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Abstract

Major military operations and other large-scale activities naturally involve competitions
for resources that must be managed effectively to ensure overall success. Since plan revi-
sions may change the resource demands of the activity, the relevant competitions for resources
involve computational resources (time, database control, etc.) as well as the more obvious
non-computational resources (fuel, aircraft, etc.). Ideally, these conflicting demands should be
resolved rationally in the sense of decision theory and economics. We determine rational allo-
cations over the full range of resources by using an artificial market economy (implemented as
RECON, the Reasoning ECONomy) to determine prices or trading ratios among resources. We
represent tasks and goals as resource-endowed consumers and computational methods, infor-
mational resources, and reasoning procedures as resource-transforming producers. We then use
the information provided by such problem-oriented market economies to guide search, planning,
and revision procedures that automatically extend and revise the market structure itself, e.g., to
include markets for solutions to new tasks and subtasks. This permits the market information
to guide the choices of whether to revise plans, and which portions to revise if revisions are
warranted.

1 Rational coordination of activities

Large-scale activities, such as major military operations or the operations of major healthcare and
manufacturing organizations, naturally involve competitions for resources. In the first place, these
activities usually involve several organizations or authorities, each placing demands on its own and
other resources. In the second place, these competing organizations often generate internal compe-
titions as well, as they distribute information and authority, both geographically (different theaters
of operation or manufacturing or clinic locations) and functionally (special-purpose databases and
departments), in order to satisfy legal, regulatory, privacy, reliability/redundancy, or efficiency
(e.g., communication or computational) considerations.

The overall success of large-scale activities often requires managing these competing demands
effectively to coordinate the component efforts, and recognizing that computational and commu-
nication resources must be allocated along with fuel, diagnostic equipment, repair personnel, and
other more visible goods. Computation and communication may seem “free” once one makes these
resources available, but their use always involves opportunity costs. For example, computing more
to improve one partial plan may save a flight and its associated fuel and pilot costs, while com-
puting more to improve another partial plan may save more lives. But one cannot simply just
decide what computations to make by comparing the non-computational goods at issue because
some computations (e.g., creating a fast local database) can speed or improve other computations,
thus representing non-computational goods only indirectly.



The usual approach taken to managing these competitions is bureaucratic, with some central
or higher authorities attempting to make broad allocations of resources and requiring the different
organizations and their components to operate within these allocations and to explicitly request
reallocations if such operation becomes impossible. Unfortunately, bureaucratic management of
the resources for complex activities is too inflexible to meet the ordinary flow of events, which
continually undermines the assumptions underlying such allocations by changing the demands
on component organizations in ways difficult to predict by central planners. In particular, the
most important competition for resources is not a static competition among relatively permanent
organizations and their components: instead, the most important competition for resources is
among an ever-changing set of tasks and portions of the overall activity. This competition arises
as changing circumstances undermines portions of the plans of the organizations involved in the
activity. To deal with these changing circumstances, the organizations and their components must
continually repair the plans directing their current activities. We say repair rather than replace since
in many cases traditional replanning from scratch may take too long to permit effective operation of
the organizational components. The result is that the most important competition for resources is
the competition among portions of the overall plan for the attentions of the authorities engaged in
the activity. This competition is dynamic, cutting across organizational lines and changing much
more rapidly than the structures of the organizations themselves (even when the organizations
dynamically form teams to deal with problems). Bureaucratic management of resources does not
appear adequate to deal with these dynamic resource competitions.

To manage large-scale activities and their dynamic resource competitions effectively, we must
seek to address the competitions among tasks directly rather than indirectly through a fixed matrix
of organizations. Instead of focussing on a fixed array of organizations and their capabilities, we
must focus on the changing set of tasks, the importance of these tasks to each other (as accomplish-
ing one task may facilitate or impede another), and the relevance of the organizational capabilities
to each task. The question then becomes how to allocate resources to tasks, with the allocation of
resources to organizations derived from the primary task-centered allocation.

2 Market allocation of heterogeneous resources

The field of economics has a well-known answer to the problem of allocating resources to tasks:
use markets. It suggests viewing the competition for resources in terms of resource-endowed con-
sumers that represent tasks or goals of the activity and resource-transforming producers that repre-
sent computational or reasoning procedures, informational resources, or noncomputational agents.
Equilibrium (“market”) prices correspond to allocations of resources to tasks that balance supply
and demand, thereby ranking particular resource demands by their importance relative to other
needs and the activity’s ability to supply or produce the resources.

Economics bases its market prescription on practical, theoretical, and organizational grounds.
In practice, markets for many goods provide extremely rapid response to changing circumstances
(as observation of commodity markets shows) as well as flexible and measured responses to changing
demands (which is not to say that overreactions are not possible). For a sizable range of important
goods, markets empirically provide the best known method of allocation, even to the point of
springing up and supplanting more bureaucratic mechanisms when not effectively suppressed. In
addition, economic theory proves markets to be the most efficient allocation mechanisms possible,
in the sense that the allocations determined by markets best satisfy the preferences of the agents
involved. And markets do this while making smaller demands on the organizational structure of the
activities using the resources, as they depend mainly on the calculations of the individual agents
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or organizational components competing for resources rather than on any calculation by central
planning authorities.

Markets thus seem highly suited to complex resource allocation problems, as they do not re-
quire synoptic computational abilities and still achieve the best possible results. But their use in
organizing activities has been limited for several reasons, especially the difficulty of recognizing
competitions in a timely fashion and of tracking the wide variety of material and non-material
goods involved in some activities. That is, markets in diesel fuel persist and succeed because diesel
fuel is a commodity used by many agents over long periods of time, has very slowly changing or
highly predictable properties, and is arbitrarily divisible, with different batches distinguished only
by their size, not by other qualities. In contrast, it is difficult, at least within traditional orga-
nizational structures, to recognize the need for a market in strategies to repair a transportation
plan upon the closure of an airfield [4], much less to identify the organizational agents that might
appropriately enter into such a market. In consequence, traditional approaches to organizing large
scale activities mix market and other mechanisms. The activities employ markets for resources
when those markets already exist and are conveniently accessed by the component organizations,
but use bureaucratic or other non-market mechanisms for the structuring the larger part of the
activity. Traditional approaches thus are denied the benefits of market allocation for many parts
of their activities.

3 Market-guided planning and search

Our work aims to change this situation dramatically by exploiting two developments in artificial
intelligence: namely the development of computational markets and the development of automatic
planning systems.

Limited forms of computational markets go back a long way in computer science; one can even
view some of the early job-scheduling procedures for batch processing as implementing a “market”
in computation for which users “bid” by means of commands on their job-control cards (punched
cards, that is). But the true flowering of computational markets has occurred only recently, mainly
with the WALRAS computational economy developed by Wellman [38]. Designed to make use of
the main ideas of theoretical economics about markets, WALRAS provides a general mechanism
for implementing markets in arbitrary sets of goods, traded by arbitrary consuming and producing
agents.

WALRAS thus provides a mechanism for implementing markets in goods as they appear and
disappear, as long as one can identify the need for such markets and the participants in them.
Automatic planning systems supply means for making these identifications. Typical automatic
planners take a set of tasks or goals and expand or refine the set by identifying methods for
achieving some of these tasks or goals [9]. Now in fact, most planning systems do not stop there,
but also search through different choices of which methods to use to achieve which goals, until a
complete set of goals and corresponding methods is obtained that provides a comprehensive plan for
achieving the initial goals. Unfortunately, when used in this way, automatic planning systems tend
to replicate the traditional problems with bureaucratic organizations, as they produce bureaucratic
solutions to problems: comprehensive plans clearly resemble traditional bureaucratic organizational
structures, which present a fixed set of departments or positions addressing fixed tasks.

Our work aims to obtain the advantages of market mechanisms in a much wider range of
situations than is traditional by making use of the mechanisms underlying automatic planning
systems in a new way: not as means for constructing comprehensive overall plans, but as ways
of identifying and constructing (or abandoning) portions of a market in tasks and the resources
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available for addressing them. That is, rather than have a planner itself choose the method to be
used to achieve some goal, we use the planning mechanisms to create a market for that purpose,
creating both the good of achieving the goal, identifying the producers of this good, i.e., the methods
for achieving the goal, as well as the consumers of the good, i.e., the methods for achieving other
goals which might rely or exploit the achievement of this one. The search for which assignments of
methods best achieve the overall set of goals is then carried out by the market mechanism, which
assesses the overall supply and demand for the market goods.

Where traditional planners make good choices of methods on a local basis, a market-guided
planning system makes choices based on global assessments of importance, overcoming, we believe,
the limitations of the traditional local choice methods. Improving the choices of traditional planners
has usually been viewed as a problem of bringing more knowledge to bear on the individual choices
of methods for achieving each task [6], and this has proved difficult as increasing complexity of
the activity requires taking a larger and larger perspective in these choices. The advantage of the
market-guided approach is that it provides a means for constructing comprehensive perspectives
quickly using only application of the knowledge local to each method, with iterative adjustment of
prices serving to combine and reconcile the local perspectives into a global one. Thus in the market-
guided approach, no agent need know everything; the real knowledge is in the local methods, and
the global market mechanisms serve only to combine the results of this knowledge in summary
form. Other approaches, such as neural networks, share something of the flavor of the market-
guided approach, but unless constructed to mirror the structure of a market (which none seem to
have been), lack the assurances of efficiency and rationality provided by the economic theory of
markets.

4 RECON, the reasoning economy

We determine rational allocations of the full range of resources by using an artificial market econ-
omy implemented as RECON, the Reasoning ECONomy, to determine prices or trading ratios
among resources. Since computations like plan construction or revision may change the resource
demands of the activity, the relevant competitions for resources involve computational resources
(time, database access or update control, etc.) as well as the more obvious non-computational
resources (fuel, aircraft, etc.).

Our preliminary implementation of RECON is built in CLOS on top of Wellman’s WALRAS
artificial economy [38]. WALRAS provides the basic market notions of consumer and producer
agents, goods, and auctions for these goods. Each consumer and producer enters into a subset
of the auctions. Consumers are endowed (possess) bundles of various goods, and enter into the
auctions for each of the goods in their endowment. Producers do not possess goods, but instead
transform a set of input goods into an output good, and enter into the auctions for their input
and output goods. Consumers and producers place bids in each of the auctions in which they
participate. These bids may be as simple as indicating the desire to trade a specific quantity of the
good at the current price; or as complex as a full schedule of amounts to trade (buying or selling) at
each possible price. Consumers and producers determine their bids in different ways. Consumers
have a utility function or preference order over possible bundles of goods, and bid so as to trade
a less preferred bundle for a more preferred bundle. Producers have a production function that
describes how much output derives from each bundle of inputs, and use this production function to
determine bids for input goods from prices for output goods or vice versa. WALRAS determines
equilibrium prices by an iterative procedure that at each iteration determines the total supply and
demand for each good at current prices and adjusts the prices accordingly if supply and demand do
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not match. In observations, WALRAS computes equilibrium or near-equilibrium prices in only a
few iterations. WALRAS makes a number of special economic assumptions about agents, the most
important one being that agents are “price taking”, that is, no agent is large enough in the market
to influence prices simply by its own actions. This assumption is actually not true in many of the
small reasoning markets of interest, but its failure has not yet been shown to matter in practice
due to the iterative nature of equilibriation.

As is apparent from this description, the economic structures provide by WALRAS are not
specific to any types of goods, consumers, or producers. RECON builds on WALRAS by augmenting
these generic notions with notions of good, consumer, and producer specific to reasoning tasks, and
by introducing computation goods to allocate to different tasks. Its main additions to WALRAS
are a good representing computation, the notions of computation consumers and producers, a
taxonomy of action types, and an execution mechanism that takes actions in an order determined
by bids for computation. The preliminary RECON implementation schedules tasks on a single
processor by auctioning off opportunities to compute. Computation consumers and producers
bid for amounts of the computation good as though they were bidding for different amounts of
time. Computation consumers have a computation function in addition to their utility function,
where their computation function indicates their use of computation in different circumstances.
Computation producers take computation as input and produce outputs, with different subtypes
of computation producers characterized by their computation production functions that indicate
how much computation they take to produce their results (i.e., their running time). The taxonomy
of action types introduces the distinction between actions and states, and differentiates a standard
variety of action types reflecting mainly planning and reason maintenance actions. Base level
actions have associated procedures, and the execution mechanism schedules the execution of these
procedures by using the bids each procedure’s producer bids for computation. However, though
the bids reflect the amounts of computation desired by consumers and producers, the execution
mechanism in fact provides uninterrupted opportunities to compute as long as desired (possibly
forever) rather than the opportunity to compute only as much as the bid specified. The selection
of the producer to execute is made by one of several methods, the simplest being to simply pick
the producer bidding for the maximum amount of computation among all producers bidding for
computation. This corresponds intuitively to taking actions to make as much progress as possible
at each step. The implementation provides a fairly manual method for charging producers and the
consumers they serve for the computation consumed once a producer’s procedure is executed, and a
fairly manual method of “garbage collection” for removing bankrupt or otherwise useless consumers
and producers from the economy when these charges remove all the endowment of consumers.

5 The market-guided reason maintenance system

We developed and tested the preliminary RECON architecture in conjunction with a market reason
maintenance system, MRMS. MRMS reorganizes the operations of a traditional RMS [10] into local
revisions that are done only upon determination of need, rather than the automatic and global revi-
sions performed by traditional reason maintenance systems [14]. To observe the system’s behavior
and perform preliminary tests of the implementation, we took the AMORD pattern-directed proce-
dure system [6] and replaced its traditional RMS with MRMS. We also replaced AMORD’s first-in,
first-out queue of procedure invocations with the RECON producer-scheduling mechanism, and
redescribed AMORD goals and methods in terms of computation consumers and producers. The
AMORD goals thus corresponded to computation consumers that were endowed with computation
and would trade computation for achievement of the goal, while AMORD methods corresponded to

5



computation producers that would peform procedures or draw conclusions given the computation
to do so.

The preliminary RECON implementation has many limitations discussed below, and AMORD
provides only a very simple platform for conducting and studying reasoning, but even this primi-
tive experimental apparatus was sufficient to observe some of the desired phenomena of reasoning
economies. For example, depending on the amount of computation required by the basic reason
maintenance procedures relative to each other, one could observe a series of reasoned updates ei-
ther being performed sequentially as individual revisions (which take little time but may leave
the network of justifications somewhat incoherent), or being performed indirectly by avoiding any
revision during the incoming series but revising the entire set at once in a larger update operation
at the end (which can take more time but leaves the network of justifications mutually coherent).
This illustrates one of the strenths of the market-oriented approach: tasks which have implications
for many other tasks are automatically accorded great importance, in some cases even more than
tasks that are very important on their own. (An analogous example might be that using a vehicle
to transport supplies of disinfectant to a hospital might be more important in some circumstances
than using the vehicle to transport wounded, even though one naturally would view a wounded per-
son as more important than ordinary hospital supplies.) These determinations derive purely from
the information local to each task and method and from the pattern of interaction of the tasks
and methods as reflected in the market topology. There is no need to apply specific knowledge to
recognize the importance; the market mechanisms provide that indication automatically.

Our experience with the RECON/MRMS/AMORD combination point out the need for several
improvements and extensions to RECON. The most urgent improvements concern the transaction
mechanism for auctioning off computation. The preliminary implementation allocates uninterrupt-
ible computation opportunities, but for flexible coordination of activities, what is desired is instead
allocation of more definite segments of time (e.g., uniform time slices) with differing degrees of
interruptibility (uninterruptible, interrupt with suspension of state, abort and restart, anytime
procedures, etc.). Our student Nathaniel Bogan is incorporating several standard approaches from
economic theory and practice into RECON [3]. This literature offers important results applicable to
computation and other special sorts of resources. (Unlike fuel oil, for which one has many suppliers
and consumers and many pieces which can be traded and consumed independently, time on a pro-
cessor is unique; only one process may compute at any given moment.) Bogan uses these results to
design auction mechanisms appropriate to the special properties of computation and other goods.

In addition, the preliminary implementation of RECON provides only an ad-hoc mechanism
for dealing with bankruptcy. For the sort of expectation-guided allocation we envision, we require
more sophisticated means of dealing with tasks that overrun their allocation and thus consume
more resources than they had available to trade. Bogan is also replacing these ad-hoc mechanisms
with more reasonable approaches to bankruptcy, ranging from automatic removal of the bankrupt
consumers and any associate special-purpose producers from the reasoning economy, to the addition
of standard mechanisms for suspending and resuming execution of procedures as more resources
become available.

Another limitation of the preliminary implementation is that it allocates only one computational
good on a single processor. To perform the multi-good, multi-agent coordination needed for large-
scale activities, we plan to expand the notion of computational good to include space and other
resources on multiple servers.

A final limitation is that the current taxonomy of action types does not cover the full range of
typical operations of reasoning, planning, and search procedures. We are expanding and refining
this taxonomy as the need arises. This expansion more generally provides strong motivations for
developing a suitable language for describing computational agents and their economic properties.
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5.1 Representing preference information

Preferences constitute one of the basic elements of information about economic agents, and a key
problem in both our investigation of market-guided planning and in decision-theoretic planning
in general is finding a good representation of preference information. Toward this end, we have
developed a qualitative logic of preference ceteris paribus or preference “other things equal” [13,
15, 39] in collaboration with Michael Wellman.

The most common representation used or assumed for preference information is that of numer-
ical utility functions. These have the advantage of offering complete comparisions of the relative
desirability of all alternatives and of applying numerical optimization procedures in decision mak-
ing. But they also suffer from severe problems of convenience and generality, especially when
attempting to integrate them into the automatic reasoning and planning system developed in the
artificial intelligence literature. In the first place, numeric utility functions are too specific: the
foundations of decision theory and economics start with qualitative preference orders, and many
different utility functions can represent the same preference order [30]. Thus a utility function
may convey more information than is really there. In the second place, while utility functions
make some optimization procedures convenient, they tend to make specification and elucidation of
preferences difficult. Most people exhibit a well-known aversion to expressing their judgments in
numerical terms, yet are often willing to provide qualitative expressions of preference with confi-
dence. Working directly with utility functions thus makes people hesitant to supply the necessary
information, and also provides no way to make use of the qualitative comparisions that informants
might provide immediately. In the third place, utility functions provide no connection with the
notion of goal upon which most reasoning and planning systems in use in artificial intelligence are
based. Most of these systems solve problems and construct plans in response to stipulations of
one or more propositions representing the goals to be achieved. Decision theory has no notion of
“things to be achieved”, only rankings of the relative desirability of outcomes, while goal-based
systems frequently have only the notion of “things to be achieved” and no way of comparing the
relative desirability of potential solutions or plans.

In response to these problems with utility functions, we have been working toward finding ways
of representing information about preferences that permits expression of both standard decision-
theoretic information as well as standard goal-based specifications, so as to be able to exploit the
strengths of both decision theory and artificial intelligence. More generally, we have aimed to
find preference representations capable of encoding and using whatever preference information is
available, without having to wait until enough is specified to determine a utility function.

Our main results so far have been very encouraging. Our qualitative logic of preference ceteris

paribus provides a uniform language in which one can express both ordinary decision-theoretic
preferences as well as the standard notion of goal, which we interpret to mean conditions preferred
to their opposites other things equal. (It is easy to show that one cannot reasonably interpret goals
as conditions preferred to their opposites without qualification, as that interpretation trivializes
planning with multiple independent goals. In particular, that interpretation forces all states that
satisfy some goals but not others to be indifferent; so that one cannot add any information to the
goals to state that, for example, outcomes satisfying 5 goals are preferable to outcomes satisfying
only 4.) We are continuing to develop the theoretical structure and inferential capabilities of this
logic and some close variants, but the basic language already provides a useful tool for encoding
qualitative preferential information. Furthermore, it appears that many important decisions can
be made simply on the basis of dominance arguments expressed completely qualitatively, so this
approach should permit important decision-making and planning to proceed even without numeric
utilities. Wellman [37] has developed the probabilistic version of this idea into a dominance-guided

7



planning procedure that plans “up to tradeoffs” in his terminology, meaning it constructs plans that
are optimal as far as the qualitative probabilistic information is concerned, and we expect an even
more robust planning procedure could be constructed in a similar fashion using only qualitative
preference information.

Of course, a rich language for encoding preference information would include quantitative repre-
sentations as well, and we are working toward a preference language that spans the spectrum from
completely qualitative representations like our language of comparative preference to ordinary nu-
meric utility functions, including intermediate representations of multiattribute utility functions
such as subutility composition trees [40], the standard forms of multiattribute utility functions [25],
and their application to expressing different types of planning goals [18, 19].

6 Related work

Work on distributed AI has made use of market notions for about a decade, but these uses have been
more suggestive than substantive until very recently [26]. The early notion of contract net of Davis
and Smith [5], for example, appealed to market metaphors (i.e., bidding for contracts) without
providing means for using prices in its protocols, and the “society of mind” theory of Minsky [27]
takes a broad but informal view of mental structure and activity that subsumes market activity and
many other forms of interaction. The more substantive recent efforts of Waldspurger and others [35]
have focussed on allocating single goods, namely processor time in a distributed operating system.
Wellman’s WALRAS system [38], upon which our current implementation is based, constitutes the
first general and substantial use of market notions, providing a computational mechanism for finding
overall equilibria of multi-good, multi-agent markets. To date, Wellman has primarily studied the
theoretical properties of the specific WALRAS mechanisms and the use of WALRAS to allocate
non-computational goods.

Work on planning and replanning has traditionally focussed on centralized planning methods
that do not scale well to construction and maintenance of plans for large-scale activities. Most of this
work treats planning only as a problem of achieving discrete “goals”, with little or no information
available to compare the value of achieving one set of goals with the value of achieving another.
Consequently, the primary means used to guide the planning and replanning process have been
purely structural (how many goals achieved) or probabilistic (how likely the goals are achieved).
Recent efforts on decision-theoretic planning and acting [8, 9, 11, 19, 31, 37] have attempted to
employ utility information, but most planning methods in use remain fairly insensitive to this
information. Even in those efforts, the focus is on optimizing the non-computational properties of
the plan without regard to the computational resources required to do so.

Work by Russell and Wefald [28, 29] and others [1, 7, 20, 21, 22, 23, 24] on rational allocation
of computational effort in search has complemented this work on planning by studying optimal
allocation of computation time in search, primarily in the simpler domain of game-playing search.
This work presumes a utility model for non-search actions, and seeks to trade off search time
and non-search utility. The specific mechanisms investigated to date, however, do not distinguish
well the variety of computational resources and goals of interest. Our students Ronald Bodkin and
Michael Frank investigated several ideas in rational guidance of search, developing some new search
methods [2] and exposing severe problems with the assumptions underlying extant rational search
procedures [16, 17].

While work on qualitative logics of preference goes back some time in philosophical logic [32, 33],
work on the problem in artificial intelligence seems to originate with our contributions [39, 13].
However, this work has its roots in Wellman’s earlier work on decomposition of multiattribute
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utility functions [36], which we also further developed in [40]. Work on a related problem, that
of constructing multiattribute utility functions that model important types of planning goals, has
also been under investigation by Haddawy and Hanks [18, 19].

Most treatments of reason maintenance have followed the original [10] in performing complete
updates, and theories of reasoned revisions have followed in making this sometimes impractical
assumption. Our mathematical work on reasoned assumptions [12] provides a better understanding
the properties of MRMS and more general reason maintenance systems that perform piecemeal
revisions of their information. In particular, it develops the strong connection between reasons
and preference information to show how one may view reason maintenance systems as performing
rational reasoning.
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