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Abstract
Several recent problem-solving programs have indicated improved methods for controlling

program actions. Some of these methods operate by analyzing the time-independent antecedent-
consequent dependency relationships between the components of knowledge about the problem for
solution. This paper is a revised version of a thesis proposal which indicates how a general system
of automatically maintained dependency relationships can be used to effect many forms of control
on reasoning in an antecedent reasoning framework.

1 Introduction

A major problem encountered in building automatic problem-solving systems is the necessity of
providing controls on program reasoning and action. When faced with this problem, however, some
researchers have divided reasoning into the categories of antecedent (data-directed) and consequent
(goal-directed) reasoning. They then claim that the problem of control is just that of deciding on
a proper balance between antecedent and consequent representations of program knowledge. In
contrast to this, we argue that the dichotomy of reasoning into antecedent and consequent reasoning
is misleading, and is due to an inadequate understanding of the nature of control of reasoning.
Consequent reasoning is only one method among many available for the control of program actions.
In this paper, we indicate how dependency relationships between facts may be used to effect various
controls on reasoning, including consequent reasoning, in an antecedent reasoning framework. This
embedding allows the processes controlling program reasoning to enjoy the many advantages of
antecedent reasoning.

1.1 The Basic Reasoning Process

The basic reasoning process available to programs is a generative one, in which current knowledge
is used to deduce or create additional knowledge. This type of reasoning process is best captured by
antecedent, event-triggered reasoning, since antecedent-driven processes enjoy the important qual-
ities of being non-chronological and additive. Since antecedent processes are non-chronological in
nature, they provide a knowledge representation free of many problems of interactions induced by
time-dependence of computations. A concomitant benefit of antecedent reasoning is that it makes
the reasoning involved in dependencies between facts clear and easily recorded; the dependen-
cies are derived from the logical dependencies between facts, and are not dependent upon spurious
chronological accidents. That is, the reasons for the program’s knowledge about a fact consist only
of the facts used in its derivation, and not on the particular chronological history of the program’s
actions. (This quality of event-triggered or event-enabled reasoning is also attractive from the view-
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point of Dijkstra [1976], whose guarded commands are essentially event-enabled processes.) An
important consequence of the non-chronological nature of antecedent reasoning is additivity. As the
order of program actions is not critical, so the time and order in which new rules become known
is not particularly critical either. This additivity allows a distributed style of computation in which
missing knowledge does not necessarily cause program failure, but merely limited program capa-
bilities.

The major limitation on the use of the basic antecedent reasoning process is that it must be con-
trolled. Effectiveness and efficiency demand that there be mechanisms for focusing and directing
the actions taken by the program, since in infinite domains (domains in which infinitely many facts
are derivable), and in finite domains with more answers than interesting questions, the vast majority
of program actions and deductions are irrelevant to solving the problems of interest and should be
avoided. This is the genesis of the problem of control of reasoning, as in standard axiomatizations
of most domains the combinatorial nature of the method of combining small actions and deduc-
tions into a solution necessarily dominates the considerations of the designers of problem-solving
programs. Even though the range of program actions may be limited by employing self-limiting
representations or axiomatizations for the components of knowledge of the domain (such as are
employed in Nevins’ [1974] geometry theorem prover and in Minsky’s [1974] theory of Frames),
the domain may still be large enough so that direction is needed in the slot-filling process.

1.2 Controls on Reasoning

Many methods have been devised for controlling program actions. The most fundamental method
is that of explicitly programming the logic of the solution construction process. For instance, one
form this method assumes is the programming of the process as a decision tree, in which all possible
cases must be considered. This method has long been known to suffer by being highly inflexible
when extensions and modifications to the program are required.

A number of control strategies have been developed in the context of resolution theorem prov-
ing [Robinson 1965] (see Chang and Lee [1973] for examples), but in general these have proved
inadequate; apparently these strategies are more directed towards reducing the effort involved in
generating and testing a proposed solution, rather than aiding in reducing the effort involved in
searching the space of problem solutions. That is, these strategies are primarily optimizations of
theorem prover operations which are independent of domain, and provide little or no help in intro-
ducing domain-dependent control mechanisms [de Kleer 1976a].

Another strategy for controlling reasoning is that of consequent reasoning, the strategy of rea-
soning from goals to known facts. (In a theorem-proving context, the use of consequent reasoning
is usually called the set-of-support strategy.) Consequent reasoning is a very common method of
controlling search, as it is a simple mechanism for enforcing a certain form of relevance in actions
toward deciding the current questions by only using rules of inference or action which mention a
current goal in their conclusion. It is important to note, however, that anything deducible via con-
sequent reasoning is also deducible by antecedent reasoning - that is, consequent reasoning is just
a particular way of controlling antecedent reasoning. (Indeed, Nevins’ [1974] geometry theorem
prover’s use of consequent reasoning is essentially identical to its use of antecedent reasoning, and,
as de Kleer [1976a] observes, could apparently be made superfluous by a slight modification to the
main control loop of the program. See [Moore 1975] for additional discussions of these issues.)
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Backtracking is another method of controlling reasoning. Backtracking allows the focusing of
program attention on just one set of possibilities at a time, considering other sets of possibilities
only if the first set of choices leads to failure. Automatic backtracking mechanisms have fallen into
disfavor since the advent of MICRO-PLANNER, in which chronological, side-effect-free automatic
backtracking was made an virtually unavoidable program control mechanism. This form of auto-
matic backtracking has many problems associated with it. (See [Sussman and McDermott 1972]
for a discussion of these problems.) Many of the unpleasant features of automatic backtracking are
remedied, however, by the use of a non-chronological, dependency-directed backtracking system
[Stallman and Sussman 1976].

Other methods for controlling reasoning include the use of meta rules, protocols, and task net-
works. Meta rules [Davis 1976] provide a mechanism for controlling program actions at times when
more than one action is known to be feasible. Meta rules have the feature of being useful at many
levels: in controlling the basic program actions (first level use), in selecting which strategy to use
(second level use), in deciding how to select a strategy (third level use), etc. The use of special-
ized protocols finds related applications in guiding program actions. Examples of protocols are the
choice and rephrasing protocols of NASL [McDermott 1976], the NOAH plan refinement loop [Sac-
erdoti 1975], the SIMPLE ATN [Goldstein and Miller 1976], and Nevins’ partitioned deduction loop
[Nevins 1974]. These protocols are invoked in particular types of situations, and frequently allow
considerable efficiency in performing standard patterns of action. Task networks [Sacerdoti 1975,
McDermott 1976] make an explicit representation of past, present, and future program actions avail-
able to the program itself. Thus task networks, like meta rules and protocols, allow the direction
of current and future reasoning to be influenced by the program’s knowledge about its own state of
knowledge and past, present, and future plans.

1.3 The Antecedent Embedding of Control

The view proposed here is that the view of these mechanisms as controls on reasoning is best
combined with the use of dependency relationships among facts to implement these forms of control
within the framework of antecedent reasoning, and that this embedding of control mechanisms
alleviates many problems encountered in their standard implementations.

One such problem affected by this embedding is the problem of backtracking. In standard im-
plementations, backtracking is usually used in conjunction with consequent reasoning in a chrono-
logical fashion. Traditionally, backtracking is accomplished by rechoosing the most recently made
reversible choice, a process which normally requires the consideration of many obviously irrele-
vant sets of choices. By using dependency relationships, which when produced from the process
of antecedent reasoning are already free of chronological dependencies, the efficient method of
dependency-directed backtracking of Stallman and Sussman [1976] can be implemented. In this
form of backtracking, only those choices relevant to the current failure are considered for change.
In addition, recording of the demonstrably infeasible sets of choices reduces future search consid-
erably by ruling out any proposed set of choices including any of the the known infeasible sets of
choices.

Consequent reasoning also benefits from being embedded in an antecedent reasoning framework
by being transformed into a non-chronological process. Traditional implementations of consequent
reasoning have been chronological in nature. Because of this, the effects of incomplete knowledge
have been harder to deal with, in that the chronological order of unsuccessful searches, assump-
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tions, and discoveries becomes significant. The wrong chronological orderings may so induce an
inconsistency in the program knowledge which, without usefully recorded dependency information,
is difficult to analyze and remedy. Also, additional work is induced as successive queries about a
problem or about related problems normally have to perform the same search effort as in the first
query. This latter problem arises from the difficulty of recording dependencies in a chronological
system, which forces searches to recompute previously derived, but discarded information, so caus-
ing subsequent queries to require the duplication of entire searches or subsearches. (Fikes [1975],
however, has proposed some mechanisms for alleviating these problems in a chronological system.
These mechanisms amount to some of the fragments of the ARS dependency system which are easy
to use in a chronological system.)

2 Facts and Dependencies

Each component of program knowledge is recognized as a distinct entity called a fact. Facts are used
in describing the dependency relationships between the different components of program knowl-
edge. Belief in the truth of a particular fact may or may not be supported by belief in the knowledge
embodied in other facts. If a fact is known to be true by virtue of its relationships with other facts,
we say the fact is in; otherwise the fact is out. The distinction between in and out is not the same as
the distinction between true and false. To represent the true/false dichotomy, each fact may have a
negative. The negative of a fact represents the assertion which is true if and only if the fact is false.
The negative of a fact is a fact itself, and also will be either in or out depending upon its support by
other facts. We define six predicates on facts which describe the possible states of knowledge about
the fact:

IN(f) ≡ f is in
OUT(f) ≡ ¬ IN(f)
NEGIN(f) ≡ the negative of f is in
NEGOUT(f) ≡ ¬ NEGIN(f)
KNOWN(f) ≡ IN(f) ∨ NEGIN(f)
UNKNOWN(f) ≡ ¬ KNOWN(f).

Observe that IN, NEGIN, and UNKNOWN correspond to the classical divisions of TRUE, FALSE,
and UNKNOWN of 3-valued logic. It is therefore a contradiction for both a fact and its negative to be
in simultaneously.

Each fact derives its support from its antecedent set. Each antecedent in the antecedent set of
a fact is a boolean function of the above status predicates of other facts. A fact is in if one of its
antecedent functions is true, and is out otherwise. If a fact is in, a single one of its antecedents may
be designated as the fact’s support; the support of an out fact is the entire antecedent set of the fact.
Thus the status of a fact remains unchanged in new deductions if the status of each of the facts in its
support is unchanged.

This structure for the antecedents of a fact is a generalization of the ARS dependency system
[Stallman and Sussman 1976]. In this system, each antecedent in the antecedent set of a fact cor-
responds to an alternate derivation of the fact. Some systems (such as those of Fikes [1975] and
McDermott [1976]) also record the support dependencies of facts, but only record one derivation at
a time. The need to record all derivations was first realized in the ARS system, as it was discovered
that the single-antecedent scheme allowed the process of backtracking to produce circularities in
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the support of facts. Since ARS uses reasoning about the antecedents of a fact to control search, this
phenomenon required the introduction of antecedent sets and “fact garbage collection.”

2.1 Truth Maintenance

Antecedents in ARS are of a simple and monotonic nature, in that the inning of a fact cannot (ex-
cept in the case of contradictions) cause the outing of other facts. Because of this monotonicity,
determination of the statuses of facts in ARS is accomplished by means of two processes termed
fact garbage collection and unouting. Fact garbage collection occurs each time the status of a fact
is changed from in to out, an occurrence typically due to the rechoosing of a choice during back-
tracking. ARS’s fact garbage collector examines each fact to choose an antecedent which provides
non-circular support for the fact. Unouting is the complementary process: when new support is
derived for an out fact, the fact’s status is changed from out to in, and all of its currently out conse-
quences which then have support are unouted recursively.

The generalized dependency system described above requires the unification of fact garbage
collection and unouting into a uniform process called “truth maintenance.” The possibility of the
status of a fact depending upon another fact being out makes the system of dependencies non-
monotonic. This non-monotonicity means that unouting is no longer possible: whenever the support
for a fact is changed, truth maintenance must be performed to provide each fact with well-founded
support. However, truth maintenance need only be concerned with those facts whose support may
actually be affected by the initially changed fact. Accordingly, this means that the process of truth
maintenance can be incremental. This realization shows that the ARS system, which garbage collects
all facts whenever any fact is outed, is doing unnecessary work, and could be profitably changed to
use an incremental fact garbage collector.

In addition to requiring a unified truth maintenance system, the dependency schema introduces
new forms of inconsistencies which must be recognizable. Three types of contradictions are rec-
ognizable in general: explicit contradictions (facts which are known to represent contradictions),
contradictions arising from both a fact and its negative having support and thus being considered in,
and unsatisfiable dependency relationships among facts. (An example of the latter type of contra-
diction is a fact f whose antecedent set is OUT(f). This antecedent set would force f to be in if
and only if it was out—a contradiction.)

A necessary property of unsatisfiable dependencies is that they must involve strong circularities
in the dependency structure. (I use the adjective “strong” here as these circularities are really just
the strongly connected components of the directed graph arising from the natural interpretation of
the dependency structure as a directed graph on antecedent sets.) For instance, in the above example
of a fact f which is in iff it is out, a strong circularity is evident: well-founded support for f cannot
be chosen until well-founded support is available for its antecedents, in this case f itself.

Not all strong circularities involve unsatisfiable dependency relationships, however.
Strong circularities arise naturally in situations involving equalities and equivalences. In these sit-
uations there is a natural solution to the problem: the status of one of the facts is arbitrarily chosen
to be out; this then determines the status of the other facts involved in the circularity. Modifying
this method, however, are considerations due to the possibility of noncircular dependencies between
facts in distinct strongly connected components. This possibility requires that the choices in distinct
strong circularities be consistent. Such consistent choices can be found by a process of topologi-
cally sorting the strong circularities coupled with backtracking. In such cases, inconsistencies are

5



DOYLE

manifested as the event of determining supposedly well-founded support for a fact with arbitrarily
chosen status, such that the newly determined status differs from the chosen status. In this easily
detectable event, one of the choices involved in the inconsistency must be rechosen. If no choice can
be rechosen without creating another inconsistency, the antecedent structure involved is determined
to be unsatisfiable.

It should be pointed out that while the problem of finding a satisfiable assignment of statuses
to facts is NP-complete, and whose solution by the above algorithm is potentially exponentially
expensive, all the known examples of such strong circularities are part of a monotonic dependency
relation, and thus are amenable to the method of choosing of all involved facts to be out. Indeed, I
have been unable to construct a natural example in which unsatisfiable antecedent structures occur,
and so have not been worried by the potentially expensive computations involved. The next section
supports this attitude by demonstrating the nature of several common dependency structures, all of
which are easily managable.

2.2 Typical Dependency Structures

This dependency scheme is sufficient to express many types of dependency relationships. We give
five simple examples of their use.

AND

If f represents AND(f1, . . . , fn), then f has an antecedent of the form IN(f1, . . . , fn). In
addition, the negative of each fi has an antecedent of the form

IN(f1, . . . , fi−1, fi+1, . . . , fn) ∧ NEGIN(f).

(We extend the six status predicates above to predicates of arbitrary sets of facts in the natural
fashion by defining a predicate on a set to be the conjunction of the predicate on the elements.)

OR

If f represents OR(f1, . . . , fn), then f has an antecedent of the form IN(fi) for each fi. In
addition, each fi has an antecedent of the form

NEGIN(f1, . . . , fi−1, fi+1, . . . , fn) ∧ IN(f).

XOR

If f1, . . . , fn are mutually exclusive and exhaustive cases, then the negative of each fi has an
antecedent of the form IN(fj) for each j 6= i.

Ordered Choices

If f1, . . . , fn represent mutually exclusive choices, with a preference for choosing fi over
fi+1, then the following relationships exist: f1 has the antecedent NEGOUT(f1), and for
i > 1, fi has the antecedent

NEGOUT(fi) ∧ NEGIN(f1, . . . , fi−1).
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PRESUMABLY

If f is to be assumed true unless it is provably false, f can be given the antecedent NEGOUT(f ).

The above example of the use of this dependency system to describe the PRESUMABLY opera-
tor demonstrates the flexibility of this system as compared with a simple 3-valued logic of TRUE,
FALSE and UNKNOWN. The concept of PRESUMABLY is considerably harder to describe and main-
tain automatically in such systems.

3 Consequent Reasoning

For the purposes of efficient computation we distinguish each component of a certain subset of the
knowledge of a program as being of a special type of fact called a rule. Rules are not just static
knowledge, but have an imperative meaning attached to them. The basic structure of antecedent
rules is that of

<trigger> =⇒ <body>,

where <trigger> is a set of facts (named, of course, after Roy Rogers’ horse). The operation of
the rule is such that when all of the facts in the trigger are asserted, <body> is performed. (Or, as
GLS suggests, when the trigger is pulled, the body is executed.)

A straightforward use of such rules in implementing consequent reasoning is as follows. For
simplicity, we describe only the case of deduction. To effect a rule

R: A → C

in consequent fashion, an antecedent rule of the form

R1: IN((OPERATIONAL R)) ∧ IN(A)
=⇒

assert C with antecedent (AND (IN A) (IN R))
assert (SATISFIED (GOAL (DEDUCE C)))

with antecedent (AND (IN A) (IN R))

is asserted with antecedent (IN R), as is another antecedent rule of the form

R2: IN((GOAL (DEDUCE C))) ∧
NEGIN((SATISFIED (GOAL (DEDUCE C))))

=⇒
assert (GOAL (DEDUCE A))

with antecedent
(AND (IN (GOAL (DEDUCE C))) (IN R)

(NEGIN (SATISFIED (GOAL (DEDUCE C)))))
assert (PRESUMABLY (NOT (SATISFIED (GOAL (DEDUCE A)))))

with antecedent
(AND (IN (GOAL (DEDUCE C))) (IN R)

(NEGIN (SATISFIED (GOAL (DEDUCE C)))))
assert (OPERATIONAL R)
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with antecedent
(AND (IN (GOAL (DEDUCE C))) (IN R)

(NEGIN (SATISFIED (GOAL (DEDUCE C))))),

and finally, the fact

F: (PRESUMABLY (NOT (SATISFIED (GOAL (DEDUCE C)))))

is asserted with antecedent (IN R).

3.1 An Example

To demonstrate the operation of this method of consequent reasoning, we present a simulation of
the following familiar example in detail. We leave out some computations which might occur but
which do not substantially affect the flavor of the process, and ignore a number of questions raised
by facts with variables in their statements and the process of rule creation. The initially known (in)
facts are

F1: (GREEK SOCRATES)
F2: (HUMAN SOCRATES)
F3: (HUMAN TURING).

There is also a consequent rule,

F4: (HUMAN ?X) → (FALLIBLE ?X).

(As is usual, free “?” variables are assumed to be universally quantified.) By the above process, F4
produces two antecedent rules,

R1: IN( (OPERATIONAL F4) ) ∧ IN( (HUMAN ?X) )
=⇒

assert (FALLIBLE ,X)
with antecedent (AND (IN F4) (IN (HUMAN ,X)))

assert (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))
with antecedent (AND (IN F4) (IN (HUMAN ,X)))

R2: IN( (GOAL (DEDUCE (FALLIBLE ?X))) ) ∧
NEGIN( (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X)))) )

=⇒
assert (GOAL (DEDUCE (HUMAN ?X)))

with antecedent
(AND (IN (GOAL (DEDUCE (FALLIBLE ?X)))) (IN F4)

(NEGIN (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))))
assert (PRESUMABLY

(NOT (SATISFIED (GOAL (DEDUCE (HUMAN ?X))))))
with antecedent
(AND (IN (GOAL (DEDUCE (FALLIBLE ?X)))) (IN F4)

(NEGIN (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))))
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assert (OPERATIONAL R1)
with antecedent
(AND (IN (GOAL (DEDUCE (FALLIBLE ?X)))) (IN F4)

(NEGIN
(SATISFIED (GOAL (DEDUCE (FALLIBLE ?X)))))),

and the fact

F5: (PRESUMABLY
(NOT (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))))

with antecedent (IN F4). (Here the “,” prefix indicates a substitution of the variable’s value.) F5
then triggers a rule for interpreting PRESUMABLY, which asserts

F6: (NOT (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X)))))

with antecedent (AND (IN F5) (NEGOUT F6)).
We now ask if there are any fallible Greeks.

F7: (QUERY (AND (FALLIBLE ?X) (GREEK ?X)))

This triggers a rule for handling queries by translating them into goals with the appropriate an-
tecedents. In this case, the rule asserts

F8: (PRESUMABLY
(NOT (SATISFIED

(GOAL (DEDUCE (AND (FALLIBLE ?X) (GREEK ?X))))))

with antecedent (IN F7), causing

F9: (NOT (SATISFIED
(GOAL (DEDUCE (AND (FALLIBLE ?X) (GREEK ?X))))))

to be asserted with antecedent (AND (IN F8) (NEGOUT F9)), then causes

F10: (SATISFIED (GOAL (DEDUCE (AND (FALLIBLE ?X) (GREEK ?X)))))

to be asserted with no antecedents, and then asserts

F11: (GOAL (DEDUCE (AND (FALLIBLE ?X) (GREEK ?X))))

with antecedent (AND (IN F7) (NEGIN F10)). F11 now triggers a rule for reducing con-
junctive goals to rules. This rule asserts the new rule

R3: IN( (FALLIBLE ?X) ) ∧ IN( (GREEK ?X) ) ∧ IN(F11)
=⇒

assert (AND (FALLIBLE ,X) (GREEK ,X))
with antecedent
(AND (IN (FALLIBLE ,X)) (IN (GREEK ,X)))

assert (SATISFIED (GOAL (DEDUCE (AND (FALLIBLE ?X)
(GREEK ?X)))))

with antecedent
(AND (IN (FALLIBLE ,X)) (IN (GREEK ,X)))
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and asserts, or causes the assertion of

F12: (PRESUMABLY
(NOT (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))))

with antecedent (IN F11)
F13: (PRESUMABLY

(NOT (SATISFIED (GOAL (DEDUCE (GREEK ?X))))))
with antecedent (IN F11)

F14: (NOT (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X)))))
with antecedent (AND (IN F12) (NEGOUT F14))

F15: (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))
with no antecedent

F16: (NOT (SATISFIED (GOAL (DEDUCE (GREEK ?X)))))
with antecedent (AND (IN F13) (NEGOUT F16))

F17: (SATISFIED (GOAL (DEDUCE (GREEK ?X))))
with no antecedent

F18: (GOAL (DEDUCE (FALLIBLE ?X)))
with antecedent (AND (IN F11) (NEGIN F15))

F19: (GOAL (DEDUCE (GREEK ?X)))
with antecedent (AND (IN F11) (NEGIN F17)).

The new goal F18 now triggers R2. Since F14 is in, R2 is fully triggered, and asserts

F20: (GOAL (DEDUCE (HUMAN ?X)))
F21: (PRESUMABLY (NOT (SATISFIED (GOAL (DEDUCE (HUMAN ?X))))))
F22: (OPERATIONAL F4),

each with (AND (IN F18) (IN F4) (NEGIN F15)) as antecedent. R1 had previously
been triggered by F2 and F3, but could not proceed due to the lack of F22. Now with F22 as-
serted, R1 asserts

F23: (FALLIBLE SOCRATES)
F24: (FALLIBLE TURING),

with the respective antecedents (AND (IN F2) (IN F4)) and (AND (IN F3) (IN F4)).
R3 is now fully triggered, and asserts

F15: (AND (FALLIBLE SOCRATES) (GREEK SOCRATES))

with antecedent (AND (IN F23) (IN F1)). R3 also asserts F10with antecedent (AND (IN
F23) (IN F1)), which changes the status of F11’s support, so that F11 is outed. But F11
supports the subgoals F18 and F19, and F18 supports F20, and so these are outed also. Thus the
query is answered, the goals all outed, and the computation finished.

The primary features of this style of implementing consequent reasoning are that:

1. Goals exist only as long as some supergoal requires their existence: the removal of a goal
removes all of the then unsupported subgoals.

2. The computations available in consequent rules are performed only when a question exists
making the computations relevant.
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3. Deactivation of a rule does not invalidate any consequences of the rule.

4. If goals remain unsatisfied, they can later be satisfied by the addition of new rules generating
new facts and so allowing their computations to proceed.

It should be apparent that in many applications a more refined notion of goal state is required
than simply SATISFIED or NOT SATISFIED. The remedy for this is to pass from simple goals
to task networks, and to use taxonomies of task states such as those defined in McDermott’s [1976]
NASL system. The exact form of such mechanisms is still a topic of research.

4 Discussion

4.1 Relation to Other Research

Until the BUILD program of Fahlman [1974], the dominant paradigm embodied in problem-solving
programs was that of the MICRO-PLANNER language [Sussman, Winograd and Charniak 1971], a
simplified version of the PLANNER language developed by Hewitt [1972]. The problem-solving
style captured in MICRO-PLANNER is the style of most problem-solving systems constructed up
to its time: heuristic search of AND-OR goal trees constructed by a collection of antecedent and
consequent pattern-invoked programs driven by an automatic chronological backtracking control
structure. (See Winston [1976] for discussions of these techniques.) In this style of problem solving,
embodied in programs like GPS [Ernst and Newell 1969], SAINT [Slagle 1963], Gelernter’s [1963]
Geometry-Theorem proving machine, Black’s [1968] question answerer, STRIPS [Fikes and Nilsson
1971], SHRDLU [Winograd 1972], and Goldstein’s [1973] geometry theorem prover, search through
different branches of the goal tree have essentially no influence on each other. The major forms
of information communicated between subgoals, if any, usually amounted to signals of failure (for
instance, the MICRO-PLANNER FAIL command) or indications of high expected difficulty (as in
GPS and SAINT).

A competing problem-solving paradigm of the time was that embodied in resolution theorem
provers such as QA3 [Green 1969], a paradigm formalizing the effectively non-deterministic quali-
ties of the MICRO-PLANNER approach. In these systems, all formulas following from the problem
model could theoretically be used once derived. This channel of communication between attempts
was usually limited in practice as theorem provers turned to various restricted resolution schemes
[Chang and Lee 1973] constraining the use of formulas in resolutions as a method for gaining ef-
ficiency, often resulting in the derivation of formulas which could not be used at any point of the
solution. In addition, these systems suffered from monotonicity problems [Minsky 1974], as the
theorem provers were unable to conclude any results from their inability to derive a formula, and
could not decide to remove a proven formula from their set of formulas (although occasionally new
axioms could be checked for consistency [Green 1969]). In particular, these theorem provers had
no way to make assumptions based on their inability to prove a certain formula. These limitations
were primarily due to an enforcement of completeness and consistency at each step. As we have
seen, by using dependency relationships between facts it is possible to maintain consistency even in
the presence of assumptions.

The first effort to break away from the MICRO-PLANNER problem-solving paradigm was the
BUILD program of Fahlman [1974]. This program used analysis of its own goal structure to cor-
rect its mistakes and maneuver out of blind alleys. The techniques of reasoning about relationships

11



DOYLE

involving the reasons for goals and plan steps were then further developed in HACKER [Sussman
1975], MYCROFT [Goldstein 1974], and NOAH [Sacerdoti 1975]. These programs demonstrated cer-
tain information which, if recorded during the problem solving process, allowed simple algorithms
for the detection and correction of a number of mistakes arising from the use of simple planning
heuristics. Fikes and Nilsson [1971] and Waldinger [1975] also present representations for plan
steps which allow the construction of new plans from old ones by reasoning about relationships
among the old plan steps.

Analysis of the reasoning involved in the construction of plans facilitates the processes of re-
planning and execution monitoring. This type of reasoning is used to good advantage in the work of
Hayes [1975], who presents an explicit representation for some of the reasoning involved in plan-
ning, and uses this information in replanning upon discovering obstructing changes in the world.
Similar information is made explicit in NASL [McDermott 1976]. NOAH also retains a complex
representation of the structure of a plan which is modified and interrogated to check plan execu-
tion progress and to replan from mistakes. STRIPS and PLANEX [Fikes and Nilsson 1971] also use
a complex representation of the structure of plans in execution monitoring and replanning, but this
representation is less informative and thus less powerful than the representation employed by NOAH.
Although STRIPS and NOAH maintain a record of plan structure, unlike Hayes’ system and NASL

they do not also represent explicitly the reasoning involved in creating the plans and thus require
different and more extensive analyses of the plans to modify them. It is interesting to compare these
approaches to those of BUILD and HACKER, which both plan by a process of continual simulated
execution monitoring and replanning. HACKER, however, represents little more than a program for
the plan itself explicitly, forcing it to do a considerable amount of analysis to discover the nature
of its errors. BUILD represents even less information explicitly, and relies on the “hairy control
structure” of CONNIVER [McDermott and Sussman 1972] to control the analysis and correction of
errors.

Reasoning about the reasoning involved in the design and internal structure of plans, devices
or beliefs plays a great role in current work on failure localization and debugging. These problems
have been or are being investigated in the contexts of reconciling beliefs, debugging knowledge
bases, troubleshooting electronic circuits, and constructing, explaining and debugging computer
programs. TOPLE [McDermott 1974] reconciles its conflicting beliefs by making assumptions based
on the nature of the conflict, and later analyzes the relationships it has assumed if it finds cause
to doubt the truth of a related fact. MYCIN [Shortliffe 1975, Davis 1976] employs a system of
dependencies among its beliefs, goals and rules which admits thorough explanations of reasons for
program behavior to a human expert adding to or locating deficiencies in the program knowledge
base. WATSON [Brown and Sussman 1974, Brown 1974, 1975] uses knowledge of the teleology
of circuits (knowledge of the reasoning behind the design of the circuits) to localize failures of
circuits to the failure of specific circuit components. INTER [de Kleer 1976b] also localizes failures
in electronic circuits, but reasons about the relationships among its assumptions about component
behavior to determine component failures, rather than relying on knowledge of the teleology of
circuits.

Analysis of program assumptions and their relation to other program knowledge has recently
seen substantial application in the dependency-directed backtracking scheme developed in ARS.
Another backtracking scheme which analyzes the relations between the choices involved in a fail-
ure is used in the graphical deduction system of Cox and Pietrzykowski [1976]. Latombe [1976]
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employs reasoning about dependencies in choosing choice points for backtracking purposes, but
does not explicitly describe the exact mechanisms used.

Analysis of past and present reasoning can also be used in the control of current and future
reasoning. The MYCIN system employs a hierarchy of meta-rules for this purpose. In this system
of production rules, a first level of meta-rules is used to control the application of the regular pro-
duction rules. Successive levels of meta-rules are each used to control the application of meta-rules
at the next lower level. In this way strategies, hints for choosing strategies, and higher level control
information may be encoded. (In actuality, MYCIN at present contains only first level meta-rules.
Although its implementation permits higher level meta-rules to be used, none have been formal-
ized to date. In addition, the form of rules and meta rules used in MYCIN is very restricted, which
simplifies the processes of explanation and acquisition, but limits the flexibility of the system.) In
addition to controlling the current reasoning tasks, the NASL system provides elegant tools for in-
terpreting the current state of reasoning and for specifying both future tasks and continuing policies
for controlling task execution. NASL embodies taxonomies for the description of partially ordered
task networks, providing semantics for a generalization and extension of Sacerdoti’s [1975] proce-
dural nets. (See, for example, the implementation of a NOAH-like Blocks World planner in NASL

[McDermott 1976, Doyle and McDermott, forthcoming].) As well as specifying the semantics of
task networks, NASL provides basic tools for modifying the task network and the the relationships
among tasks in several ways.

Reasoning about past reasoning and careful recording and use of dependency relationships
among facts also work together to aid problem-solving in worlds with influential actions. Clas-
sic approaches to this problem have included specifying frame axioms for all actions and conditions
[McCarthy and Hayes 1969, Raphael 1971], specifying add and delete lists for operators [Fikes
and Nilsson 1971], embedding add and delete lists in simulating procedures [Fahlman 1974, Suss-
man 1975], distinguishing between primary and secondary knowledge [Fahlman 1974, Fikes 1975],
using demons to embody tendencies [Rieger 1975] and change-observers [Rieger 1976]. Auto-
matically maintained dependency relationships among facts work smoothly with most of these ap-
proaches, providing easy access to possibly invalidated knowledge to a program confronted with
contradictions, and a simple system for updating the program knowledge upon recognizing change.
Such mechanisms would seem to allow considerably easier access to suspicious assumptions than
other representations of world states, such as those of Waldinger [1975], Kowalski [1973], Warren
[1974], Hewitt [1975], and Sacerdoti [1975].

In addition to their uses in reasoning about influential actions, dependency records resulting
from the reasoning process can also be used to easily work with hypothetical worlds. A dependency
based context scheme, such as that employed in ARS provides a convenient channel by which rea-
soning in distinct hypothetical worlds can interact and supplement the general body of knowledge.
Facts derived while investigating a hypothetical world may also be valid in the non-hypothetical
world, and thus will not be lost if the hypotheses are abandoned. In addition, the consistent merg-
ing of two distinct contexts becomes a trivial (and invisible) operation, as opposed to the difficulties
it entails in CONNIVER-type context mechanisms for hypothetical reasoning [Waldinger 1975, Mc-
Dermott 1975].

Appropriately recorded dependency information also simplifies the construction of articulate,
self-explaining experts. SHRDLU [Winograd 1972] answers certain types of questions by examin-
ing relationships between past and present goals and subgoals. NOAH uses similar information to
answer questions about purposes and methods. MYCIN analyzes recorded dependency relationships
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to produce explanations of its reasoning, a feature significantly aiding in the processes of reassuring
human experts and detecting and correcting knowledge base errors and deficiencies. The EL-ARS

system provides a similar power of explanation, but makes no attempt to give its explanations in
English.

4.2 Conclusions

Non-chronological dependency relationships can be easily recorded in an antecedent reasoning
framework. These dependency relationships can be used in many ways; for explanation, as a means
towards maintaining consistency in a database, and most importantly, as tool to use in the con-
trol of the reasoning process. In particular, such dependency relationships can be used to effect
the efficient control method of dependency-directed backtracking, and can be used to implement
non-chronological consequent reasoning in an antecedent reasoning framework.
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