
Reset reproduction of CMU Computer Science report CMU-CS-83-124. Revised version published in IEEE Com-

puter, Vol. 16, No. 10, pp. 119–123. Reprinted July 1994. Reprinting c© Copyright 1983, 1994 by Jon Doyle.

Current address: MIT Laboratory for Computer Science, Cambridge, Massachusetts.

Admissible State Semantics
for Representational Systems

Jon Doyle

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213
U. S. A.

Abstract: Several authors have proposed specifying semantics for representational systems by translating
them into logic. Unfortunately, such translations often introduce unnecessary detail and complexity. We
indicate how many kinds of informal semantics can be transformed directly into formal semantics of no
greater complexity. The key to avoiding the difficulties of logical translations is to recognize the difference
between internal and external meanings.

This paper will appear in IEEE Computer.
c© Copyright 1983 by Jon Doyle.

This research was supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-1539. The views
and conclusions contained in this document are those of the author, and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the Government of the United States of America.



The Problem of Practical Semantics

§1. Although the design of representational systems involves many considerations, such as computational
efficiency of the operations and accommodation (at least through front-ends) of the conceptual scheme to
those familiar to humans, one of the most important requirements is for a clear semantics. Just as a
slow program may be useless, and just as sermons in one church may bewilder the members of another,
one cannot hope for success in representing information about the world if one cannot tell what the
representations mean. Without a clear semantics, one cannot tell if two representations mean the same
thing or mean different things. This prevents judging the correctness of formalizations of one’s intuitive
knowledge. Similarly, without a clear semantics, one cannot distinguish innocuous, meaning-preserving
inferences from inferences which introduce new assumptions or change meanings.

Artificial intelligence has pursued two paths towards formalizing the semantics of representation-
al systems. Both of these are based on mathematical logic. In one, the representations themselves are
sentences in a logical language, as in PROLOG; in the other, one gives a translation of every representation
into a set of sentences in a logical language, as illustrated by [Hayes 1979] and [Nilsson 1980]. In either
case, the meaning of representations is found by looking at the models of the corresponding set of sentences.

Unfortunately, neither of these paths offers any guarantee that the resulting semantics will be
easy to construct or to comprehend. The source of the difficulty is that many sorts of representations
important in artificial intelligence concern self-knowledge of one kind or other, representations of the
agent about its own structure and behavior. Some of these self-representations are purely descriptive or
introspective. Some are used normatively as ideal “self-images” to uphold in actual thought and action.
Phrasing such self-representations or their translations in a logical language is not impossible, but usually
requires very complex constructions involving convoluted language-metalanguage systems. This is not
theoretically objectionable, but it spells trouble in practice, since extremely complex translations are
difficult to comprehend by the designer and user, making translation-based semantics ill-suited to its
principal mission. This problem shows up often in artificial intelligence, where many representational
systems are described in non-linguistic or non-logical terms and never supplied with formal meanings,
even when reasonably clear informal semantics are obvious.

In the following, we indicate how many kinds of informal semantics can be transformed directly
into formal semantics of no greater complexity. We avoid the unnecessary burdens of logical formulation
and translation by focusing on what is real — the meanings — rather than on their expression within
a particular logical language. Translations into logical languages, while theoretically sufficient, are not
unique, since many languages can serve if even one can. Yet each logical language introduces peculiarities
of its own, details that impede understanding and analysis without affecting the resulting meanings.

The key to avoiding the difficulties of direct logical translation is to recognize the difference
between the internal and external meanings of representations.

Internal and External Meanings

§2. Designers of artificial intelligence systems commonly employ two sorts of reference: external reference,
in which the agent’s representations refer (in the designer’s mind or by some other means) to objects not
immediately “graspable,” for example diseases and geological formations; and internal reference, in which
the agent’s representations refer (ostensively or otherwise) to objects immediately graspable and hence in
the agent itself. This is reflected in the common focus of artificial intelligence architectures on general
manipulations of representations rather than on pure logical deductions. If one has immediate access

1



to an object, one can not only talk about it, but modify it. With immediate access, if one makes an
inaccurate statement, one can either retract it or make it true — both important operations in artificial
intelligence systems. On the other hand, without graspability, one can only talk about objects, and cannot
quickly modify them to cover one’s assertions. This makes deduction an important way of talking about
ungraspable objects, since one can say new things without fear of being more wrong than before. The
principal novelty of current representational systems relative to traditional systems of deductive logic is
their concentration on the use of the relatively neglected tools of internal reference as the basis of self-
structuring and self-modifying agents, agents which can state their own intended structure, and then make
those statements true if need be.

Putnam [1975] and others argue that even supposedly mental objects like human beliefs cannot
actually be grasped, and so raise doubts that two sorts of reference exist, doubts that anything can be
immediately grasped at all. The artificial intelligence approach is based on ensuring that some objects
are actually grasped by construction. While many representations of the usual knowledge representa-
tion systems have external referents, and so do not directly affect the mind (except through mistakes
that cause injury or death), many of the information-structuring representations concern mental objects
themselves, especially relations between representations. Rather than ask Putnam’s question of whether
these structural representations actually mean what the agent thinks they do, we use the intra-mental
relations to define the admissible states of the agent. The problem of correct implementation of these self-
representational specifications is that of implementing the agent so that the states of the implementation
are exactly the admissible states, that is, so that the structural representations have exactly their intended
meaning. We separate this portion of the meaning of mental components from general ecological meaning
by the name admissible state semantics, and leave specification of external meanings to the standard tools
of model theory.

The method of admissible state semantics is simple, and resembles the usual explanations of
intended meanings given by system designers. In both of these, the designer explains the meaning of one
representation directly in terms of its relations to other representations in the system. For comparison,
the logic translation approach requires one first translate the initial representation into logic, then find its
consequences, and then reverse the translation process to find other representations related to the original
one. Since many representational systems involve succinct encodings of notions whose logical translations
are very complex, the difficulty of this roundabout logical procedure can be unbearable.

Admissible State Semantics

§3. Admissible state semantics makes several fairly general assumptions about the constitution of agents.
These constitutive assumptions involve some “parameters,” so one applies the framework by filling in these
parameters with the characteristics intended of one’s system. The three fundamental parameters are called
D, I, and 6S. We explain these in turn. (These three notions are part of a larger framework developed in
[Doyle 1982] and elsewhere.)

The first constitutive assumption is that every state of the agent can be decomposed into elements
drawn from a domain D. Here D is just a set, so each state S is a subset of D, that is, S ⊆ D. For most
purposes, D is just the set of all possible representations or data-structures the system might employ. For
example, a logically-structured agent might be characterized by taking D to be the set of all sentences
in some logical language; LISP-based agents might require D be the set of all possible S-expressions; for
frame or unit-structured agents, D can be the set of all possible frames or units; semantic networks likely
require D be the set of all possible nodes and links; and “society of mind” agents can be described using
D as the set of all “mental agents” (see [Doyle 1983]). Note carefully that D is not just the set of all
components in some particular state, such as the initial state, but instead the set of all components that
might appear in any state, at any time. It is possible, without much trouble, to formalize one’s system

2



instead in terms of an increasing sequence of domains (to capture “generated symbols” or other additions),
but illustrating that would digress too far from our main purpose here.

The second constitutive assumption is that every element of the domain, every possible state
component, represents a specification on the set of states in which it may admissibly occur, and has a
meaning or interpretation that sets out these sanctioned states. Formally, we assume an interpretation
function I : D → PPD (P means power set), so that for each d ∈ D, I(d) ⊆ PD is the set of potential
states sanctioned by d. For example, state components that are indifferent to the states in which they
appear (such as representations purely about the external world) can be given the trivial interpretation
I(d) = PD that sanctions all potential states. If the component requires that its appearance always be
accompanied by some other components A ⊆ D, then one can define I(d) = {S ⊆ D | A ⊆ S}. To
forbid the component from occurring with some other components A ⊆ D, we can define I(d) = {S ⊆ D |
S∩A = ∅}. Of course, these are very simple sorts of interpretations. Sophisticated systems may have some
components that play very involved roles in the agent, and these may require very complex interpretations.
Note carefully that one is free to use whatever precise (e.g. mathematical or logical) language is convenient
in defining the interpretations of components. These metalanguages are part of our (external) specification
of the system, and need have no close relation to the system’s own methods of representation. Put another
way, we can use logic to characterize the intended behavior of the agent without having to pretend the
agent’s components and actions are logical sentences and logical inferences. This, as I see it, is the principal
advantage of the proposed semantical framework over those based on logical translations. To ease the
semanticist’s burden even more, we note that when there are several overlapping classes of components
with special interpretations, one can specify several separate interpretation functions, one for each class
of components, and then intersect them to get the full interpretation function. For example, if A, B ⊆ D
each contain related sorts of components, one can define for every d ∈ D

IA(d) =

{

. . . if d ∈ A
PD otherwise

IB(d) =

{

. . . if d ∈ B
PD otherwise

I(d) = IA(d) ∩ IB(d).

The third constitutive assumption is that every admissible state of the system satisfies the spec-
ifications represented by each of its components. We write 6S to mean the set of admissible states of the
agent, and define the class Q of component-admissible sets by

Q = {S ⊆ D | S ∈
⋂

d∈S

I(d)},

so this constitutive assumption is that 6S ⊆ Q. Unfortunately, simple component-admissibility cannot
capture some intended ranges of admissible states for agents. For example, the empty set ∅ is always
component-admissible since it has no elements to say otherwise. One might wish to capture other re-
strictions on the intended states without explicitly representing them by interpretations of components.
To allow this, the framework permits definition of 6S as a proper subset of Q. Note that we can always
capture any general restriction except non-emptiness in the components themselves by redefining I(d) as
I ′(d) = 6S for every d ∈ D, in which case Q′ = 6S ∪ {∅}. Turning this observation around, if 6S = Q, then
all restrictions on states are explicitly represented in the states themselves. This recalls current efforts in
artificial intelligence aimed at constructing completely “self-descriptive” systems, but we cannot pursue
those here.

In the following examples, we present some semantical specifications using this framework. Unfor-
tunately, demands for brevity limit what we can present here. More detailed and comprehensive treatments
of major artificial intelligence systems are in preparation.

3



Examples

§4. Many systems represent information in so-called semantic networks. One of the fundamental sorts
of information encoded in these representational systems concerns the “inheritance” of information by one
concept from another. If we look for logical translations of these systems, the temptation is strong to
formulate inheritance as implication, since everything derived about one concept can be derived in one
further step about any concept it implies. Unfortunately for the simplicity of logical translations, many
uses of inheritance in artificial intelligence have nothing to do with implication, but instead concern simple
economy in writing down information. One often sets up inheritance relations not to indicate any common
referents of descriptions, but as cheap ways of constructing one description in terms of its differences, both
positive and negative, from another. For example, if we already have a description of lions, we can quickly
construct a description of tigers by declaring that the two descriptions are the same, except (say) that
tigers look different and live in India. Here we save rewriting all the information about being mammals,
quadrupeds, furred, and so on, yet do not state that all tigers are lions, nor even that some tigers are
lions. We just say “ditto.” Considerable investigation still continues on what notions of inheritance are
practically useful and theoretically important in general and in specific cases. We add nothing to those
debates here, but instead illustrate how the semantical framework introduced above allows designers of
such systems to state their intended conceptions of inheritance exactly and independently of how they
implement those conceptions.

To give perhaps the most trivial example possible, suppose we choose to represent concepts by
LISP atomic symbols with property lists, and intend that any concept with an IS-A property should also
have every property of the concepts listed under the IS-A property. Formally, we let D be the set of all
LISP S-expressions, take 6S = Q, and define I so that I(d) = PD if d is not an atomic symbol. We write
p(a) = x to mean that the atomic symbol a has x as the value of its p property. With this notation, we
specify the interpretation of each atomic symbol a by

I(a) = {S ⊆ D | ∀b ∈ IS-A(a) ∀p 6= IS-A p(b) 6= NIL⊃ p(b) = p(a)}.

That is, except for the IS-A property itself, which must be treated differently in this representation, the
inheriting concept must have all the properties of its ancestor. Since the ancestor imposes similar conditions
on states, inheritance is “transitive” in every admissible state. Of course, no one would ever want to use
such a simple-minded system: its limitations are obvious. But we can extend the same methods to more
interesting representational systems.

Consider SRL, the “schema representation language” of Wright and Fox [1982]. One impor-
tant feature of SRL is the definability of special classes of inheritance types within the representation
system itself. While the full language is too large to present here, we can focus on one typical feature
which illustrates how one might begin to formally specify the internal semantics of all of SRL. For this
fragmentary analysis, we take D to be the set of all possible SRL “schema” data-structures. The precise
extent of this set does not matter for this example. Indeed, we use little more than the resemblance
of schema to the simpler property-list data-structures discussed above, and so do not do justice to SRL
proper. The focus of our attention is the “inclusion-spec inheritance schema.” An inheritance schema
describes a class of inheritance relationships, and inclusion-specs are generalizations of IS-A relationships.
Wright and Fox display the form of inclusion-spec schemata as

4



{{ inclusion-spec

DOMAIN: < restriction >
default: all

RANGE: < restriction >
default: all

TYPE:
default: value
range: (SET (OR slot value))

SLOT: < restriction >
default: all

VALUE: < restriction >
default: all

CONDITION:
default: T
restriction: (OR T < predicate >) }}

They explain this schema as follows. Every inheritance schema has two slots called SCHEMA1 and
SCHEMA2 whose fillers are the schemata to be related by the defined inheritance relationship. The
inclusion-spec has a number of additional slots which, taken together, describe exactly which sorts of
information should be transferred from SCHEMA1 to SCHEMA2. DOMAIN and RANGE may be filled
with predicates on schemata limiting the force of the inclusion-spec to pairs of schemata satisfying the
respective restrictions. CONDITION is in addition a general predicate that must be satisfied for the
inclusion-spec to transfer information. The TYPE slot indicates whether only slots, or slots and their
values are to be transferred. The SLOT slot allows transfers to be restricted to a subset of SCHEMA1’s
slots, and the VALUE slot can restrict the sorts of values passed to SCHEMA2. In this way, the inheritance
schema encodes a general statement about information transfer in the agent, and one uses the schema by
filling in the ranges of some of the implicit quantifiers and referents of some of the explicit names. Use
of a schema to state this specification rather than an arbitrary sentence of logic implicitly limits the user
to specifications which the system implementor decides can be feasibly computed. To formally specify
the semantics of SRL with just this one sort of relation schema, we need only define I(d) = PD when d
is anything other than an inclusion-spec, and define the cases for an inclusion-spec d analogously to the
property-list example above, perhaps by

I(d) = {S ⊆ D | apply(d.DOMAIN(S), d.SCHEMA1(S)) = T

∧ apply(d.RANGE(S), d.SCHEMA2(S)) = T

∧ eval(d.CONDITION(S)) = T

∧∀s ∈ d.SCHEMA1.slots(S)

[apply(d.SLOT(S), s) = T ⊃ s ∈ d.SCHEMA2.slots(S)

∧d.TYPE(S) = value⊃

∀v ∈ d.SCHEMA1.s.values(S)

[apply(d.VALUE(S), v)⊃ v ∈ d.SCHEMA2.s.values(S)]]}.

By doing enough honest work in defining these subsidiary functions (which we cannot pretend to here),
we can continue in this way to give meanings to other sorts of SRL schemata as well.

5



§5. To illustrate the applicability of admissible state semantics to non-linguistic structures for agents, we
consider some elements of Minsky’s [1980] K-line theory of memory. For Minsky, the mind is composed
of a set of “mental agents.” Each mental agent can be either active or inactive, and states of mind are
simply sets of active mental agents. We identify the set of mental agents with the domain D of the agent,
and consider sets in Q to be the admissible sets of active mental agents, that is 6S = Q.

The two specific sorts of mental agents we formalize here are K-lines and cross-exclusion networks.
K-lines are mental agents that, when activated, cause the activation of some set of other mental agents.
We formalize this by interpreting each K-line mental agent KL in terms of the set A of mental agents to
which it is connected, so that

I(KL) = {S ⊆ D | A ⊆ S}.

Cross-exclusion networks are somewhat more complicated. Cross-exclusion networks are sets of mental
agents which are mutually inhibitory. Further, cross-exclusion networks facilitate “conflict resolution” by
disabling or ignoring all members if two or more manage to become active despite their mutual inhibitions.
This disabling allows activation of “higher-level” mental agents which can consider and resolve the conflict.
We might formalize this by letting CXN be a mental agent representing a cross-exclusion network, B =
{bi}n

i=1
the set of mutually inhibiting members, C = {ci}n

i=1
indicators of which competitor wins out,

and CXN a mental agent representing the existence of an externally forced conflict. To get the desired
behavior, we define

I(CXN) = {S ⊆ D | [CXN /∈ S]⊃B ⊆ S},

I(bi) = {S ⊆ D | [S ∩ (C − {ci}) = ∅]⊃ ci ∈ S}

for each i, and assume the existence of a “watchdog” WD such that

I(WD) = {S ⊆ D | [∃i 6= j ≤ n ci, cj ∈ S]⊃CXN ∈ S}.

With these interpretations, we can capture the meanings or functions of mental agents without having to
dissect them.

Conclusion

§6. We have indicated the internal meanings of a variety of representational systems without translating
representations into a logical language. Unfortunately, demands for brevity limit the scope of this paper,
and we have had to omit treatment of virtual state information and action specifications. But as a final
remark, we note that the proposed semantical framework provides a starting point for investigating Smith’s
[1982] representational hypothesis. According to Smith, many workers in artificial intelligence suppose
that in any “interesting” computational agent, the representational elements of the agent’s structure can
be viewed propositionally, and that the computations made by the agent depend purely on the form, not
on the content, of these elements. Such propositional perspectives on the structure of agents may seem
quite elusive if we look at non-linguistic structures like K-lines, but the preceding framework offers tools for
reconstructing the propositional structure of non-linguistic agents. For example, if I(e) = I(e1) ∩ I(e2),
one might think of e as the statement “e1 ∧ e2.” Similarly, if I is defined as the intersection of several
restricted interpretation functions I1, . . . , In, one can view the domains of nontriviality of these functions
as the “syntactic classes” of the agent’s language. Even so, one may not find this reconstructed “language”
looking anything like a full first-order logical language. What the current framework suggests, I think, is
that one can make sense of the formality condition of the representational hypothesis without worrying
too much about linguistic re-representability of the agent’s structure. This brings us back to the initial
proposal of this paper, that there are easier ways to give exact semantics to representational systems than
translations into logic.

6



REFERENCES

Doyle, J., 1982. Some theories of reasoned assumptions: an essay in rational psychology, Pittsburgh:
Department of Computer Science, Carnegie-Mellon University.

Doyle, J., 1983. A society of mind: multiple perspectives, reasoned assumptions, and virtual copies, Eighth

International Joint Conference on Artificial Intelligence.

Hayes, P. J., 1979. The logic of frames, Readings in Artificial Intelligence (B. L. Webber and N. J. Nilsson,
eds.), Palo Alto: Tioga, 451-458.

Minsky, M., 1980. K-lines: a theory of memory, Cognitive Science 4, 117-133.

Nilsson, N. J., 1980. Principles of Artificial Intelligence, Palo Alto: Tioga. Chapter 9.

Putnam, H., 1975. The meaning of ‘meaning,’ Mind, Language, and Reality, Cambridge: Cambridge
University Press, 215-271.

Smith, B. C., 1982. Reflection and semantics in a procedural language, Cambridge: Laboratory for
Computer Science, Massachusetts Institute of Technology, TR-272.

Wright, M., and Fox, M. S., 1982. SRL/1.5 user manual, Pittsburgh: Robotics Institute, Carnegie-Mellon
University.

7


