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Abstract

It is commonplace in artificial intelligence to divide an agent’s explicit beliefs into two parts:
the beliefs explicitly represented or manifest in memory, and the implicitly represented or con-
structive beliefs that are repeatedly reconstructed when needed rather than memorized. Many
theories of knowledge view the relation between manifest and constructive beliefs as a logical
relation, with the manifest beliefs representing the constructive beliefs through a logic of belief.
This view, however, limits the ability of a theory to treat incomplete or inconsistent sets of
beliefs in useful ways. We argue that a more illuminating view is that belief is the result of
rational representation. In this theory, the agent obtains its constructive beliefs by using its
manifest beliefs and preferences to rationally (in the sense of decision theory) choose the most
useful conclusions indicated by the manifest beliefs.

1 Introduction

Levesque (1984) introduced the notions of explicit and implicit belief as a way of overcoming some
of the longstanding difficulties suffered by traditional theories of knowledge, which cannot treat
agents of limited inferential abilities in satisfactory ways. In Levesque’s theory, beliefs to which
the agent assents readily (without prolonged thought) are called explicit , and the facts entailed
by holding true these explicit beliefs are called implicit beliefs. The point of this distinction is
that explicit beliefs need not be consistent, closed under entailment, or logically complete, thus
permitting agents to exhibit some of the inferential incapacities observed in humans.

Many theories of knowledge in artificial intelligence offer their own candidates for what to
consider as the agent’s explicit and implicit beliefs. In doing so, most go further than Levesque’s
theory and draw an analogous distinction between beliefs explicitly and implicitly represented by
an agent. The agent’s actions are taken to depend on both sorts of beliefs; in Levesque’s terms,
both are varieties of explicit belief. The agent’s explicitly represented beliefs appear as entries
open to view in the agent’s memory or database, and the agent’s implicitly represented beliefs
consist of readily computable conclusions not directly expressed but entailed by or in some way
derivable from the explicitly represented beliefs. Let us call these two sorts of belief manifest
and constructive, respectively. Many other names are also used for the same notions in artificial
intelligence: synonyms for manifest beliefs include “assertions,” “axioms,” and “base beliefs,” and
sometime synonyms for constructive beliefs include “theorems,” “derived” beliefs, and “inferable”
beliefs. The distinction also appears in Fahlman’s (1979) notions of “real” and “virtual” copies,
and in the ensuing notions of “explicit” and “inheritable” properties in inheritance systems.

Putting these two distinctions together, theories of knowledge in artificial intelligence view an
agent’s set of beliefs as a function of its manifest beliefs, first determining the explicit beliefs from
the manifest, and then the implicit from the explicit. In this way manifest beliefs represent both
explicit and implicit beliefs, acting as a sort of “really explicit” belief.



The distinction between manifest and constructive belief is important because while most the-
ories of ideal action require agents to hold infinitely many opinions about the world, the first
limitation imposed by computational mechanisms in artificial intelligence is that individual states
of the agent must be finitely describable. Distinguishing between manifest and constructive belief
makes it conceivable that finite agents might nevertheless possess infinitely many opinions, since
even finite sets of beliefs may represent, via entailment, infinitely many conclusions.1 Indeed, most
theories of belief developed in philosophy and decision theory do not draw or pursue distinctions
between explicit and implicit or manifest and constructive belief, mainly because they lack strong
motivations to presume finite describability of belief states. They instead pay more attention to
the division between conscious and unconscious belief, arguably a different distinction than either
explicit/implicit or manifest/constructive (but see (Konolige 1986)).

This paper considers some limitations of one element of this conception, namely the idea that
the derivation of constructive and implicit beliefs from manifest beliefs is in substance logical,
describable by a logic of belief. The logical conception of constructive belief makes it difficult to treat
properly some common cases in which the agent’s beliefs are incomplete or inconsistent, or in which
the agent has limited computational resources. We suggest an alternative conception, based on the
notion of rational representation, that overcomes these limitations in natural ways. In rational
representation, the composition of the agent’s constructive beliefs depends on its preferences about
its states of belief as well as on its manifest beliefs. The representations explicitly possessed by
the agent are not themselves viewed as functioning beliefs, but only as materials or prima facie
beliefs from which the agent rationally constructs the beliefs on which it bases its actions. The
agent’s explicit beliefs are identified with its constructive beliefs, rather than with the sum of
constructive and manifest beliefs, so that the set of explicit beliefs may be either more or less than
the beliefs entailed logically by the manifest ones. That is, we keep the idea that manifest beliefs
represent explicit and implicit beliefs, but change the nature of the representation function from
logical closure under derivations to rational choice.

Once we have developed the theory of rational representation for the case of manifest and
constructive belief, it is natural and straightforward (and in certain respects, almost mandatory)
to broaden the theory to cover the parallel cases of manifest and constructive varieties of other
mental attitudes, such as desires or goals, preferences, intentions, plans, policies, and procedures.
The theory also provides natural reasons for viewing implicit beliefs as rational constructs from
manifest attitudes rather than simply the beliefs logically entailed by the explicit beliefs.

Theoretically, rationality serves as an ideal every bit as attractive as logicality. Some theories
of knowledge view deviations from logicality as “performance” failures that do not reflect upon the
suitability of the logical “competence” theory. In contrast, the theory of rational representation
views some common sorts of deviations from logicality as part of the competence theory, not
as mere failures in performance. In fact, rational representation is just one element of a rich
interplay between the various forms of rationality in representation and reasoning. A comprehensive
treatment of these forms and their interactions is beyond the scope of this paper, but is pursued in
(Doyle 1988a). The result is a theory of bounded rationality in which limited forms of rationality
are themselves used to shape the overall limits on the agent’s rationality.

1The sense in which we use “represent” here is distinct from the sense in which the agent’s beliefs represent

something about the agent’s world. We do not mean to treat the latter here.
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2 Logical and nonlogical representation

To better understand the nature of constructive beliefs, we begin by examining Konolige’s (1985)
theory of deductive belief. Konolige formalizes a deductive notion of explicit belief which we may
recast (omitting the details) as follows:

1. A logical language L whose sentences represent, via an agreed interpretation, the contents of
beliefs.

2. A set M of manifest beliefs, with M ⊆ L.

3. A set R of sound derivation rules over L which determines a deducibility relation `R.

4. A set C of constructive beliefs, with

C = ThR(M) = {p ∈ L | M `R p}.

According to this view, the manifest beliefs M represent the conclusions C via closure under a set
of sound deduction rules R. In Konolige’s theory, the rule set R is usually incomplete, so that not
all entailed conclusions are constructive.

If one prefers to view belief semantically rather than syntactically, one may alter Konolige’s
theory to include

3′. A set M of models of L which determines an entailment relation |=M.

4′. A set C of constructive beliefs, with

C = ThM(M) = {p ∈ L | M |=M p}.

For example, Levesque (1984) employs special models called situations to obtain limited notions of
explicit belief.

Viewed abstractly, each of these theories describes the constructive beliefs C as a function of
the manifest beliefs M , that is,

C = f(M) (1)

with f = ThR in the one case and f = ThM in the other.
As evidenced by Konolige’s theory of deductive belief, some theories use logic as a theory of

thinking by taking mental objects to be sentences in a logical language and mental operations to
be inferences in a formal logical system, with the agent’s constructive beliefs then some of the
logical consequences of its manifest beliefs. This conception of representation is attractive since the
fundamental idea underlying the notion of logical entailment or derivability is that of identifying
what is implicit in given facts. But it does not follow that all interesting means of identifying
constructive beliefs must be forms of logical derivations or entailment. In fact, there are strong
reasons having to do with how the agent handles incomplete and inconsistent beliefs for thinking
that constructive beliefs are, in some cases, both more and less than the deductive consequences
of the agent’s manifest beliefs, that is, that constructive beliefs can be supralogical or sublogical.
Most of these reasons and the examples on which they are based are fairly well known, but have
not been fully incorporated into theories of knowledge since they are not easily stated as forms of
logical derivations. For example:
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• Some natural categories of conclusions do not follow logically from the manifest beliefs, yet
pervade commonsense reasoning. These include taxonomic defaults and circumscriptive in-
ferences. If the theory of constructive belief is to incorporate such unsound conclusions, the
derivation function cannot be purely deductive.

• Harman’s (1986) “immediate implications” also make for supralogical constructive beliefs.
For our purposes, immediate implications are just logically unsound inference rules, such as
“If today is Tuesday, tomorrow is Wednesday.” Of course, such rules might be cast as ordinary
implications, but that changes the character of constructive belief. Immediate implications
cannot be manipulated or combined in as many ways as can statements, so when cast as
inference rules they make for weaker and less complete sets of constructive beliefs.

• Some theories of constructive belief attempt to achieve a degree of psychological accuracy by
mirroring inferential limitations that humans suffer. Thus if humans do not seem to be able to
draw some inference on their own, such theories of constructive belief should not prescribe the
undrawn conclusion as a constructive belief. For example, many sorts of inferential limitations
are thought to follow from the strategies or procedures used to conduct reasoning and the
limits on the time, memory, or other resources available to these procedures. In such cases, the
constructive beliefs should not be closed under Modus Ponens, since logic describes logically
possible inferences, not necessarily the economically feasible inferences. Harman’s immediate
implications are also intended to capture such limitations on inferential capabilities, and so
also yield sublogical constructive beliefs.

• Some of the systems developed in artificial intelligence provide for retracting or avoiding some
manifest beliefs by making them defeasible. For example, the unsound conclusions indicated
by taxonomic defaults may be overridden by more specific but contrary beliefs. Such defeated
assumptions are manifest beliefs omitted from the constructive beliefs upon explicit command.

• Finally, deductive theories of constructive belief have something nontrivial to say only if
the manifest beliefs are consistent, and so are unable to handle the inconsistent beliefs that
arise regularly in artificial intelligence systems. When the agent detects inconsistencies in its
manifest beliefs, one possible response is to first select some consistent subset upon which to
reason and to then make the constructive beliefs the consequences of the consistent subset
alone, thus omitting the remaining manifest beliefs from the constructive beliefs.

In each of these cases there has been considerable debate about how to define or view con-
structive belief, since ordinary logic provides no guidance. Some theories of belief suggest deriving
constructive beliefs using a nonstandard or deviant logic instead of ordinary logic. We may eas-
ily get different theories of constructive belief by using the rules of different logics, or by using
restricted classes of models rather than all possible worlds. For example, Moore (1985) employs
standard epistemic modal logics; Konolige (1985) permits one to use different incomplete sets of
ordinary sound rules; Levesque (1984) employs situational models connected with relevance logic;
and Shoham (1987) presents a version of circumscriptive entailment based on the concept of min-
imal models. Except for Shoham’s, these theories of belief all agree on the essentially deductive
nature of constructive beliefs. There is no requirement that either manifest or constructive beliefs
be complete, but the derivation rules are required to be sound (truth preserving), whether according
to ordinary models or, as with Shoham’s theory, according to a restricted class of models. In the
latter case, the logic has embedded concepts, and may have important nonstandard characteristics
(e.g., proof procedures do not always exist; see especially (Barwise 1985)).
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Even though the logical conception of manifest and constructive belief is, through the use of
nonstandard logics, wide enough to incorporate many interesting theories, it is not free of difficul-
ties. The first problem is whether every interesting representation function f arising in realistic
applications can be characterized in this way with suitable choices of rules R or models M. If M
must be a subset or superset of the set of ordinary models, this seems unlikely.

Second, even if one may always find some deviant logic which describes a desired f , such a logic
need not be illuminating. Such a logic may precisely characterize a class of constructive beliefs, but
what we really seek are theories that reflect the nature of independently justified concepts: theories
that not only precisely define the conclusions of interest, but also explain why these conclusions are
of interest rather than some other sorts of conclusions. Thus if our aim is to understand nonlogical
representations as thoroughly as possible, we must find independent justifications of the suitability
of deviant logics.

The third problem is that some theories of belief do not fit the functional mold of Equation
(1) at the outset, as they associate several possible distinct sets of constructive conclusions with
each individual set of manifest beliefs. One such theory is that embodied in Doyle’s (1979) rea-
son maintenance system, which has received formal treatments including McDermott and Doyle’s
(1980, McDermott 1982) nonmonotonic logics, Reiter’s (1980) logic of defaults, Moore’s (1983)
autoepistemic logic, and Doyle’s (1983) theories of reasoned assumptions. The problem here is not
that the agent’s beliefs may have different models (or, as in circumscription, minimal models) in
which different things are true. That is the usual case in both ordinary and deviant logics, and is
why logic defines entailment as what is true in each of the models in the given class M. Entailment,
by that definition, always yields a single set of conclusions. The problem here is instead that in
some theories there are multiple, incompatible sets of conclusions, not just multiple incompatible
models. If we wish to accommodate these ambiguous or nondeterministic sorts of theories in the-
ories of constructive belief, we must generalize the representation function f to a representation
relation or correspondence F , rewriting Equation (1) as the condition

C ∈ F (M). (2)

3 Rational representation and reasoning

We suggest that a more illuminating theory of constructive belief is that it is a case of rational rep-
resentation, in which the agent treats its manifest beliefs as specifications of its constructive beliefs
and rationally chooses how to interpret or construe (hence “constructive”) these specifications to
get the constructive beliefs. Rational representation means that the agent has ways of comparing
the different sets of implicitly represented beliefs it is capable of constructing, and chooses answers
to queries based on the set it expects to give the best results in reasoning and representation. This
does not mean the agent must actually construct and compare all these sets of beliefs, only that its
behavior conform to this interpretation. (We postpone discussion of ways of mechanizing rational
representation until Section 8.)

Although just what choosing “rationally” might mean in this context is a topic of great depth,
to convey the basic idea as simply as possible we employ here the standard conception of rationality,
in which a choice is rational if it is of maximal expected utility (see, for example, (Jeffrey 1983)).
In addition to ordinary beliefs and desires which merely evaluate events as true or false and good
or bad, the agent is presumed to possess sets of comparative attitudes, including probabilistic com-
parisons of events as likelier or less likely, and preferential comparisons of events as better or worse.
The standard theory of rational choice takes the agent’s sets of judgments of relative likelihood
and desirability or utility to be consistent and complete enough that they may be represented by
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Figure 1: Representation and reasoning displayed along orthogonal dimensions: representation as a
relation F between synchronic sets of manifest and constructive beliefs (Mt and Ct), and reasoning
as a relation τ between diachronic sets of manifest beliefs (Mt and Mt+1).

numerical functions giving degrees of probability and utility for each possible event or consequence
of choices. A choice is then defined to be of maximal expected utility if the total utility of the
consequences of making that choice, when weighted by the probabilities of those consequences,
equals or exceeds that of any alternative.

Before we proceed to justify this view of representation, note first that rational comparison of
alternatives may yield several maximally good possibilities, none of which dominates the others.
This means that the theory of rational representation sometimes says there are several sets of
constructive beliefs corresponding to a single set of manifest beliefs. By basing its ambiguities on
the familiar ambiguities of rational choice, rational representation explains in a motivated way why
the relation between manifest and constructive beliefs is a correspondence F rather than a function
f .

In brief, the fundamental reason the representation relation reflects rational choice rather than
logical entailment is because the representation involved in constructive belief is not a passive
relationship but instead an activity, one step in the more general process of reasoning in time.
The usual normative theory for all activities is rational choice; hence the normative theory of
constructive belief is also rational choice.

Let us examine these claims in more detail. It is natural to view representation and reasoning
as relations along orthogonal dimensions when we view an agent at the knowledge level (Newell
1982). In one dimension, we view the representation relation F as an instantaneous relation between
synchronic sets of manifest and constructive beliefs. In the temporal dimension, we view the state
changes of the agent as a relation τ connecting each state of the agent with its possible successors.
If we take the agent’s states to be memory states consisting of sets of manifest beliefs, then τ is a
relation between diachronic sets of manifest beliefs. More precisely, τ denotes the purely “internal”
portion of the agent’s actions, as we ignore effects in the agent’s environment. We also assume
for simplicity that the agent’s steps of reasoning do not depend on its history or environment but
only on its current memory state. We may display the two dimensions pictorially as in Figure 1,
in which Mt and Ct denote the sets of manifest and constructive beliefs at time t.

But Figure 1 is misleading, suggesting that constructive beliefs are mere epiphenomena of the
agent’s activity. Instead, the purpose of constructive belief is to provide the basis for the agent’s
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Figure 2: Constructive belief displayed as one part of a step of reasoning. Successive manifest
states are calculated by δ on the basis of constructive beliefs determined by F .

actions and steps of reasoning. The mechanization of each full step of reasoning from Mt to
Mt+1 involves computing from Mt both those portions of Ct relevant to determining the possible
successor states and those portions of Ct relevant to choosing the next state from among these
possible successors. The relation F stands for the computation of parts of Ct, and we write δ
to denote the operation of identifying and choosing possible successor states on the basis of the
information in Ct. Formally, we view δ as a relation that connects sets of constructive beliefs
at one instant with the possible sets of manifest beliefs at the next. (δ thus reflects the fact that
constructive beliefs are changed only indirectly through changes in the manifest beliefs.) The result
is that contrary to the impression given by Figure 1, τ and F are not defined independently, but
instead τ “factors” through F , with the interdependence expressed by the equation

τ = δ ◦ F. (3)

That is, Mt+1 ∈ δ(C) for some C ∈ F (Mt). In particular, we have Mt+1 ∈ δ(Ct). We display this
more accurate picture of reasoning in Figure 2.

Ideal theories of reasoning and representation must set standards for each of these relations.
The first and easier of these cases is that of reasoning. As displayed in Figure 1, reasoning is an
activity in time. Reasoning or inference in this psychological sense is not to be confused with the
competing logical sense of atemporal proofs, derivations, or implications within a formal logical
system. The latter relations are not temporal, but are purely mathematical. As Harman (1986)
puts it, inference is not implication: reasoning and inference are activities, and proofs in a logic
are distinct from the activity of constructing proofs. Since the usual standard for judging activities
is rationality, and since reasoning is an activity, the natural standard for reasoning is that each
step of reasoning (each change of state) should be rational according to the reasoner’s probabilistic
expectations and preferences concerning their effects.

Conversely, it should be clear that logic has little to say about how to reason. Logical rules of
inference tell us nothing about what beliefs to adopt or abandon at each step, which is what any
theory of reasoning as an activity must specify. Instead, logic merely tells us what is consistent
or entailed by given hypotheses. Thus logic is not, and cannot be, the standard for reasoning.
Another way of putting this is that while logic may be used to formalize reasoning, it does not
thereby explain reasoning. Logic, of course, may be employed to formalize psychological theories:
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for example, in formulating closure and consistency properties of the agent’s instantaneous sets of
attitudes, or in axiomatizing the possible trajectories of the agent’s states. But this use of logic is
not particular to psychology. Logic may be used in the same way to formalize meteorology or any
other subject matter. Using logic to formalize psychology does not thereby make mental operations
inherently logical operations, any more than using logic to formalize meteorological events thereby
makes thunderstorms inherently logical operations. (See also (McDermott 1987).)

Now consider the case of ideal standards for representation. There are reasonable temptations
to associate the representational dimension of reasoning with the logical sense of inference. Doing
so is the basis for the logicist approach to artificial intelligence (see (Genesereth and Nilsson 1986)),
which makes the representation relation F purely deductive and (to the extent that it discusses
rational choice at all) places all forms of rational choice into the relation τ . But it is hard to view
F in this way when we consider the purpose of constructive belief in mechanized reasoners. While
at the knowledge level F is an instantaneous, effortless relation, at the level of mechanization it is
a computational, costly operation. Indeed, the knowledge level is an abstraction precisely intended
to hide this character of F . Since F constitutes the first “half-step” of each step of reasoning
and incurs computational costs and computational benefits, the natural standard for judging its
constructive acts is rationality.

Of course, the dependence of reasoning on computational representation does not in itself fore-
close the logicist hope of making representation purely deductive by pushing all choice into reason-
ing. But as a practical matter, this separation does not appear to be feasible, as typical F and δ
calculations often use many of the same rules or procedures. Of course, some algorithms used in
these computations may be quite distinct, with F , for example, involving marker propagation in an
inheritance network, and δ involving production rules, conflict resolution, and reason maintenance.
But usually the dividing line is unclear. Sections 4, 5, and 6 elaborate several apparently unavoid-
able ways in which representation and reasoning overlap. These sources of overlap, involving the
effects of incomplete and inconsistent beliefs and limited inferential or computational resources,
show that the notion of practical representation is intimately connected with the notion of rational
choice; that if the standard for reasoning is that τ constitutes rational choice of successive states,
then the standard for representation is that F constitutes rational choice of constructive beliefs.

4 Rational assumptions from incomplete beliefs

One consequence of employing finite representations is that the agent’s knowledge of most sub-
jects is usually incomplete. This poses a problem, for the missing information is often needed in
choosing how to act. One response to this problem is skepticism, refusing to make any decisions
for which the needed information is lacking. But skepticism is not always reasonable. Sometimes
the more appropriate response is to make guesses or assumptions about the missing information.
In such cases, we wish to use rationality as a standard for adopting assumptions by saying that an
assumption should be adopted if the expected utility of holding it exceeds the expected utility of
not holding it.

The classic example showing a case of skepticism to be irrational goes by the name of “Pascal’s
wager” and concerns religeous belief. Pascal (1662) framed his problem of belief in God in the
following way: he can either believe or doubt the existence of God, and God may either exist or
not exist. If God exists and Pascal believes, he gains eternal salvation, but if he doubts he suffers
eternal damnation. If God does not exist, belief may lead Pascal to forgo a few possible pleasures
during his life that doubt would permit him to enjoy. We may summarize these evaluations in
the decision matrix shown in Figure 3, where ε represents the finite amount of pleasure enjoyed or
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God exists doesn’t
Believe +∞ −ε
Doubt −∞ +ε

Figure 3: Pascal’s decision about belief in God.

forgone due to belief during Pascal’s life. Of course, these same quantities modify the first column
as well, but finite modifications to infinite quantities are negligible. As long as God’s existence
is not judged impossible, the expected utility of belief is +∞, dominating the expected utility of
doubt, −∞. This convinced Pascal that skepticism was not a viable alternative for him.

Much later, William James (1897) made the case that skepticism is also irrational in many
mundane situations. Today, his theory of the “will to believe” is one of the pillars of artificial in-
telligence practice, for knowledge representation and reasoning systems are filled with mechanisms
for making assumptions in response to incomplete information. These mechanisms, including tax-
onomic defaults, threshhold probabilities, and nonmonotonic or circumscriptive proof procedures,
are ordinarily not presented in terms of rational choice, and their mechanization usually involves no
decision theoretic calculations (see Section 8). But when closely examined, they are clearly based on
rational responses to computational problems involving incomplete information (see (Doyle 1983)
and (Shoham 1987)). Taking action requires information about the available actions, about their
expected consequences, and about the utility of these consequences to the agent. Ordinarily, obtain-
ing such information requires effort, it being costly to acquire the raw data and costly to analyze the
data for the information desired. The effort required for this is far too great in much of common-
sense and expert reasoning, so the only feasible route for the agent is to ignore most possibilities,
relying on reasonable assumptions until they prove wrong. To minimize or avoid information-
gathering and inference-making costs, artificial intelligence makes heavy use of heuristics—rules of
thumb, defaults, approximately correct generalizations—to guess at the required information, to
guess the expected conditions and expected conclusions. These guesses are cheap, thus saving or
deferring the acquisition and analysis costs. But because they are guesses, they may be wrong,
and these savings must be weighed against the expected costs of making errors. Each particular
case of default reasoning appearing in artificial intelligence represents a judgment that it is easier
to make an informed guess and often be right than to remain agnostic and work to gather the
information. These judgments are frequently made easier by recognizing that when the actions
in question are mere steps of reasoning, problem-solving, or search, with no immediate external
effects, it is usually the case that errors are easily correctable and ultimately inconsequential, and
that the information needed to correct or verify these guesses may well become available later any-
way in the course of further reasoning. In other cases, defaults are avoided, either because there
is no information available to inform the guess, or because even temporary errors of judgment are
considered dangerous.

Of course, not all possible assumptions are rational, and not all mechanisms for making assump-
tions always yield rational assumptions. For example, the tool logic offers for treating incomplete
information is reasoning by cases, and in some situations it is possible to view assumption-making
as ordered exploration of each of the logically possible cases. But proper evaluation of possible
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beliefs means taking both utility and probability into account. This means it can be rational to
assume and explore one case but not to assume or explore any of the remaining cases if the first one
proves unhelpful. One might be informed that a book one seeks is stocked by one of three stores
A, B, and C, with the chances being 2/3, 1/6 and 1/6 respectively. Other things being equal, it is
rational to visit the stores in either the order ABC or ACB. But if B and C are located in Beirut
or the South Bronx, it is for most people rational to give up the exploration if A proves fruitless.

Similarly, it is not necessarily rational to base assumptions purely on utilities, assuming some-
thing as long as its utility exceeds some threshold, regardless of the probability of its being true.
This is called wishful thinking, and is deservedly avoided. It is also not necessarily rational to draw
conclusions just as long as their probabilities exceed some threshold value, or if they hold in the
limiting case of small uncertainties (as in (Pearl 1988)). For example, all tautologies have maximal
probability, but most are worthless to the reasoner. Except in carefully designed applications, belief
based purely on degree of likelihood is usually a mistake. This mistake has no notorious name, and
perhaps not coincidentally, has enjoyed some popularity in artificial intelligence.

The most striking result in this regard is that when both probability and utility are taken into
account, it is in some cases rational to make assumptions expected to be false.2 For example, if
one is cast adrift in the middle of the Pacific Ocean, one may expect that there is only a remote
chance of being rescued. But one may also know that people who despair die quickly, while people
with an unconquerable belief in their salvation can survive long periods of extreme privation. Since
the longer one survives the greater the chance of rescue, belief in rescue often turns out to be
self-fulfilling. Thus while the probability of rescue is low, the utility of belief in rescue is high, so
it is rational to believe each day (rejecting all doubts) that today is the day of rescue.

Of course, Pascal’s decision and other cases of adopting beliefs are usually viewed as steps of
reasoning, as temporal changes in manifest beliefs. But most mechanisms for making assumptions
explored in artificial intelligence involve rules for making classes of assumptions rather than indi-
vidual assumptions. We may assimilate the two cases theoretically by evaluating individual default
rules as individual assumptions. Default rules can be used in temporal steps of reasoning to adopt
individual assumptions, but it is even more common to use them in calculating constructive be-
liefs. The taxonomic defaults employed in inheritance systems offer perhaps the clearest example
of constructive uses of rules of assumption.

The strong practical motivations for using default rules in defining and computing constructive
beliefs defeat attempts to make the representation relation F purely deductive. Constructive belief
is most useful when it includes the commonly needed assumptions that could be readily made in
proper steps of reasoning, and the proper assumptions to make are those whose expected benefit
is greatest.

5 Rational interpretations of inconsistent beliefs

If agents ordinarily have to act on the basis of incomplete information, at other times they have to
act on the basis of inconsistent information. Conflicting information may reach the agent through
many different sensors and informants. In the simplest case, inconsistencies appear because the
agent’s beliefs are drawn from several experts who disagree about the facts (in which case the
inconsistency may be manifest), or who think they agree because the inconsistencies in their views
are too subtle to detect (in which case the inconsistency may not be explicit). It is not always
possible to decide immediately which information is correct and which is false and accept the true

2More generally, one may judge lying rational just as one may judge honesty rational. Certainly lying to oneself

would not be as common as it is if it did not offer some sort of large reward.
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and reject the false. Instead, many conflicts require extended reasoning or investigation to resolve.
Meanwhile, the agent must continue to decide what to do in spite of these conflicts.

Logic does not appear to offer much guidance about what to do when the manifest beliefs
are inconsistent, since every conclusion is entailed by an inconsistent set of hypotheses. (Indeed,
manifestly inconsistent belief constitutes the one case in which an agent can always immediately
answer every question put to it.) At best, logic says we should confine attention to a consistent
set of beliefs and act on that basis. Ordinary logic does not say which consistent sets to consider,
but some special logics have been developed specifically for reasoning with inconsistent hypotheses.
Some draw only those conclusions holding in every maximal consistent subset of the hypotheses
(see, for example, (Rescher 1964)). Others, such as relevance logic, draw all conclusions entailed
by any consistent subset and tag each conclusion with the subset supporting it (see, for instance,
(de Kleer 1986) and (Martins and Shapiro 1983)).

Unfortunately, none of these purely logical approaches really offer any guidance in acting with
inconsistent beliefs. Acting on the basis of a consistent subset of the manifest beliefs is reason-
able, but none of the logics help decide which subset to use. Fortunately, however, there are many
similarities between the cases of acting on incomplete information and acting on inconsistent in-
formation. With inconsistent beliefs, the agent faces a situation of ambiguity, just as in the case
of incomplete beliefs, but now the alternatives are the consistent subsets of beliefs rather than the
disjuncts of some disjunction. Moreover, just as in the case of incomplete beliefs, there is often
information available about which choice is better, about which subset to prefer. For example, if
neighborhood gossip is found to be in conflict with Newtonian mechanics, few would reject Newton
and accept the gossip. The major difference between the cases of incomplete and inconsistent belief
is that while the agent may rationally refuse to make any assumptions in some cases of incomplete
belief, an agent possessing conflicting beliefs cannot refuse to choose a basis for action.

A choice of basis for action can be approached in the same way as a choice of assumptions, as
an instance of rational representation. In this approach, the agent applies its preferences about
consistent subsets of its manifest beliefs to rationally choose one, and then uses this subset to choose
a consistent body of constructive beliefs (though these decisions need not be separate decisions since
the subset may be chosen so as to yield a desired conclusion). Rational representation allows the
possibility that the agent may select different subsets of the manifest beliefs for different actions,
even if the manifest beliefs remain constant. In such cases, the logical inconsistency of the agent’s
beliefs is exhibited in the “inconsistency” of the agent’s actions in unchanging circumstances. This
“inconsistency in action” can be minimized by employing the notion of conservative revisions of
constructive beliefs, as discussed in Section 8.

In choosing consistent sets of constructive beliefs based on inconsistent manifest beliefs, we may
think of the constructed beliefs as “representing” the inconsistent manifest beliefs for the purpose of
the action at hand, just as we think of the elected officers of a political organization as representing
its membership. This sense of “representation” is different from the one we have been studying so
far. In the first sense, the manifest beliefs represent the constructive beliefs: in the second, the
constructive beliefs also represent the manifest beliefs. This second sense is not merely a curious
coincidence of words. The most common and unavoidable sort of inconsistent knowledge employed
in artificial intelligence is not inconsistent belief, but conflicting default rules and the conflicting
preferences they embody. We cannot pursue the point here, but reasoning with conflicting default
rules turns out to be formally the same problem as decision-making or self-government by groups
of people, thus justifying the second sense of the term “representation.” See (Doyle and Wellman
1988) for more on this connection between rational knowledge representation and theories of social
or political decision-making.

11



6 Rational expenditure of limited resources

If an agent’s manifest beliefs and derivation rules are logically consistent and complete, then the
consequences of these beliefs are decidable. But even when this is the case, it may not be feasible to
consider all these consequences as constructive beliefs if only limited resources of time and memory
are available to compute them.

Two major approaches have been explored toward defining constructive beliefs in situations
of limited resources. One approach is exemplified by Konolige’s (1985) formalization of deductive
belief, as discussed in Section 2. The basis of Konolige’s theory is in describing constructive beliefs
as the closure of the manifest beliefs under an incomplete set of deductive rules, where the rule-
sets so employed are restricted to those that can be mechanized within the prescribed resource
bounds. The second approach is to use logics of belief which explicitly incorporate descriptions of
resources into the description of states. Instead of describing what beliefs follow from others, these
logics describe which constructive beliefs follow from the manifest beliefs and given quantities of
resources, for example, in terms of how many applications of Modus Ponens are needed to derive
a conclusion. There is some overlap in these two approaches, as in some cases it may be possible
to find an incomplete set of rules that exactly captures the effect of a specific sort of resource
limitation.

While theories of belief that take limitations on reasoning abilities into account are a step in
the right direction, theories that describe these limitations purely in terms of resource bounds
suffer from serious difficulties. The first difficulty is that the quantities of resources available to the
agent need not be well defined. The agent’s stock of resources may change through consumption or
through changes in the agent’s environment. In addition, some resources may be augmented as well
as consumed by the agent’s actions. Indeed, the supplies of the most important mental resources
are not fixed, but are instead what the agent makes them through investment of effort in their
improvement or destruction. For example, deadlines can sometimes be postponed to gain more
time, and effective memory capability can be increased by reorganization or culling of memory,
or by augmentation with external memory aids. Such fluidity in the resources available makes
inapplicable logics of limited belief such as Konolige’s or Davis’ (1981) logic of obvious inferences,
since these logics reflect fixed limits to reasoning. There is no general and natural yet static logic
of limited belief.

The second, and more telling difficulty is that the agent may have the license and resources
to draw a conclusion, but no interest in (or even a definite antipathy toward) drawing it. Such
undrawn conclusions are not simply a matter of competence and performance, for we would think
an agent incompetent if it could not avoid things it intends to avoid and has the power to avoid.
Yet the very idea of avoided conclusions contradicts the implicit assumption of many theories of
resource-limited belief that all conclusions that can be drawn within the available resources should
be drawn, that having more beliefs is always better.

Defeasible reasoning, which underlies many common forms of reasoning and representation,
provides many examples of conclusions avoided because other information indicates the reasons for
deriving them to be inapplicable. But the more striking instances of avoided conclusions involve
deliberate ignorance. Just as it is not always rational to be skeptical, it is not always rational to be
credulous, and deliberate ignorance is called for when skepticism is rational. Deliberate ignorance is
foreign to scientists, who are trained to want to know everything. Indeed, Good (1967) has proven
that it is not rational to ignore available information when the costs of collecting and using it are
negligible. But these costs are often not negligible. For example, deliberate ignorance is common in
the everyday lives of people who often would rather not know something they could easily find out,
since some sorts of information can make the learner very unhappy, in which case learning carries a
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Taxes overlooked none overlooked
Read −∞ −ε
Don’t −$ 0

Figure 4: Rascal’s decision about reading the tax code.

great emotional cost. This sort of behavior is not merely a human foible. In computational systems
with autonomous subsystems, and in bureaucracies with strictly enforced procedures, a piece of
information relevant to the agent’s aims might be easy to acquire, but nevertheless be rationally
avoided because its acquisition might automatically trigger costly processing (e.g., endless forms,
expensive investigations) the agent wishes to avoid.

We may modify Pascal’s wager slightly to provide a concrete example of rational ignorance.
Suppose Pascal’s cousin Rascal is involved in shady financial dealings, and that while he believes
that there may be tax codes that call for extra taxes on his earnings, he would (being an inveterate
cheater) sometimes avoid paying them even if he knew about them. Rascal also knows that in his
country the penalty for deliberately evading specific taxes is death, while the penalty for inadver-
tently overlooking esoteric taxes is merely monetary. One day Rascal comes upon the ten volumes
of the tax code in the library. He then faces the question of whether to read the tax code to see if he
is overlooking some taxes. Figure 4 summarizes Rascal’s evaluation of the alternatives of reading
or not reading the tax code, under the assumption that his shady dealings will someday lead to
his taxes being audited. We let −∞ represent the disutility of death, −$ represent the disutility
of the taxes due plus the fine for overlooking taxes, and −ε represent the disutility of spending the
time to read the ten volumes of tax code. Rascal rationally concludes that if there is any chance
of his overlooking any taxes that he would not pay, he is better off not knowing about them. (For
a game-theoretic treatment of less contrived examples of rational ignorance, see (Cave 1983).)

We may summarize this discussion in the observation that resource-limited reasoning is really
a code-word for the economics of reasoning, for the rational allocation of mental resources. The
agent’s ability to come to specific conclusions, as well as its probability of coming to these con-
clusions, depends on the agent’s preferences as well as its beliefs, as these preferences determine
or influence both the types and amounts of resources available to the agent, and the interest or
motivation of the agent toward making specific inferences. Applied to the theory of constructive
belief, this observation means that extant approaches to constructive belief are unnecessarily rigid
and possibly wasteful, as they focus on the special case of an agent bound to construct every belief
it can within the limits of its resources. The theory of rational representation offers a more general
and natural approach, in which there may be several sets of constructive beliefs corresponding to
a single set of manifest beliefs. Even when fixed amounts of resources are available for computing
constructive beliefs, the representation service may allocate these resources in several different but
equally rational ways, each way yielding a different set of constructive beliefs.
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7 Constructive attitudes and implicit belief

The preceding has made a case for thinking of constructive belief in terms of rational representation.
It is not hard to see that a similar view is reasonable for other attitudes involved in the agent’s
knowledge. That is, the agent’s manifest beliefs, plans and preferences are just the starting point for
calculation of its constructive beliefs, constructive plans, and constructive preferences. The same
considerations motivating finite representations of sets of beliefs motivate finite representations of
large sets of preferences and plans or policies.

Having all types of attitudes represented in manifest and constructive forms introduces subtle
problems into the very definition of rational choice of constructive attitudes. If preferences may
be constructive, rather than always manifest, then the proper definition of constructive attitudes
should involve rational choice with respect to the constructed preferences themselves, not just with
respect to the manifest preferences. This makes each choice of constructive beliefs what Jeffrey
(Jeffrey 1983) calls a ratified decision, that is, a choice that is rational with respect to the set of
attitudes resulting from that choice. For example, if sets C and C ′ are both rational constructions
according to the preferences in M , then M does not prefer C over C ′ or vice versa. But if C
contains a constructive preference for C ′ over C, then only C ′ could be a ratified choice from M ,
since C says of itself that it is not the best choice.

This same line of reasoning suggests reconsidering the theoretical relation between explicit and
implicit belief. Recall that Levesque (1984) defined implicit beliefs to be just those facts entailed
by the agent’s explicit beliefs. This definition accords well with the usual meaning of the term
“implicit,” and provides a natural extension of the notion of explicit belief as a partial deductive
closure of manifest axioms. In addition, this definition of implicit belief is motivated by a view of
reasoning in which the point of “problematic” or “nontrivial” reasoning is to make explicit some
of the beliefs that are presently only implicit. A central feature of such reasoning, according to
this view, is that it leaves the set of implicit beliefs invariant, changing only the set of explicit
beliefs. But it is not clear that we can retain this view of implicit belief in the setting of rational
representation.

First consider what happens when constructive attitudes are made manifest. The constructive
preferences may contain preferences that are not manifest. Making one of these manifest may have
the effect that some previously rational sets of constructive belief are no longer rational, as they did
not contain the added preference and are ruled out by it. However, the added preference cannot rule
out the set of constructive attitudes from which it was drawn, since that set was a ratified decision.
If we assume that the added preference does not allow the construction of any new attitudes, then
this addition leaves invariant the set of constructive attitudes.

Now consider the case of implicit attitudes. Just as the constructive preferences may contain
preferences that are not manifest, the constructive preferences may entail some implicit preferences
that are not manifest or constructive. Making an implicit preference manifest or constructive can
change the ratified sets of constructive attitudes, possibly removing from consideration the very
set of constructive attitudes that entailed the added preference. Thus if we want a set of implicit
attitudes to remain invariant when implicit attitudes are made explicit, then we must define the
implicit attitudes to be sets of attitudes that both are closed under entailment and are ratified
rational choices from the manifest attitudes. This makes the notion of implicit belief more like
the stable (i.e., ratified) extensions in Moore’s (1983) autoepistemic logic than the consequential
closure of the explicit beliefs. But it also opens the possibility of discrepancies arising between
the sets of implicit and constructive attitudes, as each represents a ratified choice with respect to
different sets of preferences. In particular, it may happen that the manifest attitudes give rise to
several sets of constructive and implicit attitudes, but that no set of constructive attitudes is a
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subset of any of the sets of implicit attitudes.

8 Mechanizing rational representation

Even if rational representation provides a more appropriate standard than deductive representation
for constructive belief, as a practical matter it poses problems at least as difficult as those faced in
mechanizing deductive representation. It is too hard, in general, to explicitly compare all possible
sets of constructive beliefs, for the sets may be infinite in both size and number. One may not then
be able to rationally choose constructive beliefs simply by retrieving expectations and preferences
and calculating which state has maximal expected utility. This does not mean that the idea of
rationality is useless in mechanizing constructive belief, for its role as an ideal theory is important
even if it cannot be fully attained. But much work remains to be done on mechanizing rational
representation, as only a few approaches have be explored, and none of these very thoroughly.

The approaches taken so far towards mechanizing rational representation attempt to approx-
imate this ideal by using simple sorts of rational attitudes in ways compatible with their ideal
meanings. Three approximation methods have been examined. The first is to consider only some
of the agent’s preferences and expectations at a time, and to use initially simple but progressively
more complex decisions to select constructive beliefs. That is, the agent devotes a fraction of its
effort to some simplified decisions about how to rationally expend the remainder, making this al-
location by means of another rational choice involving restricted sorts of preferences, such as those
expressed in default rules, or those employed by Smith (1985) and Russell and Wefald (1988).
If need be, this simplification may be employed more than once to reach a decision. See (Doyle
1980, 1988a) for treatments of patterns of successively reflective preferences about preferences and
reasoning about reasoning as elements of a theory of rationally bounded rationality.

Two related but in many ways simpler approaches towards mechanizing rational representation
may be found in reason maintenance systems (Doyle 1979). The first of these is to approximate
rational choice by finding some more easily computable condition that entails rationality. Reason
maintenance does this by basing constructive beliefs on reasons or justifications, and requiring
that constructive beliefs be grounded or possess well-founded support in terms of these reasons.
Grounded sets of constructive beliefs are relatively easy to compute. When one interprets reasons
as special sorts of preferences about sets of beliefs (or as comparisons of their expected utilities),
it is possible to prove that grounded sets of constructive beliefs constitute rational choices in a
limited sense. Specifically, grounded sets are Pareto-optimal choices with respect to the preferences
expressed by reasons (Doyle 1983, 1985). But this approximation to rationality is not perfect, since
not all of the agent’s preferences are taken into account.

The second way reason maintenance attempts to simplify the computation of constructive beliefs
is through conservative updates, where effort is saved (one hopes) by carrying over many beliefs
without recomputation. Doyle’s (1979) reason maintenance system did not compute constructive
beliefs in precisely the sense we have been using the term, since every reason and belief it represented
was manifest in memory. A more accurate view is that in that system the manifest beliefs Mt are
divided into two subsets: basic beliefs (and reasons) Bt, and supported beliefs St, with Mt = Bt∪St.
The basic beliefs play the role we earlier assigned to manifest beliefs, in that all explicit changes to
beliefs are made by changing the set of basic beliefs. The supported beliefs play the role we earlier
assigned to constructive beliefs. In essence, the supported beliefs are just some of the constructive
beliefs made manifest. The motivation for doing this is to ease computation of modified sets of
constructive beliefs by making incremental changes in the current set of supported beliefs instead of
requiring complete reconsideration of all possible sets of constructive belief. The hope here (which
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Figure 5: Reason maintenance makes manifest, as supported beliefs St, some of the beliefs con-
structed from basic beliefs Bt, with Mt = Bt ∪ St. The representation relation F is split into two
parts FS and FC . The reasoning relation δ changes only basic beliefs, and the supported beliefs
are conservatively updated according to a minimal-revision relation µ.

has not yet been justified theoretically) is that such incremental revisions are in practice less costly
to effect than continual recomputations of individual constructive beliefs, especially since rational
choice of consequences tends to eliminate the modularity or independence of conclusions exhibited
in monotonic logics. As with constructive beliefs generally, the decision about which beliefs appear
manifestly as supported beliefs and which are left as purely constructive beliefs is an economic
one, dependent on the role the particular beliefs are expected to play in belief construction and
reasoning.

We may depict the reason maintenance approximation to rational representation as in Figure
5. Here we view the overall representation relation F as the result of two simpler relations FS and
FC , with FS relating basic beliefs Bt to supported beliefs St, and FC relating supported beliefs
St to constructive beliefs Ct. Reasoning changes most beliefs indirectly, through changes in the
basic beliefs, and as before δ denotes the relation between constructive beliefs at one instant and
changed (basic) beliefs at the next. In addition, the supported beliefs St+1 are carried over from
the previous state, with minimal changes made in order to maintain the relation FS with the
updated set Bt+1. The choice of St+1 to be as “close” as possible to St among the alternatives in
FS(Bt+1) is denoted by µ. (We will not treat here the interesting topic of what constitutes minimal
or conservative revisions, but rationality plays an important role in that concept too. See (Doyle
1988a) and (Gärdenfors 1988).) Summing up, we have St ∈ FS(Bt), Ct ∈ FC(St), Bt+1 ∈ δ(Ct),
and St+1 ∈ µ(St, FS(Bt+1)).

9 Conclusion

To summarize, implicit beliefs are represented by constructive beliefs, and constructive beliefs are
represented by manifest beliefs. Numerous examples were presented to show that constructive
belief is best viewed as decision-theoretic notion, with constructive attitudes generally defined to
be attitudes chosen so as to maximize their expected utility to the agent. The representation
relation between manifest and constructive attitudes is thus rational, not logical, and the limits to
knowledge are primarily economic, not logical. In particular, the agent’s constructive and implicit
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beliefs depend upon its preferences as well as its manifest beliefs. Since these preferences may
change over time, no static logic of belief (or even of belief and resources) can capture all notions of
constructive and implicit belief of demonstrated practical value or which conform to commonsense
ascriptions of belief.

The involvement of choice in computational representation makes the situation in computational
reasoning considerably different than the traditional logical conception of reasoning in philosophy.
Philosophers have long distinguished the notions of theoretical reasoning (i.e., logic), which focuses
on questions of truth, and practical reasoning (i.e., deliberation), which focuses on questions of
value. Though philosophers made no distinction between manifest and constructive belief, artifi-
cial intelligence theorists have often been tempted to identify these two dimensions of reasoning
with the synchronic and diachronic dimensions of Figure 1, with constructive beliefs reached by
theoretical reasoning and the next state reached by practical reasoning. But this identification is
not appropriate, for the distinction between manifest and constructive belief is not that between
theoretical and practical reasoning. Instead, in computational reasoning both manifest and con-
structive beliefs exist to serve the needs of practical reasoning. Theoretical reasoning, if it exists
at all in automated reasoners, is something else entirely, something not necessarily involved in the
activity of reasoning.

The nonlogical nature of constructive belief is less surprising when one considers representation
to be just one aspect of the organization of reasoning, for one can see immediately that logic
omits the idea that reasoning has a purpose. The purpose of reasoning is not just to draw further
conclusions or answer posed questions. To paraphrase Hamming, the purpose or aim of thinking is to
increase insight or understanding, to improve one’s view (as Harman puts it), so that, for instance,
answering the questions of interest is easy, not difficult. This conception of reasoning is very
different from incremental deduction of implications. Instead of simply seeking more conclusions,
rationally guided reasoning constantly seeks better ways of thinking, deciding, and acting. Rational
reasoning does not preserve truth but instead destroys and abandons old ways of thought to make
possible invention and adoption of more productive ways of thought. Correspondingly, the purpose
of representation is to offer the best conclusions to draw rather than all the logically possible
conclusions, to guide the reasoner toward the useful conclusions, whether sound or unsound, and
away from useless ones, whether true or false.

The task of artificial intelligence would certainly be easier were it practical to organize repre-
sentation and reasoning so as to avoid non-logical assumptions and revisions, to instead involve
only cumulative, logical deduction of the consequences of initial beliefs and descriptions of passing
experiences. But that does not appear to be any more feasible for machines than for humans. Hu-
mans, at least, find guessing necessary because of our small, frail mental abilities. Denied complete
and certain knowledge we assume our way through life, only dimly and occasionally aware through
our meager senses of any reality, and even then loath to part with our cherished beliefs. We must
revise and reinterpret our beliefs even if guesses are never wrong because progress in reasoning, like
maturity and progress in life, requires escape from the shackles of the past. Agents whose beliefs
are cumulative are unwilling to give up the past, and are condemned to repeat it endlessly. Put
most starkly, reasoning aims at increasing our understanding; rules of logic the exact opposite.
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