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Introduction

John McCarthy [1977, 1980] introduced the notion of circumscription into artificial intelligence
as a means for handling his “qualification problem” by jumping to conclusions. The detailed statement
is presented below, but briefly put, the idea of circumscription is to rule out all objects and conditions
not explicitly entailed by one’s beliefs, as a way of avoiding explicit consideration of the myriad potential
exceptional cases consistent with one’s incomplete knowledge.

Richard Statman pointed out to me that an old idea of mathematical logic, implicit definability,
seems essentially the same as circumscription, and that much is known in mathematical logic about im-
plicit definability. The following examines some connections between these ideas with two audiences in
mind. I first briefly describe the constellation of difficulties faced in artificial intelligence that motivate
circumscription, and enumerate some of its important concrete uses. I then present the connection with
implicit definability, and survey some basic results from mathematical logic concerning it. Both parts at-
tempt to convey to logicians the apparent needs of artificial intelligence and the corresponding theoretical
opportunities, and to convey to artificial intelligence researchers the theoretical possibilities and relevant
literature.

What is circumscription for?

The motivations for circumscription begin with the observation that there are too many things
to think about, even in mundane decisions about what to do or what to believe. We may accept some
statements about the world as our beliefs, but they have infinitely many consequences. We may see that
they are incomplete, but there are infinitely many completions. And we may guess that they are wrong,
but there are infinitely many changes we could make. Yet our resources, especially time, are finite, and so
reasoning must be finite if we are to periodically take action and live in this world. Finiteness of reasoning
and deliberation means that we must ignore almost all of these infinitely many possibilities. Considering
and accepting or rejecting every possibility one by one will not work. Instead, we must never even consider
most of them.

The problem of ignoring most possibilities is different from the problem of ignoring most impos-
sibilities. Many techniques in artificial intelligence are directed toward the latter problem. For example,
search theory provides techniques like α-β cutoffs, branch and bound, A* and B*. Each of these makes
use of information discovered during the search to recognize whole sectors of seeming possibilities as, in
fact, impossibilities. Another example is the use of unification in resolution, where the partial information
about possible ground instances of each individual clause is combined to ignore individually possible but
collectively impossible substitutions. A final example is the use of dependency information in belief revi-
sion, where records of the dependence of contradictions on assumptions are used to ignore revised sets of
assumptions which change only chronologically intervening but logically independent assumptions. (See
[Charniak and McDermott 1985] for introductions to artificial intelligence ideas.)

The problem of ignoring most possibilities is much more difficult than the problem of ignoring
most impossibilities. Everyone agrees that ignoring most impossibilities is a good thing, and we have
precise notions, such as logical contradictions, entailment, and optimization, which characterize what is
impossible given some information. In contrast, ignoring possibilities requires a choice of which ones are
good to ignore. We certainly do not wish to ignore all, unless we are ostriches. But what makes ignoring
some possibilities more reasonable than ignoring others? Purely arbitrary cutoffs on consideration by
setting fixed resource allocations are not very attractive, for different tasks and decisions call for different
amounts of effort. Simply stopping after 25 or 1025 steps produces random results. If we wish our ignorance
to be principled and deliberate, we must seek to consider or ignore possibilities based on our purposes,
circumstances, and informational and computational resources, accepting blunt termination only in the
final extremities of unavoidable resource exhaustion.
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Artificial intelligence has pursued two complementary approaches toward achieving ignorance
in reasonable ways. The first approach is to separate out restricted classes of inferences and actions
which, being guaranteed to be finite, even fast, may be always performed automatically without conscious
consideration or oversight, and without danger of unexpected exhaustion except in cases of unusually
severe resource limitations. This does not solve the problem, but at least separates the “easy” cases
of mental actions from the realm in which all actions must be deliberatively considered and confined.
These definitely finite cases are also prime candidates for tailored implementations, especially parallel
implementations, since the guarantees of finiteness stem from knowledge of what the computations and
answers look like. Important examples of this approach include the explicit and limited sorts of inferences
made by reason maintenance systems and by hierarchical inheritance systems. In these, only some of the
possible inferences are made from the information possessed, namely those inferences stipulated by explicit
“reasons” and “inheritance links.” All other sorts of inferences are left for deliberate investigation by the
larger system employing these subsystems. Though such definitely finite classes of reasoning operations
may seem trivial to logicians, or when compared with the grand adventure of locating an answer in the
infinite unknown, in practice the finite cases are extremely important. In each situation we must adapt
our basic attitudes to the particulars of the case at hand, reworking and applying our “web of beliefs” or
“complex of attitudes” over and over. What “common sense” and “common knowledge” are has not yet
been completely understood, but part of those features of agents is the efficient and flexible use of vast
numbers of facts which, by their very commonality, enter into many of the mundane decisions we make
constantly every day. Adaptations of such background knowledge handles much of the routine work, if we
are lucky, leaving the agent free to concentrate its attention and resources on the non-routine problems.

The second approach toward principled ignorance taken by artificial intelligence is that of ruling
out possibilities by adopting a narrow view of what is possible. For example, frequently we are forced to
take action in spite of incomplete knowledge about our circumstances and the consequences of possible
actions. We may wish to follow rules that indicate which actions are appropriate in which circumstances,
but due to the incompleteness of our knowledge, none of these may be clearly applicable. We may have
other rules in the finite realm which specify particular standard assumptions to make, but even after
following these, we may still not have enough information. Unlimited exploration of the possibilities is
out of the question, for there are too many. In these straits, it is common to take what we do know or
have assumed as our “best guess” about the situation. We assume that what we do know is all there is,
that what we do not know to be true must be false. This is the idea of both circumscription and the
“closed world assumption”—each of which involves jumping to conclusions based on those delimited by
our explicit knowledge.

For example, we may know of several things that lie on a table, but may need to know about all
things on the table to tell if we have succeeded in removing everything from the table. In this case, our
best guess is to assume that the several objects we know to be on the table are the only things there, to
assume that nothing else is on the table.

One may wish to succeed in some action that has certain conditions of success, for example,
rowing in a boat to the other side of a river. As McCarthy’s well-known anecdotes show, we will never act
unless we can rule out the myriad ways the action might fail. To do this, we assume that if something was
wrong, we would know about it, and conclude that nothing is wrong from our ignorance of any problems.

Or finally, we may wish to take several actions in a row as a means to accomplishing a difficult
goal, and to tell what action to do next, we need to know what circumstances result from the preceding
actions. We may know some consequences of possible actions explicitly, through “laws of motion” of the
form “Conditions C will obtain after taking action A in situation S.” Such rules may tell us about the overt
effects of actions, but it is infeasible to have such rules explictly mention the vast majority of conditions
left unchanged by actions. Hence to tell what conditions result, we must guess that each action changes
nothing except those things we can tell it changes from the laws of motion and our other knowledge about
relations between things.

These assumptions adopted in taking the narrow view serve to convert many former possibilities
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into temporary impossibilities, which can then be avoided by the methods mentioned previously. But to
make use of “best guesses” in artificial intelligence, we also need ways of telling exactly what our best
guess should be, when it should be changed, and how to compute it from our knowledge. In particular,
we must address the following questions.

(1) Precisely which conclusions make sense as “best guesses” from given information?

(2) Is there an explicit, or at least concise, characterization of these conclusions and their depen-
dence on the given information?

(3) How can these conclusions be computed quickly? Or approximated if exact answers are
uncomputable or infeasible?

(4) Is there an easy way to tell when changes to the explicit information invalidate the guesses,
and when the changes leave the guesses the same?

(5) When the guesses must change, can they be quickly updated to fit the new information?

What is circumscription?

McCarthy introduced (in [1977], modified in [1980] and again in [1984]) the formal notion of
circumscription as a solution to problem (1).

Our formal definition of circumscription is as follows. Fix a first order logical language L, and
let A be a set of axioms stated in L, that is, a set of closed formulas. For convenience, when A is finite,
we will sometimes confuse A with a sentence Â obtained as a conjunction of the members of A.

Let P be a predicate symbol of L of type or arity n. We will write P (~x) to abbreviate P (x1, . . . , xn).
We also write A(Q) to mean the result of substituting the symbol Q for P everywhere in A, so that
A = A(P ).

When A is finite, we define B̂(A,P ), the circumscription schema for P in A, to be the sentence
schema

[A(Q) ∧ ∀~x(Q(~x)⊃P (~x))] ⊃ ∀~x(P (~x)⊃Q(~x)).

We write B(A,P ) to mean the set of sentences abbreviated by B̂(A,P ), that is, the set resulting from
substituting every expression of L of type n for Q in B̂(A,P ). We further define K(A,P ), the circum-

scription of P in A, to be the union of A and B(A,P ), that is, K(A,P ) = A∪B(A,P ). When A is finite,
we can write K̂(A,P ) to mean the schema Â ∧ B̂(A,P ).

Aside from slight differences in notation, the definition above of B̂(A,P ) is exactly McCarthy’s
1980 one. McCarthy does not define the circumscription for infinite sets of axioms, and neither do we for the
moment. We follow Reiter’s [1982] lead in introducing notation for K(A,P ), though ours is different than
his. McCarthy’s discussion apparently abandons the original axioms A for their conditional appearance
in B̂(A,P ), focussing on the consequences of B(A,P ) alone. Here our terminology diverges from that of
McCarthy, for we say that a sentence is a consequence of circumscribing P in A if it is among Th(K(A,P )),
while McCarthy would mean that the sentence appears among Th(B(A,P )).

Two simple examples will be sufficient for most of our purposes. Both are adapted from [McCarthy
1980].

First, let A be the set of two axioms Block(b1) and Block(b2), read as stating that both b1 and
b2 are blocks. Then

∀x(Block(x) ≡ [x = b1 ∨ x = b2])

is a consequence of circumscribing Block in A, that is, the consequences in Th(K(A,Block)) state that
only b1 and b2 are blocks.
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Second, let A contain the single axiom Block(b1) ∨ Block(b2). This time,

∀x(Block(x) ≡ (x = b1)) ∨ ∀x(Block(x) ≡ (x = b2))

is in Th(K(A,Block)), stating that either b1 is the only block, or b2 is the only block.

Now that we know some of the motivations for circumscription and know its formal definition,
what do we know? While circumscription clearly is relevant to the problems of artificial intelligence men-
tioned previously, surprisingly little seems to be known about its deeper nature, techniques of application,
or even what questions to ask. McCarthy [1980], for example, presents only motivational difficulties and
the formal definition. Davis [1980] discusses some existence questions, and Reiter [1982] goes further and
shows that circumscription implies Kowalski’s technique of “predicate completion” in simple cases of logic
programming. But what does circumscription actually accomplish? It does not do exactly what its mo-
tivations lead one to expect. Consider the disjunctive block example above. Here circumscription yields
not one minimal conception of what blocks are, but two. In addition to these questions, circumscription
has been little studied with respect to problems (2)-(5). Artificial intelligence is lucky this time, however,
for circumscription is initmately related to the logical notion of implicit definability, about which logicians
know many things—not enough, perhaps, to satisfy all the practical needs of artificial intelligence, but
good insights needed to better pursue those needs.

Implicit definability

Mathematical logic has long possessed the notion of implicit definition of predicates. Retaining
our previous notation, a set of axioms A (finite or infinite) implicitly defines P just in case A forces a
“unique” meaning for P . There are several equivalent precise statements of this intuitive idea.

First, A implicitly defines P iff when we pick some symbol Q not in L, we can prove ∀~x(P (~x) ≡
Q(~x)) from A(P )∪A(Q), that is, iff A(P ), A(Q) ` ∀~x(P (~x) ≡ Q(~x)). In other words, Q cannot differ from
P if it satisfies the same axioms as does P .

Second, A implicitly defines P iff whenever M and N are two models of A(P ) (M |= A, N |= A)
that are isomorphic for all relations besides P , then they are also isomorphic for P . In particular, if N is
an automorphism of M, then P is the same in both, that is, N (P ) = M(P ).

Third, A implicitly defines P iff any predicate satisfying the conditions A(P ) on P must be P :
formally, for finite A, if A(Q)⊃ ∀~x(P (~x) ≡ Q(~x)) is valid for each expression Q of L of the same type as
P .

If we note that
A(Q)⊃ ∀~x(P (~x) ≡ Q(~x))

implies the formula
[A(Q) ∧ ∀~x(Q(~x)⊃P (~x))] ⊃ ∀~x(P (~x)⊃Q(~x)),

we see that implicit definability implies that the circumscription schema B̂(A,P ) is valid. That is, the
implicit definability schema says that P is unique; the circumscription schema says that P is minimal;
and of course uniqueness is a special case of minimality. Informally we might think of circumscription as
producing a unique result—it does, after all, produce a single theory—that is, we might say that the intent
of K(A,P ) is to be a theory which implicitly defines P , a theory stating both that A(P ) holds and that
P is the unique minimal predicate forced by A.

Unfortunately, the “smallest” value for P may actually be several different minimal values for
P , a possibly different one in each model of A(P ). In this case, K(A,P ) will fail to implicitly define
P , so circumscription is more properly thought of as a generalization of implicit definition. In fact, few
theories define predicates implicitly, even if they are constructed with the intent of doing so. While in
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the conjunctive block example above K(A,Block) does implicitly define Block, in the disjunctive example
K(A,Block) does not implicitly define Block. There are instead two nonisomorphic models of K(A,Block),
one in which b1 is the only block, and one in which b2 is the only block. These difficulties do not arise if
∀Q[B̂(A,P )] is taken as a second-order axiom. In this case, A(P ) ∧ ∀Q[B̂(A,P )] does state the existence
of a least model for P . Alternatively, we might strengthen the circumscription schema B̂(A,P ) to be
A(Q)⊃ ∀~x(P (~x) ≡ Q(~x)), which would also require the circumscribed predicate to be uniquely defined.
Unfortunately, these strengthenings do not result in more useful results from circimscription, for they
simply yield inconsistent theories when applied to axioms like those of the disjunctive example above.

The general rarity of implicit definitions leads to many questions about circumscription. When
does K(A,P ) define P implicitly? If it does not, should we care? Does not K(A,P ) produce useful
conclusions anyway? Put another way, what does K(A,P ) accomplish when it fails to implicitly define P?
Are there any benefits to implicit definition succeeding? And could some other additions to A succeed at
implicitly defining P when circumscription fails? We treat some of these questions below.

Explicit definability

Since axiom schemata are less convenient than finite axiom sets, and since the circumscription
schema defines P rather indirectly, we can pursue question (2) and ask if K(A,P ) entails some concise
characterization of P . Specifically, can we find among the consequences of K(A,P ) an explicit definition

for P of the form ∀~x(P (~x) ≡ φ(~x)), where φ is some formula not involving P? For example, Reiter
[1982], drawing on work of Clark [1978], has shown that for the special case in which A(P ) is Horn in
P , circumscribing P in A(P ) entails the predicate completion of P . That is, in this case A(P ) can be
rewritten in the form

ψ ∧ ∀~x(φ(~x)⊃P (~x)),

and K(A,P ) entails the formula
∀~x(P (~x)⊃φ(~x)).

Together these yield
∀~x(P (~x) ≡ φ(~x)).

Our question here is whether ψ and φ may be chosen so that they do not mention P .

The answer to this question about the existence of explicit definitions is given by an important
result of mathematical logic. Beth’s Definability Theorem states that implicit and explicit definability are
equivalent: or formally, that A (finite or infinite) implicitly defines P iff there is a formula φ involving only
the symbols of A exclusive of P such that A ` ∀~x(P (~x) ≡ φ(~x)). This means that an explicit definition
of P in K(A,P ) does not exist when K(A,P ) fails to implicitly define P . This is part of the reason why
having implict definitions succeed is a good thing. Recognition of Beth’s theorem changes one’s outlook
on circumscription, from the ill-posed problem of choosing “good” or “useful” instances of the schema to
the concrete problem of computing the explicit definition of P .

But even if P admits an explicit definition, it may not be possible to eliminate the schema in
favor of the explicit definition. That is, even if K(A,P ) is consistent and if K(A,P ) ` ∀~x(P (~x) ≡ φ(~x))
as desired, it may be that Th(K(A,P )) 6= Th(A ∪ {∀~x(P (~x) ≡ φ(~x))}), for the circumscription schema
forces minimality of P , while an explicit definition need not. In general, statement of the minimality fo P
requires infinitely many axioms, e.g. the circumscription schema. However, in the fortunate cases in which
the explicit definition of P consists of a list l of possible values (as in the conjunctive block example above),
the circumscription schema may be completely replaced by a finite axiomatization of P ’s minimality. Since
l is finite, each of its proper subsets may be explicitly listed, and an axiom set µ(A,P, l) constructed which
declares that each proper subset fails to satisfy A(P ). In this case, Th(K(A,P )) = Th(A ∪ ∀~x(P (~x) ≡
φ(~x)) ∪ µ(A,P, l)).
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Actually, while Beth’s theorem is important, it is never used in logic except as an excuse for
ignoring implicit definitions, since it means that implicit definitions offer no greater expressiveness in
defining functions than do explicit definitions. But Beth’s theorem is an easy consequence of Craig’s

Interpolation Lemma, which is also important, and which appears in many logical studies with many
applications. This lemma states that if α⊃ β, then there is a formula γ involving only symbols com-
mon to both α and β such that α⊃ γ and γ ⊃β. That is, γ “interpolates” between α and β. For
Beth’s theorem, the explicit definition of P turns out to be a formula contained in the interpolant for
K̂(A(P ), P ) ∧ K̂(A(Q), Q)⊃ ∀~x(P (~x) ≡ Q(~x)): a formula φ(~x) not involving either P or Q such that
K̂(A(P ), P ) ∧ K̂(A(Q), Q)⊃∀~x(P (~x) ≡ φ(~x) ≡ Q(~x)). Craig’s lemma has appeared in the artificial in-
telligence literature at least once. Gumb [1978] employs it explicitly as a means for pinpointing (perhaps
too sharp a connotation) the source of inconsistencies between databases. That is, if some new piece of
information S is inconsistent with a previous theory T , then T ⊃¬S, and there is an interpolant R with
T ⊃R and S ⊃¬R, such that R contains only symbols common to both the old and new information. How
specifically this identifies the “source” of the inconsistency is unclear: for in general, one might expect that
all symbols in S appear in T , that the main interpolant is ¬S. A somewhat related idea is the “intelligent
backtracking” devised by Pereira and Porto [1979] for PROLOG, in which the backtracker looks for shared
and independent variables.

Beth’s theorem is of practical interest for artificial intelligence, since it yields a procedure for
finding explicit definitions if they exist. The conceptually simplest procedure in our case is to enumerate
the consequences ofK(A,P ) and watch for one of the desired form. But there is a better way. Instead of this
pure enumeration, we can use the first formulation of implicit definability and try to prove ∀~x(P (~x) ≡ Q(~x))
from K(A(P ), P ) and K(A(Q), Q) for some Q not in L. A proof will only exist ifK(A,P ) implicitly defines
P , and an explicit definition can be extracted from the proof. Some proof systems (see [Smullyan 1968])
even carry the explicit definition along as an interpolant. Needless to say, this method is much more directed
than the pure enumeration. Unfortunately, neither method can guarantee results. By the completeness
of the predicate calculus, if an explicit definition exists, these methods will find one. But if an explicit
definition does not exist, then we see that the methods will run on forever, searching in vain for the desired
definition or for a non-existent proof. Worse, there is no way to modify the procedures to check first that
an explicit definition exists. Whether a theory explicitly (or implicitly) defines a predicate is undecidable,
so the only way to be sure an explicit definition does not exist is to search all the consequences. (Proof:
We can translate questions about satisfiability into questions about implicit definitions by considering a
formula like ψ : φ ∨ [¬φ ∧ ∀x.P (x) ≡ x = x]. If ψ implicitly defines P , we know that φ is not satisfiable,
for if it were, P could be anything. And if φ is not satisfiable, then ψ implictly (even explicitly) defines P .
Hence φ is unsatisfiable iff ψ implicitly defines P . The undecidability of satisfiability means that implicit
definition must also be undecidable.)

If implicit definition is undecidable, can we find decidable special cases? In particular, can we
find conditions on A(P ) which guarantee that K(A,P ) implicitly defines P? One such result is that the
circumscription of a theory A(P ) implicitly defines P if A(P ) is monotone in P . Monotone in P means that
the theory is equivalent to one in which P occurs only positively. Theories monotone in P are important
because they can be used to define monotone (non-decreasing) operators corresponding to P . Monotone
operators in turn are the basis of inductive definitions, in which one identifies the least fixed point of
the operator as the set inductively defined by the operator (see [Aczel 1977]). If the monotone operator
corresponding to P has a least fixed point, then that least fixed point is the predicate implicitly defined by
K(A,P ). This allows us to define the circumscription of an infinite theory A as the theory corresponding
to the least fixed point of the P operator derived from A. Unfortunately, whether a theory is monotone
in P is also undecidable, so we must again look for tractable special cases. In fact, Horn in P is a special
case of monotone in P , so circumscription implicitly defines P in each consistent A(P ) that is Horn in P .
This means that the Reiter-Clark result on predicate completion in Prolog can be strengthened to yield
an explicit definition ∀~x(P (~x) ≡ φ(~x)) such that φ does not mention P .
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Disjunctive Definability

If circumscription fails to implicitly define its intended predicate, then no concise characterization
of the predicate exists as an explicit definition. But the disjunctive block example above suggests that
we might be willing to settle for something weaker as a concise characterization: namely, a disjunctive

definition of the form
∀~x(P (~x) ≡ φ1(~x)) ∨ . . . ∨ ∀~x(P (~x) ≡ φk(~x))

which we might abbreviate as ∨
∀~x(P (~x) ≡ ~φ(~x)).

Clearly, explicit definability is a special case of disjunctive definability, the trivial case of exactly one
disjunct (k = 1).

One can view a disjunctive definition as a classification of all models with respect to P—just as
in the block example, models were classified into two categories: those in which b1 is the only block, and
those in which b2 is the only block. In fact, if P is explicitly definable in each model of K(A,P ), then a
disjunctive definition must exist. That is, even though K(A,P ) has infinitely many models, they fall into a
finite set of equivalence classes with respect to P . To see this, consider adding to K(A,P ) sentences of the
form ¬∀~x(P (~x) ≡ φ(~x)) for each expression φ not involving P . If K(A,P ) is consistent, then this extended
theory must be inconsistent since each model of K(A,P ) will falsify one of the added sentences, so by
compactness there is a finite inconsistent subset. Then K(A,P ) entails the disjunction of the negations of
the added statements in this finite set.

If a disjunctive definition of P in K(A,P ) exists, by the completeness of the predicate calculus it
will be provable from K(A,P ), so we can find it by enumerating the consequences of K(A,P ) and looking

for formulas of the form
∨
∀~x(P (~x) ≡ ~φ(~x)). But not only is the existence of a disjunctive definition

undecidable, whether a disjunctive definition of a given size k exists is also undecidable, and consequently
there is no algorithm for computing the smallest disjunctive definition. In particular, even if we believe
that a disjunctive definition exists, there is no way to tell fromK(A,P ) how large any disjunctive definition
must be except by finding some disjunctive definition and taking its size as an upper bound. Thus short
of finding a small expression, we cannot be sure that the desired disjunctive definition does not have a
million disjuncts. Moreover, for each k there are theories whose smallest disjunctive definition of P is of
size k. Consider, for example, the axiom

∀x(P (x) ≡ [x = 1]) ∨ . . . ∨ ∀x(P (x) ≡ [x = k]).

(I suspect there are smaller theories with this property.) However, there are direct procedures for finding
disjunctive definitions of specific sizes, procedures extending the interpolation-based procedure for finding
explicit definitions. If we seek a definition of P in A(P ) with k disjuncts, we assume

A(P ) ∧ A(P1) ∧ . . . ∧A(Pk)

∧ ¬∀~x(P (~x) ≡ P1(~x)) ∧ . . . ∧ ¬∀~x(P (~x) ≡ Pk−1(~x))

∧ ¬∀~x(P1(~x) ≡ P2(~x)) ∧ . . . ∧ ¬∀~x(P1(~x) ≡ Pk(~x))

...

∧ ¬∀~x(Pk−1(~x) ≡ Pk(~x))

and try to prove ∀~x(P (~x) ≡ Pk(~x)). If we succeed, we extract an explicit formula φk for Pk and iterate,
seeking this time a k − 1 fold disjunctive definition for P in A(P ) ∧ ¬∀~x(P (~x) ≡ φk(~x)). When we finish,
if ever, we know that

A(P ) ` ∀~x(P (~x) ≡ φ1(~x)) ∨ . . . ∨ ∀~x(P (~x) ≡ φk(~x)).
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Recent work of Lifschitz [1984] introduces the special case of “separable” formulas, generalizing Clark’s
notion of predicate completion. Separable formulas always admit disjunctive definitions with a simple,
regular structure.

Definability with parameters

Logicians have also studied the notions of explicit definability up to parameters and disjunctive
definability up to parameters. These mean, respectively, the existence of formulas φ, φ1, . . . , φk of arities
m = n+ l such that for ~z = z1, . . . , zl

A ` ∃~z∀~x(P (~x) ≡ φ(~x, ~z))

and
A ` ∃~z∀~x(P (~x) ≡ φ1(~x, ~z)) ∨ . . . ∨ ∃~z∀~x(P (~x) ≡ φk(~x, ~z)).

These definitions express P as projections of explicitly defined formulas. It is unclear whether these
expressions can be of as much use in artificial intelligence as the unparameterized forms.

Completions

Another way of looking at circumscription is as an attempt to find a minimal completion of a
theory with respect to a predicate, rather than as an implicit definition. In general, the axioms A(P ) will
entail only some ground cases of P : sentences of the form P (~c) and ¬P (~c) for some constants ~c. A will
leave P undecided for other constant tuples, but may restrict their possibilities by entailing disjunctions
of the form ±P (~c1)∨ . . . ∨±P (~ck). To interpret these axioms as complete information, we must extend A
so that the extension decides all ground instances of P . By focussing on “positively minimal” completions
which make P hold for as few tuples as possible, we see that one of two cases concerning completions must
be true of A. Let C(A,P ) be the set of negative ground instances of P for all the instances undecided by
A, that is,

C(A,P ) = {¬P (~c) | A 6` P (~c) ∧ A 6` ¬P (~c)}.

Let D(A,P ) = A ∪ C(A,P ). Then either C(A,P ) is consistent with A, in which case D(A,P ) is the
desired extension of A, or it is inconsistent with A. If D(A,P ) is inconsistent, it must be that A entails
some disjunctions of the form P (~c1)∨ . . . ∨P (~ck). In this case, every maximal subset of C(A,P ) consistent
with A is a completion, and is as good a completion as any other, as far as logic is concerned.

Extending a theory A to D(A,P ) is usually expressed as making the closed world assumption

about P in A. While the motivations behind circumscription and the closed world assumption are the
same, formally they are almost completely unrelated. K(A,P ) says only that P is minimal among those
predicates satisfying A(P ), but may leave ground cases undecided. That is, in general there will be many
ground instances P (~c) such that K(A,P ) 6` P (~c) and K(A,P ) 6` ¬P (~c). Conversely, D(A,P ) determines
P only for those ground instances expressible in the language L, and says nothing about P ’s behavior on
unnamed elements of the domain. In particular, D(A,P ) does not require P to be minimal in any way.
It would be interesting to know if D(K(A,P ), P ) has any useful properties. But in this connection, it
is worth noting an important theoretical difference between K(A,P ) and D(A,P ), namely that K(A,P )
is recursively enumerable (assuming A is), while D(A,P ) is in general not recursively enumerable. In
practice, however, the closed world assumption is useful for axiom sets A of certain forms, for example
when A is Horn in P . In such cases, the closed world assumption always preserves the consistency of A,
and fits well with some procedures for automated deduction. (See [Reiter 1978].)
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For the case in which the closed world assumption produces an inconsistent extended theory,
Minker [1982] has defined the generalized closed world assumption to extend A with all the ground cases
(positive and negative) common to all the consistent completions of A with respect to P .

Lipski [1977, 1983] has studied the notions of external and internal interpretations of databases.
The internal interpretation appears related to the closed world assumption, and admits characterizations
in terms of topological boolean algebras and modal logics. It would be nice to know more about the
relation between this internal interpretation and circumscription.

Conservation questions

If circumscription is to be routinely useful in artificial intelligence practice, then it is worth
knowing how new axioms affect circumscriptively obtained results. Let A′ ⊃ A be an extended set of
axioms. It is easy to see that A′ may implicitly define P even if A does not. For instance, let A be the
axioms of the disjunctive block example, and A′ these axioms plus the conjunctive example axioms. Since
the conjunctive axioms entail the disjunctive ones, the resulting theory has the same conclusions as the
conjunctive example axioms alone, and these implicitly define the predicate Block. Conversely, A may
implicitly define P but A′ may not. For instance, let A be the conjunctive block axioms, and A′ be these
plus Block(b3) ∨ Block(b4). And of course, circumscription is non-monotonic in that K(A,P ) need not
entail K(A′, P ), and K(A′, P ) need not entail K(A,P ). Indeed, in many cases of interest, these sets will
be inconsistent. For instance, augmenting the conjunctive block axioms with a third block b3 yields a
theory inconsistent with the two-block circumscription. Unfortunately, conservation questions are largely
unstudied. We take the present opportunity to ask several obvious ones.

First, if A entails A′, then clearlyK(A,P ) implicitly defines P iffK(A′, P ) does too, and moreover
Th(K(A,P )) = Th(K(A′, P )). In some cases, the same is true even though A does not entail A′, for
example, if A′ is A plus the explicit definition of P in K(A,P ). But when, precisely, does K(A,P ) entail
K(A′, P )? If and only if A′ ⊆ Th(K(A,P ))?

When are new axioms irrelevant to prior circumscriptions? That is, when is Th(K(A′, P )) =
Th(A′ ∪K(A,P ))?

Finally, if K(A,P ) fails to implicitly define P , can one characterize extensions A′ which do
implicitly define P? What is possible if we require A′ −A to be finite?

Language extensions

Even if implicit definability fails, there is sometimes still an explicit definition—but in an extended
language, in which the extended explicit definition can rule out “non-standard” interpretations. For
example, Gödel showed how truth in arithmetic may be “implicitly defined” in arithmetic, yet lack an
explicit definition within arithmetic, while Tarski showed how a simple extension to the language of
arithmetic permits an explicit definition of truth in arithmetic (but not truth in the extended language).
There are many questions that may be interesting here. For instance, if K(A,P ) fails to implicitly define
P , when can some simple extension to L permit an explicit definition? And how can it be found? Is it
practical to use this idea in the meta-theoretical systems popular in artificial intelligence? Is it possible to
adapt the ideas of Kripke’s [1975] theory of truth to implicit definitions of other predicates?
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Conclusion

We have surveyed the motivations for circumscription and its connections with logical notions
like implicit definability. I hope that some of the questions raised above will prove as interesting to the
logician as some of the logical techniques may prove to the artificial intelligence researcher, for much work
remains to be done. We recall the main sorts of open problems:

1. What are important cases in which K(A,P ) produces explicit definitions or small disjunctive
definitions? How large are these definitions relative to the size of A? Can these special cases be recognized,
and are they of common importance (e.g. Horn databases)? What is the cost of finding these definitions
given their existence?

2. What does circumscription do when it fails to implicitly define P? Can its consequences be
characterized in some interesting way?

3. How should revision of circumscriptive conclusions be mechanized?

One important topic slighted above is the analog of circumscription for systems other than logical
languages. For example, in the abstract, circumscription can be applied in all sorts of representational
systems by formulating data-structures via inductive definitions and looking for least fixed points or least
solutions. See [Aczel 1977] for a treatment of inductive definitions in general, and [Scott 1982] for a
“propositional” treatment of data-structures.

Many have wondered about the relation between circumscription and non-monotonic logic. It
seems fairly clear now that there is little relation. The preceding shows that circumscription is funda-
mentally a logical topic, the study of minimal solutions to axiomatized predicates. A complementary
paper [Doyle 1985] shows that the reasoned assumptions appearing in reason maintenance systems and
in non-monotonic logic are preferences of the agent concerning its own “state of mind,” and that they
comprise a fundamentally psychological or decision theoretic topic, the study of value and choice in the
mental operations of the agent. (See [Doyle 1982] for further discussion.)

We close by noting that little is known about when and how to use circumscription in reasoning
and decision-making. But that is not a problem about the logical nature or mechanization of circumscrip-
tion, and we leave it to future artificial intelligence research.
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