB(Σ(S′)) =
{S ⊆ D | (S′, S) ∈ R}. Then we clearly have(S′, S) ∈ A(Σ) iff (S′, S) ∈ R. 2

We may also embed basic constitutions in contextual constitutions over the same set.

Theorem 39 (Embedding constitutions)If Σ is a basic constitution overD andΣ′ a contextual
constitution overD relative toD′, then there is a contextual constitutionΣ′′ overD relative toD′
such that(S′, S) ∈ A(Σ′′) iff (S′, S) ∈ A(Σ′) andS ∈ A(Σ).

PROOF: Define Σ′′ to be just likeΣ′ except thatB(Σ′′(S′)) = B(Σ′(S′)) ∩ A(Σ) for every
S′ ⊆ D′. Then we clearly have(S′, S) ∈ A(Σ′′) iff (S′, S) ∈ A(Σ′) andS ∈ A(Σ). 2

Other embeddings weave the notions of consistency, etc. together in a more natural way, but we do
not pursue these here.

We obtain constructive constitutions by combining sub-constitutions describing the manifest
and constructive states with contextual sub-constitutions describing the ways each of these relate to
each other.

Definition 40 (Constructive constitutions) A constructive constitutionΣ over manifest state com-
ponentsDm and constructive state componentsDc consists of basic constitutionsΣm overDm and
Σc overDc, together with contextual constitutionsΣmc overDm relative toDc andΣcm overDc

relative toDm. We define the elementsA(Σ) to be those pairs(S, E) ∈ P(Dm)×P(Dc) such that
S ∈ A(Σm), E ∈ A(Σc), (E,S) ∈ A(Σmc), and(S, E) ∈ A(Σcm). If (S, E) ∈ A(Σ) we also
write S � E, and we define theadmissible constructionsof S, writtenACons(S), to consist of just
those setsE such thatS � E.

Thus the various satisfaction systems of constructive constitutions interpret each manifest (construc-
tive) state component both as a restriction on the manifest (constructive) states in which it can occur,
and as a restriction on the ways it can yield (derive from) the constructive (manifest) states.

The four sub-constitutions provided for constructive constitutions clearly represent definitional
overkill. Theorem 39 implies the two contextual constitutions may absorb the two basic consti-
tutions, and Theorem 38 implies that each of the contextual constitutions can absorb the resultant
restriction of the other in its bounding set. Thus we really only need use one contextual constitution
to represent a constructive constitution. In spite of this, however, we keep the definition given above.
In the first place, amalgamating all the constitutions in this way may obscure the different restric-
tions: even though the amalgamation does not change the states so characterized, it may impede
exposition and understanding. In the second place, amalgamating the two contextual constitutions
into one may yield a constitution with very different locality properties than the original ones, since
local logical or satisfaction conditions in the absorbed constitution turn into unstructured general
conditions in the absorbing constitution. Again, this does not change the objects so characterized,
but it may impede understanding.

These hesitations to amalgamate separate constitutions in the general definition need not, how-
ever, prevent us from doing so for the sake of convenience in one important special case, that of the
extensionalconstitutions appropriate to extensional framings.
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Definition 41 (Extensional constitutions) An extensional constitutionΣ is a constructive consti-
tution over manifest state componentsDm and constructive state componentsDc such thatDm ⊆ Dc

andS ⊆ E wheneverS � E, and apreferentialextensional constitution adds a preference system

∼� overDc. If S � E, we callE an admissible extensionof S. We also writeAExts(S) to mean
ACons(S).

Thus a preferential extensional constitution yields a preferential basic constitution over the construc-
tive state components for each set of manifest state components. Note that the preference system
of a preferential extensional constitution does not depend on the manifest state; a more general
treatment would permit contextual variation of it as well.

We can express the extensionality condition of extensional constitutions by means of the con-
textual constitutionΣcm by taking this constitution to map each contextS ⊆ Dm to the satisfying
constitution overDc that sets[[d]](S) = {E ⊆ Dc | d ∈ S → d ∈ E} for eachd ∈ Dc. These
highly local meanings then imply the global condition thatE ∈ [[E]](S) iff S ⊆ E. But rather than
go through this exercise when this condition is all that is desired of this contextual constitution, we
adopt the shortcut of simply making the bounding set of the other contextual constitution correspond
to a subset of the subset relation, that is, makingB(S) ⊆ {E ⊆ Dc | S ⊆ E}.

We extend the notion of constitutional optimality to extensional constitutions in the obvious
way.

Definition 42 (Optimal extensional constitutions) An extensional constitutionΣ overDm andDc

is optimalwith respect to a preference system∼� overDc just in caseE is optimal inAExts(S) with
respect to∼� wheneverS � E.

5.3 Reasoned constitutions

As noted earlier, the meanings associated with reasons in Definition 29 capture half of the RMS
stability principle, but do not require that each element of a constructive state possess either a valid
reason or a well-founded argument for its presence. We now capture the second half of the basic
RMS stability principle, that nodes be labeled in only if they have a valid reason, by applying the
requirement oflocal groundedness, or local logical and reasoned derivability, to all constructive
state components.

Definition 43 (Local groundedness)An elementd ∈ D is (finitely) locally groundedin E with
respect toS ⊆ E in a preferential basic constitution iff either

1. d ∈ S,

2. E′ \ {d} ` d for some (finite)E′ ⊆ E, or

3. E \ {d} (finitely) yieldsd.

When this happens, we writeS <d
l E. We writeS <l E just in caseS <d

l E for eachd ∈ E.

If we sayd is givenin E with respect toS ⊆ E just in cased ∈ S, then a state component is locally
grounded just in case it is either given, logically derivable from other state components, or yielded
by some other state component. We then define reasoned constitutions as follows.
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Definition 44 (Reasoned constitutions)A reasoned constitutionΣ is a uniform preferential exten-
sional constitution such that every element of every admissible extension is locally grounded with
respect to the manifest state, that is,S <l E with respect toΣ(S) and the preference system when-
everS � E.

We can express this condition of universal local grounding in a variety of ways. The most natural
and local formulation places it in the contextual constitutionΣcm to require that for everyd ∈ Dc

we have
[[d]]cm ⊆ {(S, E) ∈ P(Dm)× P(Dc) | d ∈ E → S <d

l E}.

That is, each element requires that it be locally grounded whenever it appears in an admissible
extension.

The definition of reasoned constitution stipulates only that constructive state components must
be locally grounded, not that they must possess any more complex arguments for their presence.
Since constructive constitutions already require states to satisfy the reasons they contain, this defi-
nition identifies reasoned constitutions as those which enforce the RMS stability principle. We omit
any requirement corresponding to the RMS grounding principle from the definition of reasoned con-
stitutions so that we may consider reasoning systems that employ a variety of patterns of grounding
of conclusions. For example, because humans do not appear to remember or enforce reasons for
most of their beliefs, some authors (e.g., (Gärdenfors, 1990; Harman, 1986); cf. (Doyle, 1992)) crit-
icize the RMS for requiring extensive grounding of all elements (although people do appear excel-
lent at effortlessly constructing rationalizations or supporting arguments—sometimes spurious—for
their beliefs (Gazzaniga, 1985)). Our definition of reasoned constitution accommodates these con-
cerns both by taking manifest state components as givens needing no supporting reasons (though not
forbidding such supporting reasons), and by encompassing reasoned constitutions that require dif-
ferent levels of grounding for different state components, for example, constitutions requiring only
minimal local grounding of elements of long-term memory, for which people seem especially prone
to ignore reasons, but requiring stricter grounding patterns for elements of short-term memories,
for which people seem more aware of their reasons for thinking things. We thus identify reasoned
constitutions by the minimal requirement that everything not given must have a reason or imme-
diate derivation, and then examine special reasoned constitutions that impose stronger grounding
requirements for some or all constructive state components.

The most natural stronger grounding condition, which we simply callgroundedness(or strict
groundedness) strengthens the immediate derivability of local groundedness to derivability by an
argument mixing entailment and reasons that traces back to givens, such that each step of the argu-
ment makes the same assumptions as all the others.

Definition 45 (Groundedness)We say thate is (finitely) groundedin E with respect toS ⊆ E in
a preferential basic constitution iff there is a (finite) grounding setG ⊆ E and a well-ordering<G

of G such thate ∈ G and wheneverd ∈ G, either

1. d ∈ S,

2. G<d ` d, whereG<d
def= {g ∈ G | g <G d}, or

3. there is some (finite) simple reasonf ∈ G<d yieldingd in E such thatf ⇒ A \\ B ‖− C
andA ⊆ G<f .
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When this happens, we writeS <d
g E (S <d

f E). We writeS <g E (S <f E) just in caseS <d
g E

(S <d
f E) for eachd ∈ E.

Note well that the qualifications of reasons yielding conclusions must be checked against the whole
setE, while the antecedents must precede the reason in the grounding order. Also, as one might
expect, groundedness implies local groundedness.

Theorem 46 (Local grounding) If e is (finitely) grounded inE with respect toS ⊆ E, thene is
(finitely) locally grounded inE with respect toS.

PROOF: Supposee is (finitely) grounded inE with respect toS ⊆ E with (finite) grounding set
G ⊆ E \ {e}. Then by definition, eithere ∈ S, or there is a (finite) setA ⊆ G such thatA ` {e},
or some presently valid (finite) reason inE \ {e} yieldse. 2

The notions of groundedness and local groundedness, however, represent extremes along a di-
mension rather than the only two possibilities. For example, as (Doyle, 1983b; Doyle & Wellman,
1990) suggest one might employ intermediate notions of groundedness with respect to grounding
neighborhoods or locales defined to be strict grounding for elements of the neighborhoods or lo-
cales, but only local grounding for elements outside them. This paper does not pursue intermediate
notions of groundedness or nonuniform degrees of grounding of admissible extensions. We instead
focus on the special cases of uniformly grounded reasoned constitutions, named as follows.

Definition 47 (Special reasoned constitutions)We say a reasoned constitution is(finitely)
groundedjust in case it requires every element of every admissible extension to be (finitely) grounded
with respect to the manifest state.

6. Grounded extensions

We now turn to analyzing the structure of admissible extensions in grounded reasoned constitutions,
and for simplicity of analysis ignore the structure of manifest states. The manifest states of RMS
and many other systems really consist of sets of stipulated state components, which may be stipu-
lated one by one, resulting in arbitrary sets of stipulated components. The reasoned constitutions
corresponding to these systems thus employ trivial constitutions for manifest states and purely ex-
tensional contextual constitutions for manifest states relative to constructive states, so the analysis
of their admissible extensions mirrors the analysis ofextensionsthat ignore the internal structure of
manifest states to focus only on the constitutions of constructive states and the contextual constitu-
tions specifying how each constructive element is grounded in the manifest state.

Definition 48 (Extensions) If Σ is a basic constitution overD, we say thatE is an extensionof
(or a state extending) S ⊆ D iff S ⊆ E ∈ A(Σ), and writeS � E to indicate thatE extendsS,
andExts(S) to denote the set of extensions ofS. If Σ is an extensional constitution overDm and
Dc, we say thatE is an extension ofS iff S ∈ A(Σm), E ∈ A(Σc), andS ⊆ E. If S � E and
S <g E (S <l E, S <f E), we writeS �g E (S �l E, S �f E). We writeGExts(S), LExts(S),
andFGExts(S) to mean, respectively, the sets of grounded, locally grounded, and finitely grounded
extensions ofS.

Finitely grounded extensions are grounded extensions by definition, and we see that grounded ex-
tensions are locally grounded as an immediate corollary of Theorem 46.
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6.1 Stratification

We first examine an important alternate characterization of the notions of grounded and finitely
grounded extensions. Here and in the following we assume a fixed reasoned constitution.

Definition 49 (Levels) LetS, E ⊆ D. Then the sequence〈Λα〉 (α an ordinal), the levels fromS in
E, are defined for all ordinals by

1. Λ0(S, E) = S,

2. Λα+1(S, E) = Θ(Λα(S, E)) ∪ θ(Λα(S, E)), and

3. Λλ(S, E) =
⋃

α<λ Λα(S, E) for limit ordinalsλ.

We defineΛ(S, E) =
⋃

α Λα(S, E) to be the sum of all levels.

Note how each level includes the deductive closures of the preceding levels of inference via valid
reasons. We also easily observe that ifα ≤ β, thenS ⊆ Λα(S, E) ⊆ Λβ(S, E) ⊆ Λ(S, E), and that
if Λα = Λα+1, thenΛα = Λ (here and in the following, we sometimes omit the level parameters
(S, E) when the meaning is clear).

Theorem 50 If α > |D|, thenΛ(S, E) = Λα(S, E).

PROOF: If D has fewer thanα elements, it must be that for someβ + 1 ≤ α no new element is
introduced inΛβ+1, in other words,Λβ = Λβ+1. But thenΛβ = Λ, and sinceΛβ ⊆ Λα ⊆ Λ, we
haveΛ = Λα. 2

As this result suggests, the division of extensions into levels naturally leads to ranking elements
according to the first level at which they appear.

Definition 51 (Rank) If e ∈ Λ(S, E), the rank ofe in Λ(S, E) is the least ordinalα such that
e ∈ Λα(S, E). If A ⊆ Λ(S, E), the rank ofA in Λ(S, E) is the least ordinal not less than the rank
of any element ofA.

With the notion of rank, we first observe that the sum of all levels is closed.

Lemma 52 (Closure) For everyS, E ⊆ D, Λ(S, E) = Θ(Λ(S, E)).

PROOF: SupposeA ⊆ Λ. A has rank, sayα, so ifA ` B, thenB ⊆ Λα+1 ⊆ Λ. SinceΛ ⊆ Θ(Λ),
we haveΛ = Θ(Λ). 2

In addition, extensions contain the sum of all their levels.

Lemma 53 (Containment) If S � E, thenΛ(S, E) ⊆ E.

PROOF: Let S � E. ClearlyΛ0 ⊆ E, so assumeΛβ ⊆ E for eachβ < α. If α is a limit ordinal,
then by definitionΛα ⊆ E. If α is a successor ordinal, sayα = β + 1, let e ∈ Λα. If e ∈ S, then
e ∈ E, so supposee /∈ S. If e ∈ Θ(Λβ), thene ∈ E sinceE is closed. Ife /∈ Θ(Λβ) there is a
d ∈ Λβ with d ⇒ A \\ B ‖− C, A ⊆ Λβ, E ⊆ B, ande ∈ C. SinceE is satisfying, this means
C ⊆ E, soe ∈ E. HenceΛα ⊆ E, soΛ ⊆ E. 2
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Moreover, grounded extensions equal the sum of all their levels.

Theorem 54 (Stratification) If S �g E thenΛ(S, E) = E.

PROOF: SupposeS �g E. SinceS � E, by Lemma 53 we haveΛ ⊆ E. To see thatE ⊆ Λ,
supposee ∈ E. SinceE is a grounded extension ofS, there is a grounding setG ⊆ E for e from
S in E. We showG ⊆ Λ by <G-induction. Letf ∈ G have no predecessors in<G. Clearlyf is
the minimum ofG, and by definition ofG, we must havef ∈ S, hencef ∈ Λ. Now suppose that
f ∈ G and for eachd <G f , eitherd ∈ S or there is a grounding subargumentG′ ⊆ G for d. If
f ∈ S, thenf ∈ Λ. If {g ∈ G | g <G f} ` {f}, thenf ∈ Λ sinceΛ is closed. Otherwise there
is ad ∈ G such thatd ⇒ A \\ B ‖− C, A <G d <G f , E ⊆ B, andf ∈ C. By the inductive
hypothesis,A ⊆ Λ andd ∈ Λ, so there is some ordinalα such thatA ⊆ Λα andd ∈ Λα. But then
by constructionC ⊆ Λα+1, sof ∈ Λ. HenceE ⊆ Λ, soE = Λ. 2

Obviously, IfS �g E andα > |E|, thenE = Λα(S, E), and ifS �g E andα is the rank ofE,
thenE = Λα(S, E). We thus easily see that finitely grounded extensions equal the sum of their
finite levels.

Corollary 55 (Countable stratification) If S �f E, thenE = Λω(S, E).

PROOF: Let S �f E ande ∈ E. Sincee has a finite grounding setG, the rank ofe is at most|G|,
hencee ∈ Λω(S, E). ThusE ⊆ Λω(S, E), so by Lemma 53,E = Λω(S, E). 2

The second main result shows that fixed points of the level operator are grounded extensions, as-
suming they are consistent, bounded, and satisfy all their non-simple-reason elements (by this we
mean that the set satisfies each of its elements that is not a simple reason).

Theorem 56 (Fixed point) If E is consistent, bounded, satisfies its non-simple-reason elements
andE = Λ(S, E), thenS �g E.

PROOF: SupposeE is consistent, bounded, satisfies its non-simple-reason elements, andΛ = E.
SinceS ⊆ Λ, S ⊆ E. Let e ∈ E with e ⇒ A \\ B ‖− C, and supposeA ⊆ E. Then there is an
ordinalα such thate ∈ Λα andA ⊆ Λα, so by construction ifE ⊆ B as well, thenC ⊆ Λα+1 ⊆ E.
ThusE is satisfying. Similarly, ifA ` B, A ⊆ Λ, andA has rankα, thenB ⊆ Λα+1 ⊆ Λ. ThusE
is closed, and therefore an extension. We proveE is a grounded extension ofS by induction on rank.
Specifically, we prove that each element ofE has a rank-preserving grounding set, a setG ⊆ E
such that the rank ofa does not exceed the rank ofb whenevera ≤G b. Let e ∈ E have rankα. If
α = 0, thene ∈ S and we are done since{e} is a rank-preserving grounding argument fore from S
in E. Now assume thatα > 0 and all elements of rank less thanα have rank-preserving grounding
arguments. Necessarily,α is a successor ordinal, since no elements are introduced at limit ordinals,
so supposeα = β + 1. If e ∈ Θ(Λβ), then there is someG ⊆ Λβ such thatG ` {e}, and otherwise
there is somed ∈ Λβ such thatd ⇒ A \\ B ‖− C, A ⊆ Λβ, E ⊆ B, ande ∈ C. Then by inductive
hypothesis each element ofG or {d}∪A has a rank-preserving grounding argument, so merge these
arguments preserving rank-order, and adde to the end, so producing a rank-preserving grounding
argument fore. ThusS �g E. 2

Putting these results together, we arrive at our main characterization of grounded extensions.
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Corollary 57 (Grounded extensions) If E is consistent, bounded, and satisfies its non-simple-
reason elements, thenS �g E iff E = Λ(S, E).

From this we derive a corresponding characterization of finitely grounded extensions.

Theorem 58 (Finitely grounded extensions)If E is consistent, bounded, satisfies its non-simple-
reason elements,̀ is compact, and every simple reason inD is finite, thenS �f E iff E =
Λω(S, E).

PROOF: SupposeE is consistent, bounded, satisfies its non-simple-reason elements,` is compact,
and every simple reason inD is finite. By Corollary 55, we need only show thatΛω = E implies
S �f E. SupposeΛω = E. We first showΛω = Λ. Suppose, by way of contradiction, that
Λ 6= Λω. Then there must be a least ordinalα ≥ ω such that for somee ∈ D, e ∈ Λα+1 \ Λα.
Sinceα is minimal,Λω = Λα, for otherwiseΛω = Λω+1 and henceΛω = Λ. If e ∈ Θ(Λω) then
there is someG ⊆ Λω such thatG ` {e}. Since` is compact, there is a finiteG′ ⊆ G such that
G′ ` {e}. But then the rank ofG′ is finite, sayβ, soe ∈ Λβ+1, a contradiction. Ife /∈ Θ(Λω), then
by construction, there is somef ∈ Λω, f ⇒ A \\ B ‖− C, A ⊆ Λω, E ⊆ B, ande ∈ C. SinceA
is finite, this means the rank ofA is also finite. Thus there is someβ < ω such thatA ⊆ Λβ and
f ∈ Λβ, soe ∈ Λβ+1 ⊆ Λω, a contradiction. ThusΛ = Λω, and sinceΛω = E, by Theorem 56
E is a grounded extension ofS. We see thatE is finitely grounded by induction on rank. Clearly,
if e ∈ Λ0, thene ∈ S, hence{e} is a rank-preserving grounding set. Now suppose the rank ofe is
α + 1 < ω. If e ∈ Θ(Λα), then there is a finiteG ⊆ Λα such thatG ` {e}. If e /∈ Θ(Λα), then
by construction there is somef ∈ Λα with f ⇒ A \\ B ‖− C, A ⊆ Λα, E ⊆ B, ande ∈ C. By
inductive hypothesis, each ofG or f ∪A have finite rank-preserving grounding sets, so merge these
preserving rank-order, adde to the end, and the result is a finite rank-preserving grounding order
for e. 2

Theorem 59 (Monotonic determinism) If D contains only monotonic simple reasons, every sub-
set ofD has a unique grounded extension.

PROOF: Suppose each element ofD is a monotonic simple reason, and letS ⊆ D. Consider
E = Λ(S, ∅). Since all simple reasons are monotonic,Λ(S, ∅) = Λ(S, X) for eachX ⊆ D.
In particular,E = Λ(S, ∅) = Λ(S, E), so S �g E by Theorem 56. Now ifS �g E′, then
E′ = Λ(S, E′) = E by the previous observation, soE is the only grounded extension. 2

As a corollary, ifD contains only finite monotonic simple reasons, every subset ofD has a unique
finitely grounded extension.

We also find that grounded extensions are minimal among locally grounded extensions.

Theorem 60 (Grounded minimality) If S �g E, S �l E′, andE′ ⊆ E, thenE = E′.

PROOF: SupposeS �g E, S �l E′, andE′ ⊆ E. We first showΛ(S, E) ⊆ Λ(S, E′) by
induction. ClearlyΛ0(S, E) ⊆ Λ0(S, E′) since each equalsS. AssumeΛβ(S, E) ⊆ Λβ(S, E′) for
eachβ < α. If α is a limit ordinal, then by definitionΛα(S, E′) ⊆ Λα(S, E). If α is a successor
ordinal, sayα = β +1, lete ∈ Λα(S, E). If e ∈ S or e ∈ Θ(Λβ(S, E)), thene ∈ E′, and otherwise
there is ad ∈ Λβ(S, E) with d ⇒ A \\ B ‖− C, A ⊆ Λβ(S, E), E ⊆ B, ande ∈ C. But since
E′ ⊆ E ⊆ B, this meanse ∈ Λα(S, E′). HenceΛ(S, E) ⊆ Λ(S, E′). But by Theorem 54 and
Lemma 53,E = Λ(S, E) ⊆ Λ(S, E′) ⊆ E′, henceE = E′. 2
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Obviously, this result means that grounded extensions are minimal among grounded extensions, and
that finitely grounded extensions are minimal among finitely grounded extensions.

Our earlier treatment (Doyle, 1983c) also explores a different means for decomposing exten-
sions. Where stratification partitions elements according to how many steps (logical or reasoned)
they take to derive, one may instead partition the underlying setD according to which state compo-
nents each state componentmentions, in the following sense.

Definition 61 (Reasoned decomposition)SupposeS ⊆ D andd ∈ D. The setS mentionsd iff for
somee ∈ S, e ⇒ A \\ B ‖− C andd ∈ A ∪B ∪C. Two setsA,B ⊆ D havedisjoint mention sets
iff A mentions nob ∈ B andB mentions noa ∈ A. A subsetA ⊆ S is an isolated subset ofS iff
A andS \ A have disjoint mention sets. A setS ⊆ D is calledsimpleiff S has no isolated subsets
other than itself and∅. TheuniverseU(S) of a setS is the smallest set containingS and containing
the mention sets of each of its elements, that is,S ⊆ U(S) and ifd ∈ U(S) andd ⇒ A \\ B ‖− C,
thenA,B, C ⊆ U(S).

For example,S and∅ are isolated subsets ofS, and ifD = {a}, thenD is simple, while ifD =
{a, b} where both elements have trivial interpretations, thenD is not simple, since each of{a} and
{b} is. In addition, ifD is finite, then every subset has a finite universe. Moreover, ifS ⊆ D has
a finite universe, then all simple reasons inS are finite. Sets with disjoint universes have disjoint
mention sets, though the converse need not be true.

These definitions permit an interesting analysis of the structure, computability, and complexity
of extensions when the information system under consideration is trivial, and in particular allow
one to avoid assumptions about the finiteness ofD in favor of assumptions of finite universes of sets
of manifest components. We do not know if these definitions may be generalized to provide useful
results when the constitution involves a nontrivial information system.

6.2 Optimality

We saw in Section 4.1 that simple range conditionals, and therefore simple reasons, prove interesting
with respect to the defined notion of strong present satisfaction preference. However, we defined
simple reasons with respect to that portion of an arbitrary preference system related to the validity of
reasons. Investigating optimality with respect to this portion of the given preference system provides
further insight into conclusions drawn from simple reasons.

Definition 62 (Validity preferences) Thepure validitypreference system corresponding to a basic
constitutionΣ overD is the preference system(D,∼�) such that for eachd ∈ D andS, S′ ⊆ D,
we haveS ∼d S′ iff either S = S′ or d is not a simple reason, and haveS �d S′ just in cased is
a simple reason valid inS and invalid inS′. Theweak present validitypreference system instead
definesS �d S′ just in cased is a simple reason presently valid inS but not presently valid inS′

(eitherd /∈ S′ or d is presently invalid inS′). Thestrong present validitypreference system instead
definesS �d S′ just in cased is a simple reason presently valid inS and presently invalid inS′.
We call any set optimal in some range with respect to the pure, weak, or strong present validity
preference systems (respectively)purely, weakly, or strongly present validity optimalin the range.

Thus a setS is weakly present validity optimal inR iff for eachd ∈ D andS′ ∈ R, if S′ presently
validatesd but S does not, then there is somee presently valid inS but not presently valid inS′;
phrased differently, ifd ∈ V (S′) but d /∈ V (S), then there is somee ∈ V (S) with e /∈ V (S′).
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Similarly, a setS is strongly present validity optimal inR iff for each d ∈ D andS′ ∈ R, if
S′ presently validatesd while S presently invalidatesd, then there is somee presently valid inS
but presently invalid inS′, or equivalently, ifV (S′) ∩ V (S) 6= ∅ wheneverV (S′) ∩ V (S) 6= ∅.
Obviously, ifS is strongly present validity optimal inR, thenS is weakly present validity optimal
in R. The notions of weakly present validity optimality and strongly present validity optimality
correspond to the notions of validity optimality and strong validity optimality of (Doyle, 1983c).

As one might expect, since the varieties of validity optimality involve an arbitrary preference
system which may bear no relation to satisfaction systems, validity optimality proves very different
from satisfaction optimality. For example, satisfying sets need not be weakly present validity op-
timal among satisfying sets. To see this, letD = {d}, and[[d]] = P(D). Then both∅ andD are
satisfying,D presently validatesd, but∅ presently validates no element not inD, so∅ is not weakly
present validity optimal inP(D). In addition, unsatisfying sets may be weakly present validity op-
timal inP(D). We see this by lettingD = {d, e}, d ⇒ ∅ \\ {d} ‖− {e}, ande ⇒ ∅ \\ {e} ‖− {d}.
Then{d} and{e} are unsatisfying, but every set inP(D) is validity optimal since no set validates
any of its own elements.

We now use these optimality notions to show that grounded extensions make as many assump-
tions as possible given the reasons they contain.

Theorem 63 (Weak optimality) Grounded constitutions are optimal with respect to weak present
validity preferences.

PROOF: Suppose, by way of contradiction, thatS � E, S � E′ and that there is ad is valid in
E′ but not valid inE, but noe valid in E is not valid inE′. That is, there is ad ∈ E′, d valid in
E and eitherd /∈ E or d invalid in E′, andV (E) ⊆ V (E′). The elementd showsE 6= E′, so
by the minimality ofE andE′ among grounded extensions,E \ E′ 6= ∅. Let e ∈ E \ E′. Since
S ⊆ E′, e /∈ S. But sinceE is locally grounded, there must be somef ∈ E, f valid in E, and
e a consequence off . But thenf is valid in E′ as well, soe ∈ E′, a contradiction. ThusE must
be weakly present validity optimal inAExts(S), which means that the constitution is optimal with
respect to weak present validity preference. 2

We interpret this result as indicating the preferential orthogonality of grounded extensions, an or-
thogonality that appears in nonmonotonic and default logics as the logical inconsistency of alterna-
tive extensions. We take this to demonstrate that one can sensibly speak of psychological incom-
patibility without requiring notions of logical inconsistency. We do not know whether preferential
orthogonality characterizes grounded extensions, that is, whether any set is validity optimal among
admissible extensions is itself an admissible extension. We can, however, strengthen the result
somewhat for finitely grounded constitutions.

Theorem 64 (Strong optimality) Finitely grounded constitutions in which all reasons are finite
are optimal with respect to strong present validity preferences.

PROOF: SupposeS � E in a finitely grounded constitution in which all reasons are finite, and
thatE is not strongly present validity optimal. Then there is someE′ such thatS � E′ and some
d ∈ E such thatd is valid in E′ but invalid in E, and if e is valid in E, then eithere /∈ E′ or
e is valid in E′ as well. The differing properties ofd showE 6= E′, so by the minimality ofE
andE′ among grounded extensions,E \ E′ 6= ∅. Now E = Λω(S, E), E′ = Λω(S, E′), and
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S = Λ0(S, E) = Λ0(S, E′), so there is a leastα ≥ 0 such thatΛα+1(S, E) 6= Λα+1(S, E′)
but Λα(S, E) = Λα(S, E′). Without loss of generality, supposee ∈ Λα+1(S, E) \ Λα+1(S, E′).
Then there is somef ∈ Λα with f ⇒ A \\ B ‖− C, A ⊆ Λα, E ⊆ B, ande ∈ C. Since
e /∈ Λα+1(S, E′), there must be someg ∈ E′ ∩ B, so f is invalid in E′. This contradicts the
previous conclusion that sincef is valid in E, eitherf /∈ E′ or f is valid in E′. HenceE must be
strongly present validity optimal inAExts(S). 2

7. Conclusion

This paper presented elements of a mathematical theory of nonmonotonic reasoning based on con-
cepts chosen to isolate the fundamental structures of the subject rather than to exhibit a conventional
logical appearance. The approach taken here makes no special assumptions about the makeup of
minds, but instead interprets given structures naturalistically, identifying reasons and their conclu-
sions by the roles they play in the makeup of psychological states. It avoids special assumptions
about how minds realize or compute these roles, so encompassing the computationally trivial ac-
tivities of reason maintenance systems as well as the unbounded reasoning powers of ideal rational
agents, and treats nonmonotonic reasoning as applicable to all sorts of mental attitudes, not as
forms of reasoning specific to or justified only for beliefs, thus sidestepping the artificial consis-
tency requirements attendant in logical encodings that limit reasoning about conflicting information
or attitudes. The resulting theory thus exhibits the essential properties of traditional logical theories
of nonmonotonic reasoning, but makes optional the more specific (or dubious) properties of the
logical theories.

By avoiding the unnecessary concomitants of logical encodings of reasoning, the approach here
applies directly to a wide variety of psychological structures. While the particular formulation
presented here may not adequately serve the analysis of all interesting psychological structures, I
believe it provides a good basis for studying an important range of questions, and that many further
investigations will require only additions and refinements to the concepts presented here rather than
wholesale replacement.

The formulation of ideas presented here arose through the deliberate pursuit of a mathemat-
ical understanding of the subject, and through deliberate practice of the essentially mathematical
methodology of rational psychology sketched in the introduction and at somewhat greater length in
(Doyle, 1983d). Rational psychology offers benefits to all of artificial intelligence and the cognitive
sciences, not just to the theory of nonmonotonic reasoning. The preceding development exhibits
some of the benefits of this approach, and I hope the reader will have come to agree on the merits
of this project, even if unsatisfied with the specific formulations presented above.

Peregrinus expectavi pedes meos in cymbalis.
S. Prokofiev,Alexander Nevsky
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