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Abstract

When artificial intelligence seeks to make reasoning
“mechanical,” it means reasoning carried out by a ma-
chine or definite procedure rather than a form of behav-
ior satisfying the laws of mechanics. This paper de-
scribes work on the mechanization of reasoning in the
latter sense, aiming to formalize reasoning systems us-
ing the science of mechanics. The paper describes how
the formal concepts of modern axiomatic rational me-
chanics apply directly and with slight adaptations to
psychological systems as well to the familiar physical
applications. These nonphysical applications provide a
new formal vocabulary for characterizing realistic no-
tions of rationality and limits on reasoning abilities.
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1 Introduction
Over three and a half centuries ago Descartes promulgated a
dualistic theory of mind in which a mental substance of the
mind accompanied the physical substance of the body. His
theory fit well with the discourse of the time, which spoke
of minds and bodies acted upon and moving in response to
forces, just as it does today. Despite this mechanical cast and
the great advances in mechanics later achieved by Newton,
Euler, and others, the Cartesian view declined in both nat-
ural and mental philosophy. In part this happened because
Descartes’ mental substances lacked position, meaning that
mental actions lacked description in terms of the physical
motion treated by mechanics. The new mechanics thus of-
fered no way to apply its developing formal concepts to un-
derstanding the relation of minds to the body or the nature
of forces acting on minds.

The failure of mechanics to treat the mind as well as the
body disadvantaged the mental sciences relative to the phys-
ical. Most notably, this failure denied psychology concepts
and methods central to the success of mathematical mechan-
ics in transforming science and technology. In mechanics,
one characterizes different materials by the forces they gen-
erate, by their response to forces and motion, and by the
limits their mass and these forces place on their motion, but
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no psychological theory allows a corresponding methodol-
ogy of specification and analysis. Apart from a few iso-
lated explicitly mechanical discussions (e.g., (Herbart 1891;
Shand 1920)), psychology and economics have made do
with informal notions of motivation and habit, with formal
notions of logic, probability, utility and rationality, and with
developing notions of limited rationality. These theories
provide valuable insight and understanding, but fail to pro-
vide some of the simplest concepts offered by mechanics,
such as the notions of mass and inertia that even today pro-
vide the commonsense basis for many truisms about human
behavior. Everybody knows, for example, that you have to
force yourself to change; that the greater the desired change,
the more you have to work at it; that the more you know,
the harder it is to change your position; and that to main-
tain direction or focus you have to force yourself to ignore
distractions.

This paper indicates how recent advances in mechanics
provide formal concepts of force, mass, and momentum that
enable one to transform some heretofore metaphorical men-
tal applications of these terms into meaningful, true or false,
non-metaphorical statements within the axiomatic frame-
work of modern rational (i.e., conceptual and mathematical)
mechanics (Truesdell 1991). This augmentation of the exist-
ing technical conceptions of logic, economics, and compu-
tational intelligence with the formal concepts of mechanics
permits construction of mechanical theories of the interac-
tion of mind and body, limits on ideal economic rationality,
and the character of everyday psychology.

More specifically, identifying mechanical forces and
masses in psychology and economics provides a new for-
mal vocabulary for characterizing limits on rationality. This
new vocabulary uses mass and force to express limits on
the speed with which agents can change mental state and
direction in accomodating new information and in reason-
ing and deliberation. It analyzes difficulties in maintaining
focus of attention in terms of the magnitude and direction
of forces resulting from superposition of competing motiva-
tions, and in terms of the work required to counteract dis-
tracting forces. It views some equilibrium notions of eco-
nomics in terms of static balance of forces and relaxed or
equilibrium states of materials. Mechanical limitations on
the rapidity and effort of change and the maintainance of at-
tention do not account for all limitations on rationality, but



they represent some of the most important limitations that
current psychological theories characterize poorly.

The short summary that follows cannot present the ax-
ioms, applications, or implications in detail, but aims instead
to sketch some key concepts and structures used in the the-
ory. The following first summarizes the structure of mod-
ern rational mechanics and the peripheral deformations em-
ployed to bring the mind into the mechanical fold. The pre-
sentation then describes the character of mechanical axioms
and the mathematical structures to which they give rise, how
these structures follow standard mechanical formalism and
where they depart. Following this, two vignettes illustrate
the application of mechanics to psychological and artificial
reasoning systems.

2 Rational mechanics
Modern theories of mechanics owe much of their shape to
the axiomatic and mathematical rational mechanics of Wal-
ter Noll (1958; 1963; 1964; 1973; 1972) and Clifford Trues-
dell (1965; 1991), who along with others reinvigorated me-
chanics half a century ago by clarifying and strengthen-
ing the foundations with modern mathematical concepts.
Most notably, Noll’s axioms moved beyond the traditional
Newton-Euler formulations of mechanics to provide the first
axiomatic characterization of the concept of force.

These modern mechanical theories regard bodies as sub-
ject to general laws applying to all types of materials, laws
that characterize geometry of space, time and motion, the
structure of material bodies, the nature of systems of forces
and the relation of force to motion. None of the most general
laws say anything about which forces exist, or even thatany
particular forces exist. Such statements instead come in spe-
cial laws of dynamogenesis that characterize the origin of
forces. Other special laws characterize the behavior of spe-
cial types of materials, ordinarily identified in terms of con-
straints on bodies, configurations, motions, and forces. For
example, rigid body mechanics comes from adding to the
general theory kinematical constraints that fix the relative
distances of body parts, while the theory of rubber comes
from augmenting the general theory with the configuration-
dependent forces characteristic of rubber. Mechanics uses
the termconstitutive assumptionto refer to the special laws
for particular materials, since the laws reflect assumptions
about the constitution of the material. Mechanical practice
depends critically on these special laws.

Physical materials exhibit a diversity broader than many
people realize. This diversity requires the general laws to
characterize the structure of bodies, forces, and motions
at a level separate from the usual properties familiar from
elementary textbooks. This separation provides most of
the mathematical generality needed to cover mental bodies,
forces, and motions in addition to familiar physical ones.
The difference between mind and body proves not terribly
greater than the differences already existing among physical
materials and forms of motion. The key difference arises
in the structure of the spaces inhabited by these materials.
By seeking to understand physical reality itself rather than
continuing assumptions made for increasingly-dated mathe-
matical convenience, Noll obtained axioms that distinguish

central mechanical concepts from many special character-
istics of physical space and time. Turing (1936) and oth-
ers developed complementary theories of computation and
reasoning providing examples critical to finding mathemat-
ical spaces that characterize minds. The present develop-
ment shows how to find common ground in structures for
space, time, force and materials that both serve mechanical
and mental needs.

3 Departures
We broaden mechanics by departing from the axioms formu-
lated by Noll and Truesdell in two ways. The first departure
develops the notion ofhybrid mechanical systems, in which
disparate types of space, matter, and force can interact. The
second departure characterizesdiscretemechanical systems
that augment ordinary temporal and spatial continua with
discrete spaces and motions.

Our departures here compare with recent work on so-
called hybrid system models for describing systems exhibit-
ing both discrete and continuous behaviors (Aluret al. 1993;
Branicky 1995; Davoren 1998). The primary differences lie
in treating all factor spaces as linear mechanical spaces, as
opposed to mere continuous or discrete spaces, and in ex-
tending the hybrid structure to include a hybrid mechani-
cal dynamics, as opposed to a mere hybrid kinematics and
nonmechanical equations of motion. Development of dis-
crete mechanical dynamics also distinguishes the construc-
tions here from the discrete Lagrangian dynamics of Baez
and Gilliam (1994), which, as with the Lagrangian approach
in general, embodies no mechanical notions but instead
requires choosing a Lagrangian function that encodes all
the desired mechanical laws (Sussman, Wisdom, & Mayer
2001).

The mechanical axioms obtained in this way do not in
themselves say how to view minds as mechanical systems,
any more than they prescribe how to view the human body
as a mechanical system, but they open the possibility that
human minds and bodies together constitute a hybrid me-
chanical system with both discrete and continuous elements.

4 Events, Time, and Space
Noll’s first set of axioms characterizesneo-classical event
worlds of time, space, duration and distance in terms of a
setW of events, a time-lapsemetric t̂ : W ×W → R giv-
ing the length or duration of the temporal interval between
events, and adistancemetric d̂ : Σ → R+ on simultaneous
events giving the distance between them. The axioms relat-
ing these concepts yield a translation space over simultane-
ous events taking the familiar form of a three-dimensional
Euclidean inner-product vector space. Although Noll’s ax-
ioms require that times and the space of locations forms con-
tinua, he notes that most of his development of space works
just as well for many discrete spaces.

We first vary Noll’s axioms to assume that the set of
events comprises several factor event worlds described by
their own time-lapse and distance metrics, so that each hy-
brid event plays distinct roles in each factor system. Each
hybrid event must correspond to a unique combination of
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factor events. The factor temporal orderings of events must
admit a common refinement, but otherwise the temporal
metrics need not bear any relation to each other, and the sets
of instants need not form continua. For simplicity we require
that the sets of events at each instant form isomorphic spaces
of locations, but the factor spaces of locations need have no
special metric or other relation to each other. Our axioms do
not require more than one factor system. One need only as-
sume that one factor system exists and exhibits the standard
three-dimensional continuum structure to obtain the event
world of traditional mechanics.

We next vary Noll’s axioms to avoid the general as-
sumption of spatial continua. We follow his development
within each factor space, requiring that each factor space
of locations admit a translation space having the structure
of an inner-product vector space that gives each isometry
(distance-preserving, rigid mapping) the structure of a com-
position of a translation and orthogonal transformation (ro-
tation), but allow finite fields of scalars as well as the usual
continuum fields. We obtain the hybrid space of locations as
the product of the factor spaces, and the hybrid translation
spaceV as the product

∏
i Vi of the factor translation spaces.

The hybrid translation space, however, can differ in one im-
portant way from the factor translation spaces. When the
factor vector spaces employ different fields of scalars (up to
isomorphism), the scalars for the product form a ring but not
a field. The hybrid translation space thus in general forms
a module rather than a vector space (cf. (Kalman, Falb, &
Arbib 1969)), an algebraic structure that provides almost all
the linear structure of vector spaces, but not necessarily a
unique notion of dimension.

5 Bodies
Noll’s second set of axioms characterizesmaterial universes
of bodies and their parts. A material universe consists of a
setΥ of bodiestogether with asubbodyor part-of relation�
onΥ×Υ. His axioms imply that the material universe forms
a boolean lattice in which each body hasB ∈ Υ a unique
exteriorBe. We follow Noll and almost all treatments of
mechanics and assume for simplicity that each body con-
sists of a set ofbody points. Bodies consisting of single
points can represent the point-masses of analytical mechan-
ics, while bodies consisting of continua of points of different
dimensions represent the solids, shells, rods, and other bod-
ies studied in continuum mechanics.

Hybrid mechanics permits disparate factor material uni-
verses, so that not every body in one factor mechanics need
correspond to any particular body in another factor. The ma-
terial universe of Cartesian minds, for example, need not
contain elements corresponding to tables, typewriters, or
other purely physical bodies. We obtain the hybrid mate-
rial universe as the lattice product (or equivalently, lattice
sum) of the factor material universes.

6 Motion
We follow Noll in separating the notions of configuration
and deformation of a body from the notions of placement in
space. The former notions concern changes of the spatial in-

terrelations of body elements, and thus what one can think of
as actual motion, while the latter notion reflects the framing
of locations from the perspective of an observer, which one
can think of as mere apparent motion. As usual, we iden-
tify the notion of an observer or frame of reference with a
time-indexed family of rigid transformations.

Standard mechanics assumes continuity of the first two
derivatives of motions and frames of reference. Such deriva-
tives need not exist for discrete conceptions of time, nor
for motion in discrete spaces. Various approaches seek to
compensate for lack of continuity concepts. One of these,
the smoothest-path principles discussed by Truesdell (1984),
exhibits connections with minimum-change principles in
reasoning.

7 Forces
Noll’s third set of axioms characterizes the forces existing
at each instant in terms offorce systems. A force system
consists of a mappingf : Υ × Υ → V of pairs of bodies to
spatial vectors, wheref(B, C) denotes the force exerted onB
by C in the system of forcesf . The main axioms for forces
state that forces exerted on or by separate subbodies of a
body combine additively, and that the sum of all forces on
each body vanishes. This last condition may seem strange,
but really just amounts to treating all components of familiar
force equations impartially. In particular, this axiom leads
to treating the inertial force−ma as just one special sort of
force cancelling out the sum of all the other forces on the
body, thus rewriting the familiarf = ma as f − ma =
0. Each force system induces two subsidiary force systems,
internal forces between separate parts of a body, and external
forces exerted by the exterior of a body on its parts. Noll’s
axioms also state that the internal forces are contact forces
that vary continuously with the area of the contact boundary
between the two parts, and that the external forces can be
by contact and at a distance and vary continuously with the
mass, volume and contact boundary areas of the parts.

These same axioms apply essentially without change in
the hybrid mechanical setting, implying additivity, balance,
and decomposition of forces in each factor mechanics. We
depart from the usual axioms in separating out the conti-
nuity assumptions, as these do not apply to discrete factor
systems. We also separate out Noll’s torque axioms because
the discrete factor mechanics can involve spaces with more
than three dimensions while the ordinary definition of torque
requires space having at most three dimensions.

Noll’s also states three additional axioms restricting dy-
namogenesis. The first of these axioms states the principle
of determinism, that the history of body and contact forces at
preceding instants determines a unique value for these forces
at a given instant. The second axiom states the principle
of locality, that the forces at a given point depend only on
the configuration of bodies within arbitrarily small neigh-
borhoods of the point. The third axiom states the principle
of frame indifference, that forces depend only on the intrin-
sic properties of motions and deformation, not on proper-
ties that vary with the reference frame. The axiom of frame
indifference carries over directly to our mechanics, but we
require the axioms of determinism and locality only at the
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hybrid level, since forces at one factor location may vary
and vary widely with the location in other factor spaces.

8 Mass
Inertial forces represent the most basic of the general consti-
tutive assumptions concerning fundamental physical forces.
The standard axioms treat mass as a measurem : Υ → R0+

assigning to each body its nonnegative inertial mass value,
and from this construct the momentump with respect to the
velocity observed in a frame of reference. Truesdell (1991)
formulates axioms for inertial forces that state the existence
of inertial frames of reference in which a body has constant
momentum during some interval if and only if the resultant
force on the body vanishes, and the equality of the resultant
force on a body in an inertial frame with the negative deriva-
tive of the momentum of the body. Combining these axioms
with the general balance laws of forces and torques yields
Euler’s fundamental lawsf = ṗ (i.e.,f = ma) andF = Ṁ
stating the respective balances of linear and rotational mo-
mentum.

Noll regards the axioms of inertia as special laws of dy-
namogenesis rather than general ones in part because forces
generated by masses play an important role in many, but not
all, mechanical problems. This provides precedent for rec-
ognizing that physical mass that need not always play a role
in mental motion, and that mental mass that need not always
play a role in physical motion.

Hybrid mechanics generalizes the traditional conception
of mass directly by regarding hybrid mass as the vector of
mass values in each of the component systems. One can
view this as extending the Newtonian conceptual distinction
between inertial mass and gravitational mass. For discrete
factor mechanics, we also assume that mass values can in-
habit discrete vector spaces.

9 Interacting mind and body
We illustrate the interaction of mind and body in the lan-
guage of mechanics by using two component worlds, one
physical, one mental, to model the body and mind of a per-
son we can call Reńe. For the physical world we take the
standard mechanical model, and identify the body of René
as a bodyBp existing within a universeΥp of physical bod-
ies. Similarly, for the mental world we identify the mind of
Reńe as a bodyBm existing within a separate universeΥm

of mental bodies. Our simple illustration then uses the hy-
brid bodyBR = Bp + Bm to model the person René, and
the hybrid body> = >p +>m to model the universal body,
using>p and>m to denote the maximal bodies in the factor
universes.

Let us now consider the total force acting on René at some
instant. In the hybrid mechanical formalism, we write this
force asf(BR,>). The separation of the mental and physi-
cal bodies and the axioms for forces then let us rewrite this
force as

f(BR,>) = f(Bp,>) + f(Bm,>). (1)

Let us look first atf(Bp,>), which represents the force
on the physical body. We decompose> into separate com-

ponents

> = BR + Be
R = Bp + Bm + Bpe

p + Bme
m , (2)

whereBpe
p denotes the physical environment of the physical

body obtained as the relative complement ofBp with respect
to the greatest physical body>p, and whereBme

m denotes
the mental environment of the mind obtained as the relative
complement ofBm with respect to the greatest mental body
>m. With this partition of the hybrid universe, we apply the
axioms for forces to rewrite the force on the physical body
as

f(Bp,>) = f(Bp,Bp) + f(Bp,Bm)+
f(Bp,Bpe

p ) + f(Bp,Bme
m ). (3)

This just says the total force on the physical body consists of
the sum of the forces exerted on the body by the body itself,
by the mind, by the physical environment, and by the mental
environment. From a similar decomposition, we obtain the
force on the mind as

f(Bm,>) = f(Bm,Bm) + f(Bm,Bp)+
f(Bm,Bme

m ) + f(Bm,Bpe
p ). (4)

The forcesf(Bp,>) and f(Bm,>) constitute hybrid
forces, containing components in both the physical and men-
tal worlds. We can thus decompose them into components,
for example, writing

f(Bp,>) = fp(Bp,>) + fm(Bp,>). (5)

The deformations of the physical body and the mind depend
only on these respective components in the hybrid mechan-
ics, so motion of the physical body depends only on

fp(Bp,>) = fp(Bp,Bp) + fp(Bp,Bm)+
fp(Bp,Bpe

p ) + fp(Bp,Bme
m ). (6)

Thus the physical motion stems from physical forces, but the
origin of these forces might include mental bodies.

Many physical theories assume that self-forces vanish,
that f(B,B) = 0 holds for each bodyB. In seeking me-
chanical formalization of conscious agents, however, the as-
sumption of vanishing self-forces seems undesirable. Self-
conscious or self-directed action naturally suggests a mind
that exerts nonzero forces on itself, though one can expect
necessity of such forces in the formalization to depend on
the details of the psychological organization. In particular,
one might formalize a mind organized into competing sets
of mental subagents (as in (Minsky 1986)) as involving only
forces between separate mental components, so avoiding the
need for nonzero self-forces.

10 Mechanical reasoning
A more involved illustration shows how to view reasoning
systems related to Doyle’s (1979) reason maintenance sys-
tems (RMSs). The following sketch draws on the formal-
ization presented in (Doyle 1994). The full demonstration
shows that some systems of this type satisfy the axioms of
mechanics, and thus constitute mechanical systems.
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In the mechanical formalization, we view a RMS and its
environment as complementary bodies in the universe of
bodies. We assume a setD representing all nodes and rea-
sons available for use by the RMS. The RMS has both a
set of base reasons and a set of derived conclusions repre-
sented by nodes. Each element inD can be interpreted as
a policy, denotedA \\ B ‖− C \\ D, for mutually disjoint
setsA,B,C, D ⊆ D, of adding a setC of conclusions and
removing a setD of deleters when the set of derived con-
clusions contains a setA of antecedents and lacks a setB
of qualifications. We take the set of possibleIn/Out label-
ings of nodes as the space of positions. This space forms a
binary-valued vector spaceD = 2D over the fieldZ2. Ele-
ments ofD thus also can represent changes to positions, with
the elementx − y representing the change from positiony
to positionx. We view the set of base reasons as the mass
of the RMS, and useD again to denote the space of possible
mass values.

Trajectories of the RMS consist of sequences of tripartite
states composed of a node labeling, a set of instantaneous
label changes, and a set of base reasons. We represent such
trajectories as sequences of triples(x, ẋ,m) of vectors inD.
By construction, the label-change vectorẋ constitutes the
velocity of the RMS, so these vector triples represent posi-
tion, change, and mass vectors. We view the velocity and
mass components of such triples as constituting the instan-
taneous momentump = (m, ẋ) of the RMS.

The most direct interpretation of RMS operations in me-
chanical terms considers trajectories of states that include
the intermediate states occupied during node relabeling as
well as the equilibrium states visible to the RMS environ-
ment. Each step in this trajectory corresponds to modifi-
cation of the partial labeling by application of one or more
reasons. This fine-grained motion of the RMS then termi-
nates in an equilibrium state representing a stable labeling
of the nodes.

We think of external instructions to change the base rea-
sons as constituting forces having only mass-change compo-
nents, and interpretation of reasons by relabeling operations
as providing forces with only spatial (accelerative) compo-
nents. In other words, we decompose the force contributions
from the RMS environment and the RMS itself into an ap-
plied mass force

fa
t = (ṁt,0) (7)

produced by the environment and a spatial self force

fs
t = (0, ẍt) (8)

produced by the RMS itself, thus yielding a total force

ft = fa
t + fs

t (9)

= (ṁt, ẍt). (10)

For illustration, consider application of a single reason

r = Ar \\ Br ‖− Cr \\ Dr (11)

to a stateσt, in which the reason generates a force from
the state that then acts on the state to produce a new state
exhibiting the appropriate velocity and position. We assume
for simplicity that the reason generates only a spatial force

fr(σt) = (ṁt, ẍt) = (0, ẍt) (12)

in which the mass flux vanishes. The RMS interpretsr as
a conditional prescription of node labels, in that validity of
the antecedent portion (Ar \\ Br) requires application of
the consequent portion (Cr \\ Dr). In particular, the conse-
quent portion represents a function from labelings to change
vectors, in that if the current state contains the labelingx,
the consequentCr \\ Dr indicates a change vector given by
(Cr \ x) + (Dr \ x̄), wherex̄ = 1− x indicates the vector
or set complementary tox. Specifically, we define the force
generated by the RMS fromr as providing the acceleration

ẍt =
{

(Cr \ xt) + (Dr \ xt)− ẋt if Ar ⊆ xt ⊆ Br

ẋt otherwise.
(13)

This yields a velocity of

ẋt+1 =
{

(Cr \ xt) + (Dr \ xt) if Ar ⊆ xt ⊆ Br

0 otherwise,
(14)

and so

xt+1 =
{

xt + (Cr \ xt) + (Dr \ xt) if Ar ⊆ xt ⊆ Br

xt otherwise.
(15)

Elsewhere we present a more detailed analysis in a range
of more interesting mathematical and mechanical terms.
One such analysis shows how to interpret a set of reasons
in terms of a potential function that determines stress ten-
sors at given mental locations, so that the resulting stress
satisfies Cauchy’s First Law,ṗ = B + div(T ).

11 Mechanical limitations
Simon (1955) sought to move attention in economics away
from an ideal rationality generally absent in human behavior
to more realistic and limited conceptions of rationality. Me-
chanics provides a vocabulary for expressing and analyzing
some such limitations. We note only a few.

Some limitations on rationality find expression in kine-
matic constitutive assumptions restricting the structure of
bodies, akin to familiar rigid-body assumptions. These
include assumptions about inherent inferential capabilities
that ensure that the reasoner automatically performs certain
classes of inference (e.g., “obvious” inferences), possibly
yielding lower bounds on intelligence levels.

Mass itself constitutes a limitation on rationality. Ideal
rationality allows bounded changes of information to cause
arbitrarily large changes of position (e.g., “Everything you
know is wrong.”). The mass of a reasoner limits motion so
that larger changes require larger forces.

As mentioned earlier, Noll’s force axioms assume that
contact forces vary continuously with the area of the con-
tact boundary and so exhibit magnitude bounds proportional
to the area of contact. One might view the noisy communi-
cations channels of Shannon’s (Shannon 1948) first funda-
mental theorem about channel capacity as finite-area contact
regions with areas measurable in bits, corresponding to the
dimensionality of the space of forces communicable across
the boundary.
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12 Conclusion
Mechanics displays its strength in continuing applicability
to new materials, especially to materials no one had thought
of earlier. The preceding discussion sketched how mechan-
ical concepts also apply to old materials few had thought of
as mechanical. Just as mechanical concepts provide insight
and power in understanding and exploiting newly discov-
ered or constructed physical materials, we expect mechani-
cal concepts to someday provide similar benefits regarding
natural and newly-constructed mental materials.

Artificial intelligence today rests on essentially kinematic
conceptions akin to the interlocking gears of clockworks:
wonderful devices for certain purposes, but limited in abil-
ity. The static and kinetic balance of forces one considers
in moving beyond the kinematic realm supports the broader
spectrum of machines from jet aircraft to die casters to com-
bine harvesters to skyscrapers. Expanding the concepts of
artificial intelligence to employ these richer concepts of me-
chanics, which have proven so fruitful in physical technol-
ogy, promises to similarly broaden the range of artificial
mental mechanisms.
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