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Preface

The real problem is not whether machines think but whether people do.
B. F. Skinner

The formal theory of ideal rationality plays a central conceptual role in many mental
and social sciences, most vividly in modern politics and economics, but increasingly in psy-
chology, sociology, jurisprudence, and management as well. Its influence is still growing
even though its direct application as a theory of human behavior is widely acknowledged
to be highly unrealistic. At seeming variance with the ideal theory, human thought is at
times habitual, at times rational, with changes of habit requiring effort over time, and with
the change-effecting effort available limited by mental resources of memory, attention, and
powers of calculation. More realistic theories draw on these criticisms to postulate no-
tions of limited rationality, but these suggestions have resisted satisfactory mathematical
formalization.

In view of the wide influence of the concept of rationality, it is curious that the field
of artificial intelligence, which has as one of its principal aims construction of agents of
limited reasoning powers, gives the notion of rationality little explicit role in formulating
its ideas, even though these ideas provide relatively precise, if special, settings for under-
standing limits on rationality. Indeed, one of the major discoveries of artificial intelligence
to date has been an appreciation of the power of purely habitual behavior, in the form of
carefully tailored but fixed sets of rigid rules, for performing subtle reasoning activities pre-
viously thought to be prime examples of ratiocination. Ethologists have long known how
apparently complex social and constructive behavior of animals results from small sets of
rigid habits, and today’s expert systems extend this understanding to many sorts of learned
behaviors in humans. But habit alone is not sufficient for understanding the techniques of
artificial intelligence. Some techniques, even some habits, are more simply understood in
terms of rational, not habitual, action.

This paper aims to say something both about artificial intelligence and about limited
rationality, first by using the concept of rationality to reformulate and clarify several ideas
important in artificial intelligence, and by then using these ideas to present initial mathe-
matical formalizations of some aspects of limited rationality in terms as precise as those
available for ideal rationality. It is hoped that these ideas will permit further progress on
understanding the nature of rationality, as well as offering a basis for construction of more
intelligible and reliable artificial agents. In considering these reformulations and character-
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izations of artificial intelligence ideas, one should keep in mind that current systems, having
been developed informally, rarely exhibit the transparency of the concepts presented here.
Their opacity is not necessary, and future systems might be designed to exactly capture
these structures of reasoning and action.

The central contribution of the following is to articulate, motivate, and formalize the
concept ofrational self-government, in which the agent reflects on its circumstances, abil-
ities, and limitations to rationally guide its own reasoning and internal organization, in ad-
dition to its external actions. Rational self-government includes both direct rational control
of the path and amount of reasoning performed and indirect guidance through the rational
selection of self-regulating “laws of thought” which determine the character and extent of
the automatic reasoning performed. As the subsequent discussion indicates, elements of
these ideas appear repeatedly in artificial intelligence, psychology, economics, and com-
puter science. (See especially [Baron 1985], [Becker 1976], [March and Simon 1958],
[Sternberg 1986], and [Thaler and Shefrin 1981].) The present treatment of these ideas has
its origins in my earlier works on introspection, self-regulation, and reasoned assumptions
([Doyle 1979, 1980, 1982, 1983a, 1983d, 1985] and [de Kleer et al. 1977]), with many
important ideas drawn from [Minsky 1965, 1975, 1986], [Sussman 1975], and [McDer-
mott 1978]. Further treatments of some of the topics discussed here can be found in [Doyle
1988a,b,c,d,e].

I have attempted to convey these ideas without relying on special expertise in artificial
intelligence, psychology, philosophy, logic, decision theory, or computer science, but ac-
quaintance with one or more of these fields will be definitely valuable. For introductions to
these fields, readers might consult [Charniak and McDermott 1985] and [Genesereth and
Nilsson 1987] on artificial intelligence; [Gazzaniga 1985], [Minsky 1986], and [Hirschman
1982] on psychology; [Harman 1986], [Kyburg 1970], and [Searle 1983] on philosophy;
[Haack 1978] and [Barwise 1985] on logic; [Luce and Raiffa 1957], [Jeffrey 1983], [De-
breu 1959], [Mueller 1979], and [Thurow 1983] on decision theory and economics; [Arrow
1974], [Lindblom 1977], [March and Simon 1958], and [Williamson 1975] on organization
theory; and [Harel 1987] and [Garey and Johnson 1979] on computation.

Needless to say, the few concepts studied in this paper, though diverse, do not exhaust
the concepts involved in reasoning. In particular, we thoroughly ignore most questions of
implementation, among them languages for representing meanings, mechanisms for inter-
preting these languages, and mechanisms for storing and retrieving elements of memory,
including real and virtual representations. These topics, though important, are largely sep-
arate from the issues treated here, and some will be treated in subsequent papers. More
seriously for the topics of interest, we oversimplify the treatments of propositions, treating
them as characterizations of instantaneous states instead of full histories, and do not pursue
the question of determinacy or indeterminacy of the agent’s states and histories. Both of
these latter topics are also to be treated in proper detail in subsequent papers.

In general, there may be an infinite variety of possible reasoners, and though prac-
tical experience with a sample of reasoners nourishes the investigator’s intuition, only
the conceptual, mathematical study of these possibilities can determine which concepts
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are useful in describing some reasoners, and which concepts, if any, among themselves
characterize the full range of possible reasoners. This mathematical study is part ofra-
tional psychology—the conceptual investigation of psychology—and I hope that this pa-
per, whose organization flows from my own work in rational psychology (beginning with
[Doyle 1983a] and [Doyle 1983b]) suggests some of its benefits. (See also [Miller 1986],
whose complaints about psychological theories express the problem rational psychology
attempts to address.) Virtually every substantial idea discussed in the following appears in
either my own work or in the work of others, as cited in the text. But the relative simplicity
of the present development—at least as visible when compared to my earlier works—is the
deliberate result of the enterprise of rational psychology.
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Chapter 1

Introduction

It is commonplace for people to choose their plans—for the day, for their vacation, for their
purchases—on the basis of their tastes. But people choose many other things as well.

• When controversies arise, a person may hear of several explanations or arguments,
and may think up some on his own, but in the end settles the question (at least for a
while) by choosing the answer he wants to or likes best. Even when the basic facts
are agreed upon by all parties, explanations remain controversial because people have
different tastes about explanations.

• Many people read about movies (or cars, fashions, foods, celebrities, careers) not just
to learn about the movies, but also to learn whether the people they identify with like
the movie, and hence whether they should like the movie too. Fears of ostracism and
embarrassment can be very powerful, and it is not unusual to find people changing
their tastes to conform with their friends.

Thus people’s choices do not only concern actions they take in the world, but also how they
think and choose as well.

In the following, we explore the notion of rational conduct of reasoning. The standard
notion of ideal rationality is that at each instant the agent considers all possible actions,
evaluates the likelihood and desirability of each of their consequences, and chooses an
action of maximal expected utility. Applied to reasoning, this means that at each instant
the agent chooses how it would like to change its beliefs, preferences, and plans, or change
how it represents and formulates things, or how it does things, taking into account the
consequences of holding different beliefs, desires, etc. This is the notion of rational self-
government.

Often it is not feasible to considerall possible actions or all of their consequences, but
only some actions, some consequences, and only guesses at their likelihoods and desirabil-
ities. This is the notion of bounded or limited rationality. The amount of time available
imposes short term upper limits on rationality (short term because through actions one
might be able to gain more time). And how the agent is constituted—the nature of its le-
gal states—provides lower bounds on rationality, the approximation to rationality available
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without expense of time or attention. Rational self-government modified by constitutional
restrictions on possible states is the notion of constitutional self-government.

Bounded rationality can also mean acting with too much information instead of too lit-
tle. Sometimes the attitudes used to provide guidance come from different sources, and, at
least at first, conflict with each other. Until some are changed to remove the conflict, ac-
tions can be rational only with respect to subsets of the attitudes. In such cases, the chosen
action represents the attitudes the agent chooses to act on. Making actions which represent
rationally or constitutionally chosen subsets of attitudes is the notion of representational
self-government.

We explore these ideas formally by adapting notions from logic, decision theory, and
economics to treat the conduct of reasoning, including some of the ideas and practices of
artificial intelligence (reason maintenance, production rules, inheritance links, conceptual
hierarchies, constraints, and interpreters). A complete treatment is not possible here, but
even the basic elements of rational self-government should permit clearer explications of
artificial intelligence ideas and practices than do the usual expositions.

2



Chapter 2

Rational self-government

In this chapter we set out the basic elements of rational and intentional reasoning and
action, along with the basic applications of rational self-government in the mental activities
of learning, decision-making, and planning.

To begin with, we view each possible history of the agent as a discrete sequence

. . . , St−1, St, St+1, . . .

of internal states. We write the set of all possible instantaneous states of the agent asI, and
label successive states with successive integers, so that histories are maps from segments
of the integers into the state-spaceI. We need not assume that agents are deterministic.
Nondeterministic agents will have several possible histories, agreeing at some instants and
diverging at others.

2.1 Mental attitudes

We think of the agent as possessing various mental attitudes at each instant, and view
each instantaneous state as a set of attitudes. We will initially consider only three major
types of elements: the mental attitudes ofbelief, desire, andintent(taken in their everyday
senses, at least initially). Although there are many other sorts of attitudes (such as hopes,
fears, loves, and hates) customarily apparent in human psychologies, not to mention non-
attitudinal elements such as emotions and skills, the three attitude types we consider suffice
to express the basic structure of rational and intentional action. (See [Searle 1983] and
[Harman 1986] for more on these sorts of attitudes.) We divide these three attitude types
into six subtypes, namely the absolute and relative versions of the major types. Absolute
beliefs, desires, and intentions are the familiar sorts of propositional attitudes stating that
some individual proposition about the world is believed, desired, or intended. Relative
beliefs, desires and intentions are comparative attitudes, stating that some propositions are
believed more than others, desired more than others, or intended prior to others. We call
relative beliefslikelihoods; relative desires,preferences; and relative intentions,priorities.

3
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These six attitude types subsume those of decision theory, action theory, and artifi-
cial intelligence. Decision theory (see [Jeffrey 1983]) ordinarily employs only notions
of probabilities and utilities, which are numerical representations of likelihoods and pref-
erences. Likelihoods are explicit beliefs about probabilities—specifically, comparative
probabilities—and preferences are explicit desires about choices. Action theory (see [Davis
1979]) ordinarily employs only absolute belief and desires, or absolute beliefs, desires, and
intentions. Artificial intelligence employs a variety of other names for essentially the same
sorts of attitudes. Beliefs are also called facts or statements; desires are also called goals;
utilities are called evaluation functions; and intentions are also called plans (both plan steps
and plan networks) and agendas. In addition, the elements of programming languages are
often anthropomorphically interpreted, data structures as beliefs, imperatives as intentions,
conditionals as choices, and procedures as plans. With these identifications, the three major
schools of thought in artificial intelligence might be characterized by their concentration on
knowledge and reasoning involving pairs of these sets of attitudes. Logicists focus on ab-
solute beliefs and absolute desires; search theorists focus on absolute beliefs and utilities;
and proceduralists focus on beliefs and intentions.

Our use of conventional names for elements of mental states is meant to be suggestive,
but we employ these names as primitive terms of our theory, not as descriptions. That is,
the meanings of these attitudes are given by stipulation of the roles the attitudes play in the
psychological organization under discussion. Our central stipulations about the roles these
mental attitudes play involve the notions ofvolition or action-taking, anddeliberationor
decision-making.

Some sorts of psychologies involve sorts of attitudes different from those considered
here, and our conception of beliefs, desires, and intentions does differ in certain ways
from some well-known conceptions. For example, we will consider reasoning in which the
agent may change any of its beliefs, desires, or intentions. Such actions are natural in our
formal framework, but unconventional to philosophers and economists, who customarily
treat belief and preferences as unchanging or slow-changing properties of agents. We make
no assumptions about rates of change, but merely allow that specific attitudes may be easier
or harder to change at each instant, and attempt to provide a framework for considering
these degrees of fixity.

We letD stand for the set of all possible mental attitudes, that is, the set of all attitudes
we might use in describing the possible states of the agent. Turned around, we view each
stateS ∈ I as a set of mental attitudes, that is, as a subset ofD. Thus ifPD is the powerset
(set of all subsets) ofD, thenI ⊆ PD. Let B, D, andI denote the sets (respectively) of
all beliefs, desires, and intentions inD. Each of these sets is further divided into subsets of
absolute and relative attitudes:B = Ba∪Br, D = Da∪Dr, andI = Ia∪ Ir, with Ba, Da,
andIa respectively plain beliefs, desires, and intentions, andBr, Dr, andIr respectively
likelihoods, preferences, and priorities.

4
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2.1.1 Propositions

We view attitudes as attitudes towards propositions, and view propositions as sets of possi-
ble worlds, where each possible world decomposes into a state of the agent and a state of
its environment. (See [Barwise and Perry 1983] and [Stalnaker 1984] for more on propo-
sitions and attitudes.) Formally, to complement the setI of possible internal states of the
agent we letE be the set of possible states of its environment, and mildly abusing the cate-
gories writeW ⊆ I ×E for the set of possible worlds. LikeI, the setsE andW are givens
of the theory. Each subset ofW is a proposition, and we writeP = PW to mean the set of
all propositions.

In a proper treatment we would consider propositions to be sets of possible histories, as
these are needed to express expectations of things to come, remembrance of things past, and
intended conditions and actions. However, proper formalization of sets of possible histories
involves many complexities. For simplicity we restrict this discussion to instantaneous
propositions, for these permit us to convey the major ideas even if we slight some important
aspects of attitudinal meanings. At such points we indicate that the larger view is needed.

As we will be primarily concerned with the agent’s reasoning about itself, the internal
portions of propositions will be of more interest than full propositions. We call subsets
of I internal propositions, and subsets ofE externalpropositions. IfP ⊆ W is a full
proposition, we say that

i(P ) = {S ∈ I | ∃E ∈ E (S, E) ∈ P}

and
e(P ) = {E ∈ E | ∃S ∈ I (S, E) ∈ P}

are respectively the internal and external projections ofP . We also call these the internal
and external propositions determined byP . Propositions purely about the agent’s own state
satisfy the conditionP = i(P ) × E . Propositions purely about the agent’s environment
satisfyP = I × e(P ). Using these projections, we may write the sets of all internal and
external propositions asi(P) ande(P) respectively.

We need not make any assumptions in this treatment about the completeness or expres-
siveness of the universe of attitudesD. That is, we need not assume that every proposition
is the content of some attitude, or that every proposition may be expressed through a com-
bination of attitudes. In particular, we will not care whether the agent employs an internal
language of thought. Whether or not the agent’s attitudes are constructed from such a lan-
guage, and the structure of the language if they are, are both irrelevant to the issues treated
here.

2.1.2 Meanings

We indicate the propositional content of each attitude type by a different meaning function:
β, δ, ι to indicate the meanings of (respectively) absolute beliefs, desires, and intentions,
andλ, π, and$ to indicate the meanings of likelihoods, preferences, and priorities.

5
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The content of an absolute belief (or desire or intention) is a proposition, namely the
proposition believed (or desired or intended). We allow meanings of individual attitudes to
vary with the agent’s state and circumstances, and use three functionsβ, δ, andι ot indicate
the respective meanings of beliefs, desires, and intentions, so that we have

β, δ, ι : W ×D → P .

We ordinarily omit reference to the current world, so that ifW = (S, E) is the current
world, we writeβ(x) instead ofβ(W, x). We allow the possibility that elements of states
may encode several different sorts of attitudes. Elements representing single sorts of at-
titudes are distinguished by having their other interpretations be trivial. For example, if
x ∈ Ba but x /∈ Da andx /∈ Ia, then we may assume thatδ(x) = ι(x) = W. If we take
into account the division of the world into the agent and its environment, we may define
the internal (external) meanings of an attitude to be the internal (external) projections of its
full meanings. That is the internal meanings ofx ∈ D are justi(β(x)), i(δ(x)), andi(ι(x)).
For simplicity, we will focus on internal meanings, and assume that the internal portions of
meanings depend only on the internal state of the agent. Formally, we usually pretend that
instead of the earlier definition we have

β, δ, ι : I × D → i(P).

We also note that the propositional content of intentions may be more complex than the
contents of beliefs and desires. Intentions may be about either changes the agent intends
to effect in its situation or about actions or operations the agent intends to perform. Both
sorts of intentions appear in most planned activity, with intended conditions representing
the agent’s ends, and intended operations representing the agent’s means to these ends. In
other words, the intended conditions distinguish intentional consequences of actions from
unintentional consequences or side-effects. We may think of both aspects combined in
single intentions, for example, the intention to open some windows in order to air out the
house. In fact, every intention may be at least this complex. As Searle [1983] explains,
every intention is self-referential in that in holding it the agent intends that some action
be carried out as the result of holding that very intention. Proper treatment of intentions
thus requires propositions about possible histories, not just the instantaneous propositions
treated here.

Both the contents and treatment of relative attitudes differ from those of absolute at-
titudes. Relative attitudes compare various propositions, rather than being just about one.
More fundamentally, the agent does not perform some action in order to satisfy a prefer-
ence or priority. Instead, the agent’s choice of action to perform either satisfies or frustrates
its preferences and priorities. That is, the agent satisfies its relative attitudes through the
way it takes actions rather than through which actions it takes.

We assume that each likelihood, preference, and priority specifies a quasi-order (re-
flexive and transitive relation) over propositions, with worlds in some propositions thought
more likely than, more preferred than, or of higher priority than worlds in others. Ordinar-
ily these quasi-orders need not be very complicated, and may, for example, compare only

6
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two propositions or each member of two small sets of propositions. We writeQ to mean
the set of all quasi-orders over propositions, so that for allM ⊆ P × P, M ∈ Q iff

1. (P, P ) ∈ M for eachP ∈ P, and

2. For eachP, Q, R ∈ P, if (P, Q) ∈ M and(Q,R) ∈ M , then(P, R) ∈ M .

Thus if M ∈ Q, the first condition of the definition says thatM is a reflexive relation,
and the second condition thatM is transitive. We interpret likelihoods, preferences, and
priorities via respective meaning functions

λ, π, $ : W ×D → Q

where as before we ordinarily elide reference to the agent’s current circumstances and
write, for example,λ(x) instead ofλ(W, x).

When we have a specificM ∈ Q in mind, for ease of reading we often writeP <∼ Q

instead of(P, Q) ∈ M , no matter which sort of attitude is being discussed. In general,
neitherP <∼ Q norQ <∼ P need hold in a quasi-order, but if bothP <∼ Q andQ <∼ P hold,

we writeP ∼ Q and say thatP andQ areequivalentin the quasi-order, and ifP <∼ Q

holds but notQ <∼ P , we writeP < Q and say thatQ is greaterthanP in the quasi-order.

We partition eachM ∈ Q into the strictly greater and equivalence relationsM< andM∼

by defining
M< = {(P, Q) ∈ M | (Q,P ) /∈ M}

and
M∼ = {(P, Q) ∈ M | (Q, P ) ∈ M}.

Clearly, M = M< ∪ M∼ andM< ∩ M∼ = ∅. We decomposeλ into two subsidiary
meaning functionsλ< andλ∼ by definingλ<(x) = (λ(x))< andλ∼(x) = (λ(x))∼ for
eachx ∈ D, and in the same way, we getπ< andπ∼ from π, and$< and$∼ from $.

For convenience in describing orders, we let1Q ∈ Q stand for the identity relation on
propositions,

1Q = {(P, P ) | P ∈ P}.
If M ∈ P × P is a relation over propositions, we writeM∗ to mean the transitive closure
of M , that is, the least superset ofM containing(P, R) whenever it also contains(P, Q)
and(Q,R).

For example, an elementx interpreted as a preference for sun over rain would have a
meaning

π(x) = {(Prain, Psun)} ∪ 1Q

wherePsun is the set of all worlds in which the sun is shining andPrain is the set of all
worlds in which it is raining. An elementx interpreted as indifference or neutrality between
pleasing one of one’sn children over another would have a meaning

π(x) = {(Pi, Pj) | 1 ≤ i, j ≤ n} ∪ 1Q

7
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where for eachi, 1 ≤ i ≤ n, Pi is the set of worlds in which one’si’th child is happy.
This order says that pleasing one child is of equivalent desirability to pleasing any other.
(It might appear to some more natural to defineπ(x) = 1Q to represent indifference, but
“not preferred to” is a different notion than “as preferred as.”)

2.1.3 Consistency

The theory of ideal rationality imposes various consistency conditions on the attitudes a
rational agent may hold simultaneously. (We later will consider agents in which these
conditions are not always met.) The basic consistency conditions are that the set of in-
stantaneous absolute beliefs be consistent, and that each of the sets of current likelihoods,
preferences, and priorities be individually consistent.

The agent’s absolute beliefs in the current stateS are consistent just in case some world
satisfies them all, that is, just in case the propositionsβ(x) for x ∈ S have nonempty
intersection, that is, if

β(S) =
⋂
x∈S

β(x) 6= ∅.

The agent’s likelihoods are consistent just in case the combined strict likelihood relation

λ<(S) = (
⋃
x∈S

λ<(x))∗

is also a strict likelihood relation and is disjoint from the combined equivalent likelihood
relation

λ∼(S) = (
⋃
x∈S

λ∼(x))∗,

that is, λ<(S) ∩ λ∼(S) = ∅, so that there are no propositionsP, Q such thatP ∼ Q
andP < Q in the combined orders. Consistency of preferences and priorities is defined
similarly.

There are other sorts of consistency conditions one might impose as well. For example,
the intentions of the agent should be consistent, but since different intentions may refer
to different times, this condition is not easy to state without going into the structure of
propositions about histories. One might go further and require that the agent’s beliefs be
consistent with its intentions, in the sense that if one intends something one must believe
that it is possible, and might believe that it will occur. Or one might require that one’s
absolute and relative beliefs be consistent in the sense that one’s doubts cannot be likelier
than one’s beliefs, and that the extremal propositions∅ andW must be judged respectively
unlikeliest and likeliest. These conditions and others are discussed in the literature, but we
will not pursue them here, since most are not directly relevant to the questions we consider,
and some are controversial proposals.

In any event, each of the consistency conditions defined above is a substantive con-
dition, that is, each refers to the meanings of attitudes. In section 3.2 we consider non-
substantive or internal consistency conditions on attitudes as more feasible demands on the
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coherence of the agent. These non-substantive conditions are expressed directly as logics
of states without reference to the meanings of attitudes.

2.1.4 Completeness

When the agent’s attitudes in stateS are consistent, one may find numerical rankings or
measures of degrees of likelihood, preferability, and priority compatible with the combined
ordersλ(S), π(S), and$(S). These are functionsp, u, q : P → R such thatp(P ) ≤ p(Q)
wheneverP <∼ Q in λ(S), u(P ) ≤ u(Q) wheneverP <∼ Q in π(S), andq(P ) ≤ q(Q)

wheneverP <∼ Q in $(S). Rankings of preferability and priority are called, respectively,

utility andpriority functions. Rankings of likelihood are calleddegrees of belief. Sub-
jectiveprobability measures are rankings of likelihood in the interval[0, 1] that satisfy the
conditions thatp(∅) = 0, p(W) = 1, andp(P ∪Q) = p(P ) + p(Q) whenP ∩Q = ∅. (See
[von Neumann and Morgenstern 1944], [Savage 1972], and [Shafer 1976].)

A quasi-order<∼ is said to becompleteif for every P, Q ∈ P eitherP <∼ Q or Q <∼ P

holds. In the straightforward uses of relative attitudes in artificial intelligence, the agent’s
knowledge about the world is limited, and the ordersλ(S), π(S), and$(S) are rarely
complete. In this case, there may be many numerical rankings compatible with each order,
yielding setsp̂(S), û(S), and q̂(S) of compatible ranking functions with, for example,p
compatible withλ(S) for eachp ∈ p̂(S). However, alternative ranking functions may be
incompatible with each other on propositions not related in the quasi-order.

Ordinary decision theory makes stronger assumptions about the completeness of the
agent’s attitudes than artificial intelligence. In particular, the usual starting point in de-
cision theory is a set of likelihoods that is both complete and “fine,” which means that
the set of likelihoods orders a continuum of possibilities. Under these assumptions it is
proved that the set of likelihoods determines a unique probability measurep on proposi-
tions. Similarly, standard decision theory assumes the preference relation is complete and
fine as well. With this assumption, any utility functions compatible with the partial order
of preference are compatible with each other, that is, ifu, u′ ∈ û(S), thenu(P ) ≤ u(Q)
iff u′(P ) ≤ u′(Q). In this way the strong completeness assumptions of standard decision
theory serve as uniqueness assumptions about the agent’s comparisons of propositions.

2.2 Reasoning

We call the agent’s changes of attitudes from state to statechanges of view. We assume
that while some of these changes may happen to the agent, due to external or bodily influ-
ences, some changes are the result or realization of the agent’s reasoning. Instant-to-instant
changes may correspond to the elementary steps of reasoning, while larger subhistories of
the agent may correspond to bigger steps of reasoning. In the following, we will concen-
trate on reasoning by assuming that each change of attitudes under discussion represents
reasoning.
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2.2.1 Logic

It is conventional to view logic as a theory of thinking setting out the laws of thought and
principles of reasoning. In this view, psychology is actually a branch of logic, with mental
objects taken to be sentences in a logical language, mental operations taken to be inferences
in a formal logical system, and with reasoning being purely a matter of automated deduc-
tion. But this view is misleading, for reasoning involves changes of desires and intentions
as well as changes of beliefs, and reasoning is not cumulative but is instead often nonmon-
otonic.1 (See also [Thomason 1987].) That is, mental attitudes may be abandoned as well
as gained. Utterly ordinary nonmonotonic changes of beliefs, for example, occur as the
agent accounts for the effects of its actions and the results of its observations. In the latter
case, the observational results themselves must be fit into the agent’s beliefs, displacing
previous beliefs, while in the former case, the agent must update its beliefs to accommo-
date the expected consequences of its actions, many of which involve changes in the world.
Thus reasoning is not a matter of automated deduction, which in the standard conceptions
involves only beliefs and which in any event involves only additive changes of attitudes. As
Harman [1986] puts it, inference is not implication: reasoning and inference are activities,
reasonedchanges in view, while proofs in a logic are not activities but atemporal structures
of a formal system, distinct from the activity of constructing proofs. Thus logic is not, and
cannot be, the standard for reasoning.

Logic, of course, may be employed to formalize psychological theories. For example,
logics might be formulated to describe the instantaneous closure and consistency properties
of or implications of agent’s attitudes, such as the consistency conditions on states related
to rationality. In such cases the logic characterizes the structure of the agent’s states. Even
though reasoning is not cumulative, the logic of the agent’s individual states need not re-
quire the use of any sort of non-standard logic, since nonmonotonic changes in states may
occur even when states are closed and consistent with respect to a deductive logic. But
this use of logic is not particular to psychology, for in the same way logic may be used to
formalize meteorology or any other subject matter, and mental operations are not thereby
inherently logical operations any more than meteorological events are thereby inherently
logical operations. Even though one may use a logical theory of the agent to deduce proper-
ties of its histories, including its next state, this external deduction is not an implementation
of the agent. The agent is a model of the theory, not the theory itself, and if the two are
confused, the agent must be cumulative, incrementally calculating partial but increasingly
complete histories. In such cases there is no way to say that the agent possesses any atti-
tudes at all, since it does not possess a single instantaneous state.

2.2.2 Rationality

The idea that steps of reasoning are not logical operations is disturbing to many people, for
if reasoning need not be logical, it could be anything. This is true: any change of beliefs,

1See Appendix B for a definition and discussion of nonmonotonicity.
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for example, might be a step of reasoning. But one need not immediately abandon all
standards of soundness when one distinguishes reasoning and logic, for a better standard
for reasoning is rationality, which in its simplest form means taking actions of maximal
expected utility. That is, we view reasoning as an activity to be governed like other actions
by means of the agent’s intentions and plans, and we aim for this government to be rational
by making the formation and execution of plans rational. In the simplest case, we may
ignore the question of intent and think of reasoning as change of view in which the selection
of each successor state is rational. In this case, steps of reasoning are considered to be
actions which change only the internal state of the agent, and the reasoning actions possible
from the current state are compared to find the action of maximal expected utility.

What is lacking in logic as even an ideal theory of thinking is that reasoning has a pur-
pose, and that purpose is not just to draw further conclusions or answer posed questions.
The purpose or aim of thinking is to increase insight or understanding, to improve one’s
view, so that, for instance, answering the questions of interest is easy, not difficult. Ratio-
nally guided reasoning constantly seeks better and better ways of thinking, deciding, and
acting, discarding old ways and inventing and adopting new ones. This view of reasoning
has been argued and examined at length by numerous authors, including Minsky [1975],
Hamming [1962], Rorty [1979], and Harman [1973, 1986]. Truesdell [1984, pp. 498-499],
for example, emphasizes that reasoning, like scientific inquiry, is a sequence ofrational
guesses andrational revisions, not merely a sequence of guesses and revisions, with the
bases for rational selections of guesses and revisions found in the agent’s experience (per-
sonal or vicarious), and with this experience rationally selected and pursued as well. Polya
[1965] agrees, devoting an entire volume of his book on mathematical discovery to the
subject of rational investigation. (The same view applies more generally to much of human
activity in addition to reasoning. See [Schumpeter 1934], [Drucker 1985], [Becker 1976],
[Stigler and Becker 1977]; also [de Sousa 1987], [Ellis and Harper 1961], [Peck 1978],
[Russell 1930], and [Yates 1985].) Note that rationality in reasoning does not mean that
the agent’s beliefs about its current state are either accurate or complete, merely that the
choices of reasoning steps are rational given these imperfect beliefs.

This conception of reasoning is very different from incremental deduction of impli-
cations. Guesses, rational or not, are logically unsound, and instead of preserving truth,
reasoning revisions destroy and abandon old ways of thought to make possible invention
and adoption of new ways of thought. For example, agents may waver and waffle, repeat-
edly changing their minds on questions, yet still make progress with each change. Rational
deliberation (see section 2.5.4) illustrates this vividly, for in deliberation the agent con-
stantly reverses its tentative decisions as it ascends the “ladder of wit,” as Barth [1967, pp.
238-239] calls it. One might hope to organize reasoning to avoid non-logical assumptions
and revisions, but it hardly seems possible to live any other way. Guesses are necessary, for
humans at least, because of the frailty and smallness of human mental capacities. Denied
complete and certain knowledge we assume our way through life, only dimly and occa-
sionally aware through our meager senses of any reality, and even then loath to part with
our cherished beliefs. Revisions, in turn, are necessary because even if guesses are never
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wrong, progress in reasoning, like maturity and progress in life, requires escape from the
shackles of the past. Cumulative agents, being unwilling to give up the past, are condemned
to repeat it endlessly. Put most starkly, reasoning aims at increasing our understanding;
rules of logic the exact opposite.

As in ordinary decision theory, we say that rational actions are actions of maximal
expected utility, where the expected utility of an action is the average of the utilities of its
effects discounted by the probabilities of their occurrence. (See [Jeffrey 1983], [Berger
1985].) We think of actions as functionsa : W → W from worlds to worlds, or more
generally, if we wish to include nondeterministic actions, as correspondencesa : W →
PW. Each actiona is thus a subset ofW ×W. Borrowing from dynamic logic ([Harel
1984]), we discuss the effects of actions by means of expressions like[a]P , which is read
as “P is true in every state reached by takinga,” and 〈a〉P , which is read as “P is true in
some state reached by takinga.” [a]P and〈a〉P are both propositions ifP is, namely

〈a〉P = {W ∈ W | ∃W ′ ∈ P (W, W ′) ∈ a}

and

[a]P = {W ∈ W | ∀W ′ ∈ W (W, W ′) ∈ a ⊃W ′ ∈ P}.

Given a utility functionu and a probability measurep, the expected utilitȳu(a) of actiona
is then just

ū(a) =
∑

W∈W

u({W}) · p([a]{W}),

that is, the utility of the expected consequences ofa averaged over all atomic propositions
{W}. But in our setting, each state determines a setû(X) of compatible utility functions,
and a set̂p(X) of compatible probability distributions. In this situation we say thata is a
rational action if its expected utility is not exceeded by the expected utility of any othera′

under any choices ofu ∈ û(X) andp ∈ p̂(X). That is,a is rational in stateX if for every
other actiona′ ∑

W∈W

u({W}) · p([a]{W}) ≥
∑

W∈W

u′({W}) · p′([a′]{W})

for everyu′ ∈ û(X) andp′ ∈ p̂(X). Unfortunately, this is a very strong condition, and in
general there may not be any actions rational in a given state. That is, incompleteness of
the agent’s attitudes leads to nonexistence of rational actions. In ordinary decision theory,
the conditions imposed on likelihoods and preferences mean that any ranking function
compatible with the orders gives the same result, so there is at least one action rational
in each state. In the more general case, the agent may have to make assumptions, adopt
temporary likelihoods and preferences, in order to act rationally. In section 2.4.1 we discuss
this further as the “will to believe.” (See also [Seidenfeld, Kadane, and Schervish 1986] for
a treatment of decision theory that permits incompleteness of attitudes.)

12
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2.2.3 Attention

Thus reasoning, even in perfectly rational agents, is a complex affair, and is rarely as sim-
ple as mechanical application of the rules of some system of logic. But it also is not
simply a mechanical application of the formulas of decision theory in the sense of having
agents calculate what is rational in order to decide what to do. The ideal rationality studied
by economists has a precise and deep mathematical theory, but is unmechanizable, as it
requires too much information on our part to feasibly construct agents, and too much com-
putation on the part of the agent for it to act. Ideal rationality requires the agent to possess
enormous numbers of probabilities and conditional probabilities about the propositions in-
volved in reasoning. Many of these are unconsidered and unknown (what is the probability
that a gazelle has cancer?), hence difficult to obtain, and too numerous to store in memory
using direct methods. Moreover, the calculations involved are too difficult, no matter how
big and fast a computer is used. Many reasoning problems demand that the reasoner dis-
cover a sequence of inferences in a space of possible paths that grows exponentially with
increasing length, so that even huge increases in computer speed and size purchase only
modest improvements in reasoning powers.

These difficulties arise whether one aims to rationally choose external actions or inter-
nal steps of reasoning. In the case of rational selection of successor states the problem may
appear to be easier, for the actions under consideration are quite definite, yielding specific
resultant states. But the consequences of interest may not be immediately visible in indi-
vidual states of the agent. If the agent desires to solve some intellectual problem, or see if
a chess board has a forced win, it may know that its hypotheses are sufficient to determine
the answer, but not be able to tell what the answer is. This means that even if the agent can
evaluate the utility of any proposition, including the utility of its current state regarded as
a proposition{S}, it may not be able to determine the likelihoods of consequences of this
state, and so be unable to determine the expected utility of its possible actions.

Early on Simon [1969, 1982] suggestedboundedrationality as a more realistic notion,
that is, thought and action rational given limited information, memory, computational abil-
ity, and time. (See also [Cherniak 1986].) In this view, the exact calculations of expected
utilities is replaced by a process of estimating expected utilities calledsearch. There is a
large literature on sequential decision problems and search processes, which we will not
treat or review here: see [Pearl 1984] and [Raiffa 1968].

Unfortunately, reasoning and search are sometimes identified in the literature, with
search defined to be choosing what to do next, a definition that can be viewed as subsum-
ing reasoning. But it is better to separate these notions than to conflate them. Almost all
concrete discussions of search, and almost all specific applications of search in artificial
intelligence, involve search for a solution to a specific goal by examining the elements of
a space of possible or partial solutions. One can of course view reasoning as search in this
sense, but only by trivializing search to include all motion. In reasoning there need not
be a fixed goal toward which reasoning strives. Instead, the agent may change any of its
attitudes, including its desires and intentions, at each step. This means that reasoning is
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not search through a fixed search or problem space, but rather a series of partial searches
through a series of different search or problem spaces, potentially reformulating and replac-
ing the search space at each instant, so that no progress is made within any one of them.
One could call this search, but reasoning seems a more apt and less presumptuous label.

In the context of decision making, reasoning is the process by which decisions are for-
mulated, while search is a process by which decisions are evaluated (even if only approx-
imately). The same distinction underlies the two fields of decision analysis and decision
theory. Infeasibility aside, the theory of ideal rationality is unhelpful in mechanizing action,
as it is a theory for evaluating decisions, not coming to them. The process of constructing
an agent, and of the agent reaching a decision, are processes of developing a formulation of
the decision, of developing the alternatives, values, and expectations relevant to the current
situation. But decision theory presupposes the agent’s alternatives, values, and expecta-
tions. It is a theory of their import, not a theory of their construction. In contrast, the
concern of the field of decision analysis is specifically the process of constructing good
formulations of decisions (see [Raiffa 1968] and [Howard 1980]). Indeed, many ideas and
techniques in decision analysis strongly resemble some ideas and techniques for reasoning
studied in artificial intelligence, especially in the area of knowledge acquisition, but the two
fields have until recently developed with little or no communication.

One of the principal means for limiting rationality is to limit attention and effort by
directing them to some areas and ignoring others. For example, searching large spaces
without direction is quite difficult, for there is no way to set strategy, or choose “islands”
([Minsky 1961]) to guide the search. Without global direction to smooth out these irregu-
larities, search must follow every minute detail of the space. Focusing attention increases
efficiency, but at a price, since the path of reasoning may diverge greatly from paths it
would have taken had the ignored areas been considered, and as a consequence the agent
must occasionally suffer nasty surprises, crises, or comeuppances. Leibenstein [1980] calls
such measured attentionselectiverationality, and develops a good bit of economics from
its base.

Plans and procedures are the means by which such directions are expressed. The se-
quences of steps and the structures of tests and branches prescribed by simple procedures
are rigid, and ignore many possibilities that rational action or search might consider. Pro-
cedural government of reasoning thus corresponds to the notion of attention, in which the
agent decides to concentrate its effort on one task to the temporary exclusion of others.

Unfortunately, just as a few logical aspects of thinking encouraged the mistaken view
that reasoning is logical, the procedural aspects of thinking have encouraged a view that
reasoning must be computational. The result is the common dogma that artificial intelli-
gence seeks to understand thinking as an effective computational process. This view may
also be mistaken. The fundamental use of procedures in thinking is to limit attention and
so conserve resources. This use does not depend on what sorts of steps or resources are
involved, and if the elementary steps or operations are transcomputable, reasoning may
be procedural yet not be effectively computable. The theory of computation focuses on
particularly simple steps, namely those comparable to Turing machine operations, and to
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resources of time and space derived from these steps. But there are many more sorts of steps
and resources in the world than Turing machine operations and Turing machine time and
space, and there is no compelling reason at present to suppose that all of the elementary
sorts of operations available in human reasoning are reducible to Turing machine opera-
tions. The common claim of artificial intelligence that thinking is computational is actually
irrelevant to the field’s present successes.

More generally, it is worth understanding that the infeasibility of ideal rationality and
the notion of attention are matters of economics, not matters of computability. Whether
or not some elementary operation available to the agent is computable, performing the
operation entails some cost in terms of the agent’s resources. To conserve its resources,
the agent must allocate them wisely, that is, focus its attention on some things and expend
no effort on others. Thus the notion of attention arises from the economics of resource
allocation even if none of the agent’s elementary operations are computable. (See also
[Winograd and Flores 1986].)

2.3 Volition

We call the process by which actions are taken in order to satisfy the agent’s attitudes
volition. (See [Searle 1983] and [Dennett 1984].) Different sorts of volition result when
actions are taken to satisfy different sorts of attitudes. The two main sorts of action are
deliberateandwantonaction, where the distinction between these two ways of acting turns
on whether intentions or desires determine the agent’s volition.

We discuss these varieties of volition below, but first note that in contrast to the usual
assumption in automata theory, we do not think of the actions of the agent as described
by a transition functionτ : I → I such thatSt+1 = τ(St) if deterministic, or by a
transition correspondenceτ : I → PI such thatSt+1 ∈ τ(St) if nondeterministic. The
automaton view of action makes a strong assumption, namely that the agent has no implicit
memory or state. That is, transition correspondences imply that the changes possible at an
instant depend only on the internal state of the agent at that instant, regardless of the past
history of the agent. Mathematically, of course, we may identify behavioral equivalence
classes of automaton states with behavioral equivalence classes of agent histories, but if we
only make a portion of the agent’s state explicit, then the transitions possible at an instant
depend on the past history of the system, so that transition rules are functionals of histories.
Our conception of the agent’s actions exhibits such history dependence, since the internal
meanings of attitudes used in selecting actions may depend upon the external environment,
in which case the agent uses the environment to store information. (See also [Rosenschein
and Kaelbling 1986].)
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2.3.1 Deliberate action

In deliberate action, volition means taking actions to satisfy the agent’s absolute intentions
in an order that satisfies the agent’s priorities. We think of the actions of an agent as
resulting from it executing avolitional procedureover its current attitudes. An abstract but
typical volitional procedure for deliberate action might be as follows.

1. Select the next intention to carry out.

2. Select the method by which to carry out the selected intention.

3. Carry out the selected intention using the selected method.

4. Repeat these steps.

Many variants or refinements of this procedure are possible, each reflecting a different de-
gree of complexity in acting, and different degree of utilization of the agent’s powers of
reasoning. The minimal model of the volition procedure is that familiar as programming
language interpreter (see [Abelson and Sussman 1985]). The central process of such inter-
preters is to repetitively calculate the next instruction, retrieve its meaning (the procedure’s
code or body), and then to execute the procedure. In most programming language inter-
preters, the selection steps are trivial since instructions (intentions) are arranged serially by
design, and each has a single method (machine instruction or procedure body) attached.
More complex volitional procedures interleave the steps above with steps for formulat-
ing and selecting new intentions, priorities, and methods, or otherwise revising the current
sets of intentions and priorities. (See, for example, [McDermott 1978], [Doyle 1980], and
[Batali 1985].)

2.3.2 Wanton action

In contrast to deliberate action, in wanton action the agent acts on the basis of its desires
and beliefs, not on the basis of intentions or plans. A volitional procedure for wanton action
might be as follows.

1. Select a desire.

2. Select an action relevant to satisfying the selected desire.

3. Carry out the selected action.

4. Repeat these steps.

As with the volitional procedure for deliberate action, many variations and refinements of
this procedure are possible. One nearly minimal model of wanton action is GPS [Newell
and Simon 1963], in which relevance of actions (operators) to desires (goals) is stated in a
fixed table of “differences.” More complex procedures interleave these steps with steps for
formulating and selecting new desires and methods, for example, adopting new desires as
subgoals for satisfying an existing desire.
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2.3.3 Rational volition

Though they provide different bases for action, neither deliberate nor wanton action need
be rational, though each may be. Deliberate action need not be rational, for the selections
of plan and method might be irrational. Indeed, in some cases people carry out plans
without regard to their own judgments of rationality. This sort of behavior is described
as compulsive, mechanical, robot-like, or “going through the motions.” When desires and
intentions are both considered but conflict, as when a dieter is confronted with an especially
tempting but forbidden dessert, we speak of the outcome as demonstrating weakness of will
when the intentions are not followed and as demonstrating strength of will when they are.

Wanton action may be more or less rational depending on how the desire and action
are selected. When the strongest or maximally preferred desire is chosen and the action
is selected to be of maximal expected utility towards satisfying the chosen desire, wanton
action can be much like rational action in the standard sense. When rationality is limited,
the agent possesses no clear or consistent notion of strength, and only imperfect knowl-
edge about relevant actions, so the actions actually taken may not appear very coherent. At
one instant, the agent may act on one desire, while at the next instant, on another, possi-
bly contrary, desire, and the actions taken may only be first steps along a path leading to
satisfaction with no guarantee the agent will ever follow the rest of the path.

2.3.4 Intentionality

Of course, wanton action can be viewed as deliberate action in which the agent never forms
any intentions not immediately acted upon, and some theories of intentional action include
such “intentions in action” (in Searle’s [1983] terminology). The major difference between
purely rational action and governed action, whether deliberate or wanton, is that in volition
the agent distinguishes between the intended changes wrought by some action and all other
changes wrought by the action, the unintended changes. This distinction is outside of the
standard theory of rational action, where all effects of actions receive equal treatment. In
deliberate action, the intended conditions are stated explicitly. Even in wanton action,
one may use desires to interpret intentionality of action effects, and some philosophers
have proposed theories of action that involve only beliefs and desires, making elaborate
constructions attempting to discriminate intentionality of effects purely on the basis of
beliefs and desires. See [Goldman 1970] and [Davis 1979].

The problem of intentionality arises in artificial intelligence as well, where most sys-
tems lack the distinction between intended and unintended effects. These systems typically
represent actions by sets of partial changes or by simple procedures. For example, STRIPS

[Fikes and Nilsson 1971] represents actions by “addlists” and “deletelists,” lists of state-
ments to be added to and subtracted from the current description of the world. But these
lists represent only expected changes, not intended changes. That is, the changes the ac-
tion is intended to bring about may or may not be explicitly represented by inclusion in
the addlist or deletelist, and may not be the only things there. Similarly, HACKER [Suss-
man 1975] represents actions with LISP procedures that when executed change the state
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appropriately. But these procedures simply change the state, without distinguishing be-
tween unintended changes and intended changes. Indeed, in correcting its errors, HACKER

performs elaborate analysis of its goals attempting to reconstruct just which changes were
intended and which were side-effects, an analysis that strongly resembles constructions
made by the philosophers of action.

2.4 Action and accommodation

Intended actions are found by interpreting the intention selected by the volitional procedure
in the context of the current state. Thus ifx is the selected intention, we define the set of
possible successor statesΓt to be

Γt = {S ∈ I | (St, S) ∈ ι(x)},

and require that the next stateSt+1 be an element ofΓt. Observe that here we must ex-
plicitly recognize that intentions refer to sets of possible histories, not simply to sets of
instantaneous possible worlds.

The conditionSt+1 ∈ Γt on state changes may badly underdetermine the revised set
St+1. Most plans, of course, are incomplete as descriptions of the changes that take place,
as they stipulate only a few explicit changes that the agent intends to bring about, and leave
other changes unstated. For example, if the selected intention is that some beliefy ∈ Ba

should be adopted, then choosingSt+1 = {y} (giving up all elements not reasserted) sat-
isfies these restrictions on changes, assuming for the sake of argument that{y} ∈ I. It is
reasonable to ignore side-effects of intended changes initially because in everyday life most
actions make only limited changes in the world, leaving most conditions unchanged. But
because the parts of the world are not wholly independent, sometimes intended changes in-
evitably entail unintended, even undesired changes. Sometimes special mechanisms (such
as requiring prescriptions for medication and impact statements for major construction) are
imposed to remind people to consider the side-effects of otherwise desirable actions.

Part of the reason for this incompleteness is that it is often very difficult to describe or
predict the effects of actions in specific situations. The field of artificial intelligence has
expended much effort toward axiomatizing the effects of mundane sorts of actions, and
one of the insights gained in this effort is that ordinary knowledge about actions is highly
qualified and incomplete. That is, common knowledge about an action describes its usual
effects, but with the qualification that nothing untoward or exceptional occurs. The simplest
of these descriptions are of the form of “laws of motion,” which we may write as formulas
p ⊃[a]r stating that ifp is true in the current state, then after taking actiona, r will be true
of the agent’s future history. Most such expectations are also qualified, either implicitly or
explicitly with one or more qualifying conditions as in(p ∧ ¬q) ⊃[a]r, but in general not
enough is known to determine either thatp holds or thatq does not. (See also [Hanks and
McDermott 1985].) Further, for most actions the set of qualifications or possible thwarting
circumstances is very large, if not infinite, so unless one rules out these exceptional cases,
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one cannot conclude anything at all useful about the effects of the action—one gets at
best an intractably large disjunction. McCarthy [1977] has christened this difficulty the
qualification problem, and proposed that it be solved bycircumscribingthe current beliefs
about the action; this means making the general assumption that nothing untoward happens
except explicitly expected exceptions, thus achieving a principled sort of ignorance about
exceptions. (See also [McCarthy 1980].)

But there is another serious problem. McCarthy and Hayes ([1969] and [Hayes 1973])
observed that if the effects of actions are fully axiomatized, one needs to state not only
those things that change, but also endless details about what does not change. They labeled
this difficulty theframe problem. What seemed needed was some way of stating the few
obvious changes explicitly and making as few unstated changes as possible in accommo-
dating the stated changes (see [Shoham 1987]). McCarthy [1986] attempts to address the
frame problem by using his notion of logical circumscription to say that the only changes
are those explicitly derivable from the descriptions of axioms, and that if a possible change
is underivable it is assumed not to occur. Computational systems like STRIPSfinessed this
problem by using a mutable database to store their beliefs. Such systems simply made a few
additions to and subtractions from the database to account for the explicit action effects,
and carried along all other beliefs unchanged. Waldinger [1977] called this the “STRIPS

assumption,” but it is merely a special case of the older philosophical idea of conservatism.

2.4.1 Conservative accommodation

Most theoretical prescriptions in philosophy and actual practice in artificial intelligence re-
strict the admissible changes of state toconservativeones, changes which keep as much
of the previous state as possible. (Quine [1970] uses the term “minimum mutilation” for
the same notion. See especially [Gärdenfors 1988]; also [Quine 1953], [Quine and Ul-
lian 1978], [Ellis 1979], and [Harper 1976].) For example, in addition to the STRIPS

assumption, each of the backtracking procedures used in artificial intelligence represents
some notion of minimal revisions. In “chronological” backtracking, the agent keeps all be-
liefs except the ones most recently added. “Non-chronological” or “dependency-directed”
backtracking is even more conservative, abandoning as small a set of beliefs as possi-
ble regardless of the order in which they were adopted. For instance, the procedure for
dependency-directed backtracking given in [Doyle 1979] minimizes the changes by aban-
doning only “maximal assumptions.” (See also [Reinfrank 1985], [de Kleer 1986], and
[Goodwin 1987].)

The general notion can be made precise in the following way. (See also [Gärdenfors
1988] and [Fagin et al. 1983].) Conservatism supposes the existence at each instant of
a comparison relation between states, a way of comparing the relative sizes of changes
entailed by moves to different states. ForX, Y ∈ I we write this relationX �

t
Y , read as

“X is at least as close toSt as isY ,” and require that�
t

be reflexive and transitive; that is,

that�
t

be a quasi-order. With these instantaneous comparison relations, we defineγt ⊆ Γt,
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the set of minimal changes or nearest successors at instantt, to be those successors minimal
under�

t
, that is,

γt = {S ∈ Γt | ∀S ′ ∈ Γt S ′ �
t

S ⊃ S �
t

S ′},

and say that the change fromSt to St+1 is conservative ifSt+1 ∈ γt. (A formally similar
notion appears in logical treatments of counterfactuals, where the quasi-order is called a
comparative similarity relation. See [Lewis 1973].) There need not exist any conserva-
tive change ifΓt has no minima under�

t
(if there is an infinite descending sequence, for

example).
Formulated this way, conservatism involves measures of the closeness of states and

minimality of changes. The definitions do not restrict the choices of such measures in any
substantive way—for example, the weakest comparison relation�

t
= I × I is admissi-

ble, and under this relation every change is minimal, hence conservative—so each concrete
application of this notion must supply its own specific definition. For instance, the conser-
vatism of the dependency-directed backtracking system DDB presented in [Doyle 1979],
which is a complicated sort of conservatism distinguishing “premises” from auxiliary “as-
sumptions,” embodies a measure of changes in terms of the state differences they represent.
In this case, the comparison relation compares sets of differences from the initial state, that
is, the sets of added and deleted elements:

A �
t

A′ iff At 4 A ⊆ At 4 A′.

(At 4 A is the symmetric difference of the setsAt andA, that is(At \ A) ∪ (A \ At).)
A related measure, which Harman [1986] calls the Simple Measure, compares instead the
cardinality of these sets:

A �
t

A′ iff |At 4 A| ≤ |At 4 A′|.

2.4.2 Rational accommodation

Even though the conservatism of DDB exhibits an appealing formal simplicity, it is unsat-
isfactory for practical use except in simple cases that do not depend much on conservatism
for success. The same holds as well for the other “blind” backtracking systems widely
used in artificial intelligence. Both of the specific comparison relations defined above treat
all beliefs equally, and are as ready to discard eternal truths as they are to discard rumor
and raving. They are not unreasonable comparison relations for systems like DDB that ma-
nipulate representations of beliefs without regard to the meanings of those beliefs, but the
cases of interest in scientific and mundane reasoning (whether human or machine) call for
conservatism to respect the differing values of beliefs of differing content, to not consider
all consistent sets of beliefs equally acceptable. In meaningful revisions, the comparison
measure compares the values of the beliefs adopted and the beliefs abandoned; one state
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will rank closer than another if it abandons less valuable beliefs or adopts more valuable
ones. These values represent preferences about possible revisions.

But if conservatism is to respect preferences about possible changes, whose preferences
are respected? In the case of DDB, the system, through its very construction, respects the
preference of its designer for minimal sets of changes, a preference which is not explicitly
represented anywhere in the system’s program. One might redesign DDB to include a big
table stating the value of every possible statement, and to consult the table when revising
beliefs—roughly the approach taken in [Rescher 1964] and in [McAllester 1980]. But it is
more natural to think of belief revision as a sort of action the agent takes, guided, as with its
other actions, by its preferences, in this case preferences about which beliefs it should hold,
preferences about its own nature. We call thisrational accommodation. For example, in
our own (human) reasoning, the preferences guiding belief revision are often our own. Our
greater credence in Newton’s laws than in our neighbor’s gossip is not something inherent
in our construction (though there may be innate features of our reasoning). That greater
credence reflects the values we have developed or learned.

Conservative accommodation is one of the principal forms of rational accommodation.
Rational volition aims at improving the agent’s situation, at maximizing its satisfactions
while minimizing its dissatisfactions. We might call this reasoning from states to intended
changesprogressivereasoning, the intended improvements representing progress for the
agent. Complementing this, rational accommodation aims at effecting these improvements
efficiently. Since the unintended changes were not rationally chosen in rational action, they
represent non-rational or irrational changes, so rational accommodation seeks to maximize
the rationality of the agent by minimizing the irrational component of changes. The main
sort of irrationality to be avoided is abandoning the wrong attitudes, so we may think of
conservatism defined in terms of the agent’s values asrational conservatism.

In rational conservatism, states are compared by means of the preferences about states
they contain. If states express weak preferences over all possible states, conservatism may
maximize the rank (utility) of revisions by definingX �

t
Y iff {Y } <∼ {X} in the pref-

erence ranking according to the states involved at instantt. Here we have a choice of two
forms of conservatism, which we callpredictedconservatism andratifiedconservatism. In
predicted conservatism, the preferencesπ(St, St) of the current stateSt are used in com-
paring the possible successors, so that at each instant the agent predicts which successor
will be most preferred. In ratified conservatism, the preferences of each possible successor
are used to compare the alternatives, and only successors that rank themselves at least as
highly as they rank all other successors represent conservative choices. That is,S ∈ Γt is a
conservative successor only ifS ∈ γt when the relation�

t
used in definingγt is determined

by the preferences inS, that is, byπ(S, S). In this case, each conservative successor rat-
ifies its own choice. (The term “ratifies” is borrowed from Jeffrey’s [1983] similar notion
of ratified decision.)
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2.5 Reflection

The preceding has introduced the basic concepts of rational self-government, but as rela-
tively abstract notions. In this section we turn to applications, using the concepts of rational
self-government to reformulate, understand, and criticize some ideas and techniques in ar-
tificial intelligence.

The first observation one makes upon surveying the field is that most systems developed
in artificial intelligence are pretty irrational, as they lack any way of sensibly allocating the
effort they expend in reasoning. Rational allocation of effort means not wasting effort
making easy but worthless inferences, or on easy but unlikely steps, but instead focusing
on steps of high expected value. Schemes for simply cutting off effort after some arbitrary
number of steps of calculation are irrational, for they make success in reasoning unrelated
to subject or knowledge. Yet artificial intelligence has relied heavily on arbitrarily imposed
limits to calculation. Similarly, domain-independent methods of automated deduction are
irrational, since worthwhile inferences in one domain may be of the same logical form
as worthless inferences in another. Despite all the effort expended to make deduction of
specific conclusions as efficient as possible, in these logical systems, interest, desire, and
likelihood are missing: logically, every conclusion is equally interesting and every path
equally likely. Because these systems operate in the same way no matter what the subject,
they cannot be very discriminating or very efficient in their activities.

It is effort wasted in these ways that leads to senseless lapses of reasoning ability. Even
when adequately knowledgeable about a subject, limiting reasoning in arbitrary and sense-
less ways yields ragged and unstable reasoning powers that make success almost accidental
and performance unpredictable. The hallmark of current systems is that they can miss ob-
vious inferences in a haphazard fashion, succeeding on one problem but failing or making
errors on simpler ones or seemingly identical ones that few people would distinguish. Of
course, whether one statement follows from others is in general undecidable, but even when
attention is restricted to very limited, decidable classes of implications, the behavior of cur-
rent systems is not accurately predictable. Even in simple cases, the only way to tell if a
system will succeed is to try it and see, and much of the heavy emphasis on implementation
in artificial intelligence stems from this unfortunate state of affairs. The ill-considered rea-
soning so common in current systems means complete but unreliable behavior, complete
in the sense that some action is always taken. What is needed instead is well-considered
reasoning and action, which is incomplete (sometimes nothing is done) but reliable (when
something is done). As in human conduct, sensibly conducted reasoning may fail and make
mistakes—that is unavoidable without omniscience and omnipotence—but none of the er-
rors will be stupid, and that is the best we can expect, and is better than current practice in
artificial intelligence.

To expend its effort wisely, the reasoner must possess knowledge of the limits of its own
knowledge and abilities, and this means these limits must be regular or reliable enough to
be generally describable or predictable by the agent as well as by observers. But more than
that, the reasoner must weigh the relative values of different possible inferences about a
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subject, so as to guide its reasoning in sensible ways. This evaluative knowledge, which
may vary from subject to subject, is every bit as crucial to success and reliable performance
as declarative knowledge. Its systematic neglect in the codification of subjects, visible
in the blinding preoccupation with logical axiomatizations and deductive inferences, has
spelled failure for many approaches to knowledge representation (see [Minsky 1975], [de
Kleer, et al., 1977], [McDermott 1987], and [Winograd and Flores 1986]). As a conse-
quence, most expert systems constructed to date are not artificial intelligences, but instead
idiot savants, knowledgeable about specific subjects but knowing nothing else. These sys-
tems have proven very valuable in some applications, but in delicate situations this narrow-
ness is cause for concern. Because these artificial idiots possess little or no understand-
ing of the limits of either their own reasoning powers, knowledge about their subject, or
knowledge about the context of their actions, they think and act blindly, using automatic
procedures which mechanically apply whatever subject knowledge the system possesses to
arrive at a conclusion. In contrast, human experts know that their function is not simply to
solve problems or to make decisions, but to prudentlymanagethe use of their knowledge
and skills to solve problems and make decisions, taking into account their own powers,
limitations, and reliability. Human experts not only know their subject, they know how
to think about it—that is, they know when they can solve a problem and when not (gen-
erally without actually trying it to see), and whether these judgments can be trusted (see
[Scḧon 1983]). In circumstances where human experts grow uncomfortable and suspect
problems beyond their ken, the automated systems, as a result of their narrowness, simply
act as usual. They never step back and say “I don’t know what’s going on—get someone
who does!” In consequence, great care must be exercised by designers to ensure that the
environment in which an expert system is used can tolerate its unwitting failures.

Let us call these two sorts of knowledgedirectsubject knowledge andratiocinativesub-
ject knowledge, recognizing that different subjects may call for different ways of thinking—
different heuristics, for example. (Following Polya [1962, p. vi], we call some sorts of ra-
tiocinative subject knowledge—“the means and methods of problem-solving”—heuristic.
The distinction between direct and ratiocinative subject knowledge goes by other names as
well: declarative and procedural, epistemological and heuristic (in artificial intelligence),
theoretical and practical knowledge (in philosophy), and knowing what and knowing how
in ordinary discourse.) Indeed, the bodies of direct and ratiocinative knowledge about one
subject are subjects in their own rights, and if sufficiently complex may call for further
direct and ratiocinative knowledge about these new subjects.

While ignorance and error are unavoidable, properly applied to a problem, direct and ra-
tiocinative subject knowledge can yield not mere actions and conclusions, but, as with a hu-
man expert, reflections on their accuracy, completeness, appropriateness, and reliability—
in sum,consideredactions and conclusions. Through self-evaluative reasoning, we may
still seek what the Greeks calledsophrosyne. In today’s English, sophrosyne is usually used
as the antonym of hubris, meaning temperance or moderation. But sophrosyne (to quote
from [Ostwald 1962, pp. 313-314]), “literally translated, means ‘soundness of mind,’ and
describes the full knowledge of one’s limitations in a positive as well as a negative sense:
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thesophron, who possesses this virtue,” “knows what his abilities and nature do and do not
permit him to do. He is a self-controlled man in the sense that he will never want to do what
he knows he cannot or should not.” “Though self-control is more negative than positive in
modern usage, if the word is taken more literally than it usually is, i.e., if ‘control’ is not
merely taken as ‘restraint’ but also as ‘mastery,’ it comes closer to sophrosyne than most
alternative renderings.”

There have been several steps taken towards rational self-government in artificial in-
telligence. Most of these have expressed the idea in different ways, including, for ex-
ample, control of reasoning, meta-reasoning, reasoning about reasoning, meta-planning,
reflection, and introspection. One of the earliest proposals along these lines was by Hayes
[1974]; other discussions include [McDermott 1978], [de Kleer, et al. 1977], [Davis 1980],
[Weyhrauch 1980], [Doyle 1980], [Smith 1982], [Stefik 1980], [Smith 1985], [Lenat et al.
1983], and [Laird et al. 1987].

In the rest of this section we survey some of the issues and approaches in the context
of some fundamental applications of rational self-government. Each application involves
reflection on one or more sorts of the agent’s attitudes. Assumptions and learning involve
reflecting on one’s beliefs; planning involves reflecting on intentions and priorities; and de-
liberation involves reflecting on one’s preferences and desires. Unfortunately, discussions
of these activities in artificial intelligence usually downplay the strong sense of unity they
exhibit. In part, this has occurred because the field of artificial intelligence has focused
on the notion of knowledge (whether direct, ratiocinative, or self knowledge) to the virtual
exclusion of the notion of rationality. Since there are many domains of knowledge (both
expert and common), many completely separate from each other, this focus has produced
a very disjointed field, with many researchers having little in common besides implemen-
tation tools like LISP or PROLOG. Even commonality in language of expression is not
assured, since different schools focus further on restricted forms of knowledge: logicists
focusing on factual knowledge, search theorists focusing on evaluative knowledge, and pro-
ceduralists focusing on procedural knowledge. The only way of unifying these disparate
sorts of knowledge is through the forgotten ideal of rationality, which provides a common
intellectual framework with which to frame, communicate, and use knowledge in thinking.
While our knowledge of separate subjects may be pursued separately, the notion of ratio-
nality is central in unifying the use of knowledge in the activities of reasoning, searching,
planning, problem-solving, and learning. It is therefore crucial in making artificial intelli-
gence intelligible to readers from other fields, such as philosophy, logic, statistics, decision
theory, and economics. When artificial intelligence removes rationality from thinking the
fragmentary topics and techniques that remain seem unmotivated and unrelated to outsiders
for whom rationality is a central concept. (See also [Doyle 1988b] and [Miller 1986].)

2.5.1 Assumptions

Thinking often begins with making guesses grounded in one’s experience. Guessing, or
making assumptions, is often held in disrepute as illogical. In fact, though illogical, it is
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often quite the rational thing to do. Taking action requires information about the available
actions, about their expected consequences, and about the utility of these consequences to
the agent. Ordinarily, obtaining such information requires effort, it being costly to acquire
the raw data and costly to analyze the data for the information desired. To minimize or
avoid these costs, artificial intelligence makes heavy use of heuristics—rules of thumb, de-
faults, approximately correct generalizations—to guess at the required information. These
guesses are cheap, thus saving or deferring the acquisition and analysis costs. But because
they are guesses, they may be wrong, and so these savings must be weighed against the
expected costs of making errors. Most of the cases of default reasoning appearing in ar-
tificial intelligence represent judgments that, in each particular case, it is easier to make
an informed guess and often be right than to remain agnostic and work to gather the in-
formation; that errors will be easily correctable and ultimately inconsequential; and that
the true information needed to correct or verify these guesses may well become available
later anyway in the ordinary course of things. In other cases, defaults are avoided, either
because there is no information available to inform the guess, or because even temporary
errors of judgment are considered dangerous. These ratio-economic judgments may also
be influenced by non-economic desires and preferences, such as moral or ethical judgments
of positions (“assume people innocent until proven guilty”), and social conventions for co-
operation and communication (assume dumb questions aren’t, so that, for example “Can
you pass the salt” means “Please pass the salt”).

Rational inculcations of beliefs have been recognized for many years, famously by
Pascal [1662] and James [1897] in the context of religious belief. Pascal, for example,
framed his problem of belief in God as the following: he can either believe or doubt the
existence of God, and God may either exist or not exist. If God exists and Pascal believes,
he gains eternal salvation, but if he doubts he suffers eternal damnation. If God does not
exist, belief may lead Pascal to forgo a few possible pleasures during his life that doubt
would permit him to enjoy. We may summarize these evaluations in a decision matrix

Pascal’s decision God exists doesn’t

Believe +∞ −f
Doubt −∞ +f

wheref represents the finite pleasures enjoyed or forgone during Pascal’s life. Of course,
these same quantities modify the first column as well, but finite modifications to infinities
are negligible. As long as God’s existence is not judged impossible, the expected utility of
belief is+∞, dominating the expected utility of doubt,−∞.

But the same sorts of rational revisions are ubiquitous in mundane reasoning, and many
of the common sorts of apparently non-logical reasoning studied in artificial intelligence
reflect the results of such economic calculations. For example, in the morning my habit is
to get in my car with my notebooks and start the car, in order to drive into work. Now the
car might either be working or broken. It must be working for me to be able to use it to
drive to work, but I do not check to see that it is before trying to start it. I simply assume it
is working when I plan and pack the car. We can frame my decision in a matrix
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My decision car works doesn’t

believe +b− c −c− C
doubt +b− C −C.

Here we write the benefit from the car starting asb, the cost in effort of packing and starting
the car asc, and the cost of checking out the engine, electrical system, transmission, etc. as
C, where we assumeC � c. With these utilities, the expected value of believing dominates
that of doubting wheneverpC > c, wherep is the probability that the car works. As long
as I expect the car to work andC � c, my assumption is reasonable.

This sort of economic calculation may be made either at the time the information is
needed or, as in the default rules prominent in inheritance systems and reason maintenance,
in advance. (See [Smith 1985] and [Langlotz, et al. 1986] for detailed treatments of these
ideas.) When made in advance, the rules of thumb may be applied to get the guesses either
when needed, as in most inheritance systems, or in advance, as in reason maintenance. In
most current artificial intelligence systems, however, these calculations are made by the
system’s designer—the human informants decide what the good guesses are, and these are
encoded into the rules that the machine obeys. But these considerations may be made by
the agent itself as well through reflection and reasoning. To judge the benefits of making
some guess, the agent might assess the impact of the guess on its state of mind—that is,
ask whether the assumption really matters, or whether it would not change the agent’s
effective knowledge very much. It might assess the expected savings—will it have to do
the work anyway?—and assess the costs of taking a position—will making any guess get it
into arguments or explorations that will take more time than it is worth? (See [Elster 1979,
1983], [Brunsson 1985], [Pears 1984], [Hirschman 1982], and [Levi 1967, 1980].)

There have been attempts in the artificial intelligence literature to view heuristics or
rules for making assumptions purely in probabilistic terms, with a rule of assumption justi-
fied as long as its probability exceeds some threshold value. This theory of assumptions is
inadequate. Tautologies have maximum probability but are generally worthless. No agent
should waste its effort assuming most tautologies, since tautologically, an assumption is
worth the expense of making it only if it is worth it—that is, if the expected utility of mak-
ing it is high enough. Since the probabilistic theory of assumptions ignores the utility or
disutility of assumptions, it is a theory of likely irrelevancies, of tasteless theorizing.

A similar, but less popular mistake is to base assumptions purely on utilities, assuming
something as long as its utility exceeds some threshold, regardless of the probability of its
being true. This theory has exactly the same irrational character as the probabilistic theory
of assumptions, and has a standard name as well. It is called wishful thinking.

2.5.2 Learning

Rationality enters learning in the rational selection of what to learn or investigate, what to
assume, what to consider, and what sorts of conclusions to seek. The first choice is that of
subject, of the aim of learning. Because they are silent on this choice, most treatments of
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learning in the philosophy of science, inductive logic, and artificial intelligence seem terri-
bly bloodless, if not misguided. They study learning that has no point, learning irrationally
pursued towards no end. In everyday life, things do not just suggest themselves as worth
learning. In most cases outside of motor skills and perhaps infant language learning, one
learns (towards specific or abstract ends) because one wants to, and regularly fits new infor-
mation into theories of current interest. When the will to learn ceases, the learning stops,
even if the agent later suffers for his blindness. But in most work in artificial intelligence,
learning involves no errors, no selection, no choice of vocabulary—no ends. The designers
of the systems supply algorithms, vocabularies, and data, and the program mindlessly ap-
plies the algorithm. These systems “learn” things in exactly the same sense that a bank’s
computers “learn” the new balance in an account after some transaction. True learning es-
sentially involves choice, and no learning occurs without ends, only computation. Perhaps
work on aimless learning in artificial intelligence should not be faulted much, for as Trues-
dell [1984] points out, most theories in the philosophy of science are similarly aimless,
and the ideas on learning in artificial intelligence have been strongly shaped (sometimes
unwittingly) by theories in inductive logic and the philosophy of science. (See also [Rorty
1979] and [Grabiner 1986]).

Once a subject is chosen for learning, the agent must choose how to gain information
about or experience with the subject. In some cases, the aim will be to learn something
from what the agent already knows or has experienced, so that no additional investigations
need be conducted. In cases in which the agent or its designer decides (or is forced to
conclude) that real effort must be made to acquire and analyze information instead of just
guessing, economic calculations may guide the processes of acquisition and analysis. Data
may be gathered in many ways—by exploring the world, by exploring the agent’s current
behavior, or by enrolling in classes, reading books, and asking questions—and the agent
must choose among these methods.

But once these decisions are made (and they are subject to repeated revision, of course),
the biggest problem in learning is that alternative explanations must be compared. The
grounds of these comparisons are naturally viewed as reflecting the preferences of the agent
about what explanations are better than others. These comparisons occur not just in the ini-
tial presentation of alternative theories, but in the course of the investigation as well, when
one must adapt one’s explanations, hypotheses, and theories to new information. This
is especially visible in the approaches to learning via analogies and metaphors between
cases. In making analogies and interpreting metaphors, one must deform one explanation
or concept into another, somehow judging one deformation better, milder, or more apt than
another. This task is substantially the same as that of accommodating changes of attitudes,
where the different aspects of the new case indicate the stipulated changes. Similarly, in
improving one’s skills, one must choose among alternative explanations of the flaws in
one’s skills (a choice called “credit assignment” in artificial intelligence), and also choose
among alternative patches or modifications to one’s skills. As in accommodation, prefer-
ences about revisions are one natural way of formulating these judgments. (See [Carbonell
1986].)
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One important special case of such comparisons is comparison of alternative formula-
tions or conceptual organizations on economic grounds. Every formulation entails costs in
memory and time: the memory needed to store the information, and the time needed to use
it. There are well known tradeoffs between the succinctness of axiomatizations and lengths
of proofs, and between expressiveness of languages and difficulty of finding proofs. These
same economic tradeoffs seem to motivate some sorts of learning, such as seeking sim-
ple descriptions of lots of data in order to compress it. More importantly, such economic
judgments seem to motivate organizations of concepts into hierarchies of prototypes, as is
common in both human thought and artificial intelligence. Hierarchies, of course, may of-
fer dramatic (often exponential) economies of storage space. Prototypes, or natural kinds,
offer related economies. For example, say a prototypical concept is defined as the conjunc-
tion of n properties or aspects, and that objects satisfying anyn− 1 of these properties are
counted as instances of the concept, albeit exceptional ones. Suppose further that we wish
to describen+1 individuals, one of which satisfies the concept perfectly, andn exceptional
instances representing every possible exception. To describe these individuals in a system
of prototypes and exceptions requires only2n + 1 statements: a typing or IS-A statement
for each instance (n + 1 all together) and a statement of the exceptional property for each
of the exceptional instances (n of these). But to make the same descriptions using the ordi-
nary logical connectives and implication requiresn2+1 statements: one implication for the
perfect instance, andn statements, variations of the prototype’s definition, to describe each
of the exceptional cases,n2 in all. (See [Lakoff 1987] for more on conceptual hierarchies.)

Similar economic judgments, this time about the cost of retrieval instead of the cost of
storage, motivate the use in artificial intelligence of redundancy. This means using several
distinct paraphrases or reformulations of the subject knowledge in hope that these “multi-
ple perspectives” increase the chances of solving the problem by permitting more possible
successful derivations, some shorter or easier to construct than is possible with any single
organization of the knowledge (see [Sussman and Steele 1980]). But additional paraphrases
also make for more possible unsuccessful derivations, perhaps increasing rather than de-
creasing their relative frequency, and one must judge in each case whether the expected
benefit is positive or negative.

Economic comparisons of theories in terms of the time needed to use them are at the
heart of what is called heuristic. Artificial intelligence makes much of the notion of heuris-
tic without saying precisely what this notion is. One view, natural in the present setting, is
that heuristics are rules or algorithms for reasoning that trade off accuracy and certainty for
speed and cheapness of use. Unfortunately, examples of analysis of heuristics in artificial
intelligence are rare, but see [Langlotz, et al. 1986], [Knuth and Moore 1975], and [Pearl
1984].

One sort of heuristic is that captured in the notion of probabilistic algorithm. When it
is too hard (undecidable or intractable) to reason exactly towards a solution, one response
is to guess the answer. To be useful, the expected correctness of the guess should be high,
and the expected cost low, so that the expected value of the guess is high. Probabilistic
algorithms are algorithms that work by guessing, that is, algorithms that compute answers
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which may be right or wrong, but which are right over half the time. Repeated applica-
tions of such algorithms can re-check the answer, thus achieving any specified degree of
certainty. Very good probabilistic algorithms are known for message routing, primality
testing, and other problems for which the best known exact solutions are quite bad. See
[Harel 1987], [Cook 1983], and [Karp 1986] for more on these. In the context of learn-
ing, probabilistic algorithms occur most naturally in the form of probabilistically induced
concepts. See [Valiant 1984] for a discussion of this approach to learning.

Another sort of heuristic is that captured in approximate algorithms, which compute
answers that may not be entirely correct, but are good enough. Simon [1969] calls this
satisficing. While in probabilistic algorithms one chooses the desired frequency of cor-
rect answers and then seeks an algorithm yielding these, in approximation algorithms one
chooses the acceptable degree of error in the answer, and seeks an algorithm yielding this.
The traveling salesman problem, for instance, has no known fast exact solution, but admits
fast approximation algorithms whose answers are within a factor of two of the correct an-
swer. In fact, the concepts induced by Valiant’s [1984] learning algorithm also qualify as
approximate algorithms in this sense.

The use of probabilistic and approximation algorithms involves a rational decision to
trade off certainty and accuracy for speed. But in these cases, the bargain one makes is
well understood, in that the risks of error and inaccuracy can be quantified, indeed, chosen
by design. Artificial intelligence makes heavy use of less well understood heuristics, of
rules for making cheap guesses which are only hoped, not known, to help. For instance,
one employs methods which one subjectively expects to be likely correct or only slightly
inaccurate, even when these bounds themselves are mere guesses, not guarantees. In really
difficult problems, trying all the heuristics one can think of is all one can do, for to wait for
an exact solution is tantamount to giving up. The danger, of course, is that these informal
heuristics might actually hurt more than they help. But as long as they are cheap to make,
and their errors easy to correct, one might as well use them. Especially in ill-understood
problems, applying heuristics often leads to the discovery of information which is correct
and useful in other parts of the investigation, even though the heuristic fails to achieve its
nominal purpose.

2.5.3 Planning

Where assuming and learning involve selection, formulation, and revision of beliefs, plan-
ning consists of selection, formulation, and revision of the beliefs, intentions, and priori-
ties relevant to one’s activities. These include beliefs about the effects of actions (so that
actions may be selected as methods for achieving specific effects), beliefs about what cir-
cumstances will obtain in future situations, intentions about what actions will be performed,
intentions about how these will be performed, and priorities influencing the temporal order
in which these intentions will be carried out. The steps of forming and revising these inten-
tions and priorities resembles the steps of forming and revising beliefs in learning in that
the agent reflects on the consistency and completeness of these attitudes.
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The formation and revision of absolute intentions involves deciding what to do and what
not to do. One source of such decisions might be to adopt intentions to satisfy the currently
maximal desires. Another source is to consider whether one’s plan to achieve some aim is
complete. Here levels of abstraction may be considered one at a time to see if the planned
actions at each level achieve their aim, or if they cannot be expected to. If not, new steps
must be added. This operation, usually called goal regression, is one of the main functions
of automated planners like NOAH [Sacerdoti 1977] and Waldinger’s [1977] planner. An-
other source of intentions is judging the completeness of plans at different levels, that is,
seeing if ways are known for carrying out intentions at one level with definite methods (see
[Sacerdoti 1974] and [McDermott 1978]). This sort of completion of the plan need not be
postponed until an intention has been selected for immediate action, but may be decided on
in advance. Methods themselves may be either primitive actions from among the agent’s
current skills, or subplans that perhaps require further reduction themselves. One may also
reflect on the consistency of one’s intentions, or on the consistency of one’s intentions with
one’s desires. If, for example, information newly learned shows two current intentions to be
inconsistent, the set of current intentions might be revised to restore consistency, either by
modifying or abandoning one of the conflicting intentions, or by adopting a priority so that
they are not both considered for action at the same time. Similarly, if one strongly dislikes
or comes to dislike the aim of some intention, one might simply abandon the intention.

Paralleling the formation and revision of absolute intentions, planning involves form-
ing and revising priorities. Priorities for actions may be considered only at the last moment
when unavoidably required in order to select the next intention to act upon in volition, or
in advance. These priorities may be judged according to completeness and consistency as
well. Deciding what to do next in volition is the most obvious case of making the set of
priorities more complete, adding in first priority for the selected intention if the current set
does not contain a first priority. Priorities also may be inferred from the intentions them-
selves, as when data or preconditions required by actions yield temporal orderings among
steps. Determination of such dataflow priorities is a central operation of automated plan-
ners like NOAH. Similarly, revision of the priorities may be necessary if new information
indicates the current priorities to be inconsistent. This criticism and revision of orderings is
also central to NOAH and HACKER [Sussman 1975]. A more subtle version of consistency
checking is that of ensuring intended conditions which must be preserved throughout a se-
quence of steps. Such path conditions may restrict the possible orderings. If they restrict
them too much, an inconsistency results and the conditions must be revised. See [Chapman
1987] for a general planning algorithm addressing many of these issues.

2.5.4 Deliberation

When reasoning concerns the agent’s preferences as well as the agent’s beliefs, we call
the process deliberation. In ordinary decision theory, the agent’s preferences are taken as
givens of the decision-making process. But in ordinary life and in artificial intelligence,
this role for preferences is too restricted, for in many cases one must perform some amount

30



ARTIFICIAL INTELLIGENCE AND RATIONAL SELF-GOVERNMENT

of reasoning to determine which of one’s preferences apply to a particular decision, or
more fundamentally, what one’s preferences are regarding some heretofore unconsidered
possibility. Filling in incompletenesses in one’s preferences and resolving inconsistencies
between one’s preferences mean that deliberation involves selecting or choosing (and possi-
bly inventing) a set of preferences relevant to a decision problem. Together with reasoning
about what alternatives exist and what their consequences are, this reasoning about what
preferences to use constitutes the process of deliberation.

An abstract procedure for deliberation might go as follows (see [Doyle 1980]). In this
procedure, the agent constructs a set of attitudes called thedecision situation. The decision
situation contains the set of attitudes decided to be relevant to a particular decision prob-
lem, and so embodies the agent’s current formulation of the nature of the decision. Initially,
the decision situation may be empty, but then the agent iteratively makes incremental revi-
sions of the decision situation. The agent repeatedly searches its attitudes for beliefs about
what are possible options or alternatives for the decision problem; for likelihoods about
their consequences; and for preferences among these. Each time some attitude is added to
the decision situation it is scrutinized to see if it is truly applicable to the problem. This
involves checking for exceptional features of the problem and formulation that defeat the
likelihood or preference in this case. Ordinarily, the amount of information possessed by
the agent about explicit exceptions to a particular attitude is very limited, so this routine
criticism need not be carefully controlled. But the set of attitudes possibly relevant to the
decision problem is usually very large, and most of the rational control of the progress of
deliberation must concern whether to seek further relevant information, and whether to add
particular attitudes to the decision situation. One element of this control or second-order
decision of whether to pursue deliberation is to judge the properties and import of the cur-
rent formulation. If the likelihoods and preferences currently identified are inconsistent,
some resolution must be decided on, using information about exceptions or using prefer-
ences about preferences and preferences about likelihoods to defeat or discard some of the
attitudes and produce a coherent view of the decision problem. If the likelihoods and pref-
erences are too incomplete to narrow the choice sufficiently, more may have to be sought.
Once a consistent formulation is achieved, the agent may see what outcomes it entails, and
with what degrees of confidence. The agent may then decide whether to stop or continue
based on its feelings about risk, about the stability of the decision (whether unconsidered
information is likely to change the outcomes significantly), about the number of acceptable
options, and about the outcomes themselves. For example, if it very much desires one ten-
tatively selected alternative, it may do unusually little work to investigate other alternatives
and stop prematurely; if it very much dislikes some outcome it may seek new alternatives
or new arguments to prefer other alternatives more. Similarly, if the agent desires certainty
or prefers less risk, it may prolong reasoning in order to increase certainty about some iffy
conclusion, or curtail reasoning that involves questioning of favorite dogmas.
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2.5.5 Introspection

Learning, planning, and deliberation involve reflection on and revision of most of the at-
titudes of action: beliefs, likelihoods, preferences, intentions, and priorities. But they do
not necessarily involve forming or revising desires, or the more fundamental sorts of be-
liefs and preferences. Indeed, most of life changes desires only indirectly, if at all, for few
people really spend much time reflecting on what they think they should want. When dis-
aster or disappointment do lead us to wax philosophical and consider the meaning of life
and how we should live, we are usually timid in the depth of self-criticism we are willing
to consider—rightfully so, for fundamental change is dangerous. Once one starts chang-
ing one’s fundamentals, anything can happen. Nevertheless, self-examination is often very
useful. Socrates’ belief that the unexamined life is not worth living still holds true, despite
the usual victory of Gresham’s Law.

Disappointment is perhaps the most common cause for introspection into and revision
of desires. The limits on our knowledge of the world extend to limits on our knowledge of
ourselves, and it is commonplace that we do not understand many of our desires and prefer-
ences very well, even though we bemoan other people not understanding us either. Worse,
in some cases we mistakenly think we understand them, and use these mistaken views in
deliberating. How familiar it is for the child to strive a lifetime to satisfy the desires of
the parent, only to discover in the end how foreign and unsatisfying these accomplishments
are. (See [Scitovsky 1976], [Hirschman 1982], and [Schelling 1984b] for more discussion.)

Living without self-omniscience is characteristic of human life, and conceivably this
circumstance might be avoided in the design of artificial agents. In humans it appears in-
timately tied up with the modular nature of mind, the “social” brain or mind as Gazzaniga
[1985] and [Minsky 1986] put it. It may be that thinking demands psychological organi-
zations of sufficient complexity to ensure that similar troubles afflict any intelligence (see
[Thomason 1979]), but that is a question for investigation.

Even with perfect self-omniscience, fruitful opportunities remain for reflection on de-
sires. Most of these concern the economic and moral consequences of one’s desires. One
might desire quiet living, but also recognize the extreme cost it entails in terms of one’s
other desires. One might then live by frustrating one desire or another. Alternatively, one
might increase one’s happiness by abandoning one of the conflicting desires, so as to be
able to satisfy the remainder without frustration. People would not be human without many
conflicting desires, but it is always a choice whether to suffer or to remedy particular con-
flicts (see [Peck 1978]). The Buddha said to abandon all desires to avoid suffering, and
that is a sufficient means. But piecemeal revision is the ordinary path to enlightenment
and equanimity, and total selflessness may not be necessary means to happiness. Rawls
[1971], for example, introduces the idea ofreflective equilibrium, states of mind in which
all of one’s attitudes and principles are in harmony. The Buddha’s nirvana is one such
equilibrium, but there may be others as well.
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Chapter 3

Constitutional self-government

Not all reasoning need be made deliberately through volitional procedures. Some reasoning
may be automatic, made without specific motivation in supplying a sort of “background,”
“unconscious,” or “common sense” reasoning for deriving “obvious” consequences of one’s
attitudes. This sort of reasoning figures in Harman’s [1986] notions of immediate impli-
cation and immediate inconsistency,1 and occurs prominently in most artificial intelligence
systems in the form of restricted sorts of inferences the system always makes by using
special-purpose procedures or machines, for example, the inferences made by inheritance
networks ([Fahlman 1979], [Touretzky 1986]), by reason maintenance systems ([Doyle
1979], [de Kleer 1986]), or logically obvious inferences ([McCarthy 1958], [Davis 1981],
[Levesque 1984]). We call this sort of reasoningconstitutionalreasoning since it derives
from the makeup or constitution of the agent, independent of its specific plans.

The most important form of constitutional reasoning is the unintentional, accommoda-
tive reasoning expressed in the state spaceI. When one chooses a state space for an agent,
one also chooses a measure of automatic reasoning, since making only intended changes in
a state may yield a set of attitudes outside the chosen state space. IfI 6= PD, the modified
set of attitudes may not be inI, so to accommodate the intended changes some additional,
unintended changes must be made to yield a state inI. Especially when there is a single
possible accommodation, and hence no choice involved in accommodating the intended
effects, we think of these additional changes to states as automatic reasoning.

State spaces are ordinarily defined or constructed by imposing conditions on the con-
stitution of the agent, for example, restrictions to consistent or suitably complete sets of
attitudes. We call such conditions and restrictionsconstitutive assumptions, assumptions
about or stipulations of the agent’s structure. In the following, we will consider two sorts
of constitutive assumptions:laws of thought, which are individual rules for self-regulation
that the agent adopts, andpsycho-logics, which are underlying logics of attitudes that spec-
ify the minimal consistency and closure properties of the agent’s states.

1See Appendix A for more on these.
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3.1 Laws of thought and legal states

While it is possible to consider ideally rational agents with full logical powers, in which
all logical entailments and consistency are automatic, such automatic reasoning is unmech-
anizable, so artificial intelligence pursues more limited sorts of automatic inference. The
natural candidate for automation is common sense reasoning. In the usual, but rarely exam-
ined conception, common sense reasoning is the easy, obvious, uncontroversial, effortless,
unconscious reasoning that humans share and that they use to support more difficult con-
scious reasoning.

Traditionally, the heart of commonsense reasoning has been logic, in its role as the laws
of thought. Unfortunately, logic suffers several severe flaws as a candidate for automatic
reasoning. As noted above, full logical deduction and consistency are unmechanizable.
But as Harman [1986] points out, even when one restricts attention to “obvious” logical
principles like Modus Ponens and Non-Contradiction, one faces the problem that repeated
applications of obvious principles yield non-obvious results, so that requiring states of
belief closed under Modus Ponens and satisfying Non-Contradiction may be as infeasible
as requiring full logical omniscience. More telling, however, is the non-logical nature
of common sense reasoning. As Harman also points out, implications like “if today is
Tuesday, tomorrow is Wednesday” are as obvious and common in human reasoning as are
tautologies—indeed, usually more obvious than most tautologies to most people. If non-
logical inferences reflecting these implications are to be part of common sense reasoning,
then common sense reasoning cannot be simply logical. Moreover, these non-logical rules
of common sense reasoning vary from culture to culture, so that common sense is not a
universal notion among humans (see [Geertz 1983]). Logic was initially conceived as the
universal laws of thought, but a more reasonable view is that laws of thought, if they exist,
are neither universal nor logical, but local instead. (See also [Thomason 1987].)

3.1.1 Constitutive intentions

We here consider an extremely local conception of laws of thought, in which laws of
thought are individual, with rules for self-regulation adopted by the agent as well as rules
supplied by the agent’s culture. Specifically, we conceive of laws of thought asconstitutive
intentions; or more specifically, as standing and routine constitutive intentions.

We classify intentions as standing or singular, routine or problematic, constitutive or
environmental. Standing intentions are policies left in force and constantly obeyed un-
til abandoned, while singular intentions are the ordinary sort abandoned once carried out.
Routine intentions are intentions which the agent can satisfy directly through performance
of one of its basic actions or skills, while problematic intentions require thought to carry
out. Constitutive intentions are those strictly about the agent’s own structure, while envi-
ronmental intentions are those about the agent’s environment or the agent’s relation to it.
Thus viewing laws of thought as standing and routine constitutive intentions (for brevity,
simply constitutive intentions in the following) means that they are rules about the agent’s
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mental structure that are always and immediately followed. For comparison, cases of ra-
tional assumption-making like Pascal’s wager or James’ will to believe reflect singular
problematic constitutive intentions.

We identify the set of constitutive intentions as a subsetI? ⊆ Ia of the set of possible
intentions. Since we allow the meaning of an intention to vary with the agent’s state and
environment, the set of constitutive intentions may also vary. For simplicity, however, we
will assume that constitutiveness of intentions does not depend on the specific state of the
agent.

3.1.2 Satisfying states

The laws of thought observed by the agent thus determine a set of legal states of the agent,
namely those states which satisfy the agent’s self-regulations. Since each state may contain
different constitutive intentions, the legal states are those that satisfy each of the laws they
themselves contain, one state not being bound to observe laws it does not adopt. In this way,
legal states exhibit something of Rawls’ [1971] notion of reflective equilibrium, agreement
between the agent’s principles and attitudes.

As above, ifx ∈ Ia, the meaning ofx is that the agent intends to act to make its world
W = (S, E) be one of the worlds inι(x). If x is constitutive, the environmental portion
of the propositionι(x) is satisfied by any world, so the intention reduces to the condition
that S ∈ i(ι(x)). We say that a setX ⊆ D is satisfyingjust in case it satisfies each of
the constitutive intentions it contains, that is, ifX ∈ i(ι(x)) for everyx ∈ X ∩ I?. Note
that bigger sets may contain more constitutive intentions, and so be harder to satisfy. Our
assumption, then, is that every internal state of the agent is satisfying.

We may divide the agent’s constitutive intentions into two parts, one reflecting the
agent’s initial endowment of unadopted constitutive intentions, the other reflecting the
agent’s subsequent actions and legislation. We allow the possibility that legislation may
amend the initial constitutive intentions.

3.1.3 Conditional attitudes

One of the most common sorts of constitutive intention employed in artificial intelligence
is theconditional attitude. While unconditional attitudes include beliefs, desires, and in-
tentions, in both absolute and relative forms, a conditional attitudeκ ‖− x, read “κ gives
x,” combines an attitudex ∈ D with an enabling conditionκ. Such attitudes are interpreted
as constitutive intentions of the agent to hold attitudex whenever conditionκ obtains, and
so are forms of the notion of indicative conditional discussed in philosophy and linguis-
tics, that is, conditionals that signal an intent to revise one’s attitudes upon learning the
hypothesis, as in “If it’s Tuesday, this must be Belgium” (belief), “The fruit salad will be
fine, if it doesn’t have grapefruit” (desire), and “Since it’s raining, I’ll take my umbrella”
(intent). Conditional attitudes take many other special forms in artificial intelligence, in-
cluding what are called “justifications,” “reasons,” “inheritance links,” and MYCIN-style
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“production rules.” See [Doyle 1982] for further discussion of the role of these intentions
in artificial intelligence.

The enabling conditions of conditional attitudes are not themselves attitudes, but instead
propositions about the state of the agent, in particular, propositions about that state of the
agent that results from carrying out these constitutive intentions. Formally, we interpretκ
as an internal propositionκ ⊆ PD, and define the internal meaning ofκ ‖− x by

i(ι(κ ‖− x)) = {X ⊆ D | X ∈ κ ⊃ x ∈ X}.

Conditional attitudes can be automated only if the enabling conditions are effectively
computable. Artificial intelligence goes far with very simple sorts of computable condi-
tions, namely those that refer to the presence or absence in states of specific sets of attitudes.
The simplest sorts of these specify that the attitudex should be held if the state contains
each of the attitudes in a specific setΥ+ (the in-hypotheses) and none of the attitudes in
another setΥ− (theout-hypotheses). We write such an intention as

Υ+ \\ Υ− ‖− x,

read “Υ+ withoutΥ− givesx,” and define its intentional content by

ι(Υ+ \\ Υ− ‖− x) = {X ⊆ D | Υ+ ⊆ X ∧ Υ− ∩X = ∅ ⊃ x ∈ X}.

We call this asimple reason([Doyle 1983a, 1983c]). Simple reasons are the principal
attitudes manipulated by reason maintenance systems. (In [Doyle 1979] they are called
“support-list justifications.”)

It has been popular to present simple reasons in logical encodings. McDermott and
Doyle’s [1980] nonmonotonic logic encodes each simple reason

{a1, . . . , ai} \\ {b1, . . . , bj} ‖− c

as a formula
a1 ∧ . . . ∧ ai ∧M¬b1 ∧ . . . ∧M¬bj ⊃ c

of a logic including a modalityM interpreted as “consistent.” Reiter’s [1980] logic of
defaults encodes each simple reason as an inference rule

a1 ∧ . . . ∧ ai : M¬b1, . . . ,M¬bj ` c

again usingM to mean “consistent” but this time as part of the meta-language expressing
the applicability of the rule. But both of these encodings are flawed, for they employ the
complex, difficult-to-compute property of consistency to encode the simple properties of
presence and absence of attitudes. Consistency has nothing to do with the meanings of
simple reasons, and more natural logical encodings do not refer to it at all (see [Doyle
1983a,c]). The left-over logical component of nonmonotonic logic and default logic may
be better thought of as a sort of “autoepistemic” logic (as Moore [1983] calls it).
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3.2 Constitutive logics of mental states

For most agents of interest, we may associate with each state spaceI describing the agent
a logic of mental elements (or psycho-logic) so that each state inI corresponds to a de-
ductively closed and consistent set of mental elements inI ’s logic. These abstract logics
are calledinformation systems. Although information systems may be viewed simply as
theoretical devices for describing the agent’s states, they are actually much more impor-
tant than that, for many of the sorts of automatic limited deduction and automatic limited
consistency checking common in artificial intelligence systems may be described directly
in terms of information systems. Automatic reasoning specified by constitutive intentions
may go beyond the logic of the information system, and to describe such state spaces we
extend the notion of information system to that ofsatisfaction systemby incorporating the
notion of abstract self-specification.

3.2.1 Information systems

Following Scott [1982], an information systemΣ is defined by three things: a setD of data
objects (the “finite” or initial data objects), a setC of finite subsets ofD (the “consistent”
finite subsets), and a relatioǹonC × D (the “entailment” relation), where ifX ⊆ D and
y ∈ D, we writeX ` y instead of(X, y) ∈ `. The basic idea is to use these notions to de-
fine a data type ordomainby viewing each individual data object as a “proposition” about
domain elements, and each set of data objects as a partial description of some domain ele-
ment, with bigger sets representing better descriptions. When descriptions contain enough
“propositions,” the sets of data objects characterize (possibly partial) domain elements, and
so we may identify the elements of the domain with these sets of data objects.

The formal notions of consistency and entailment are given some substance by the
following axioms. For eachx, y ∈ D andX, Y ⊆ D, C satisfies

1. If X ⊆ Y ∈ C, thenX ∈ C,

2. If y ∈ D, then{y} ∈ C, and

3. If X ` y, thenX ∪ {y} ∈ C.

That is, subsets of consistent sets are consistent; each data object is itself consistent; and
addition of entailed elements preserves consistency. The entailment relation` satisfies

1. If x ∈ X, thenX ` x, and

2. If Y ` x for all x ∈ X, andX ` y, thenY ` y.

That is, consistent sets entail their own members, and entailment is transitive. This is clearer
if we extend the notation of entailment in the natural way to say thatX ` Y iff X ` y for
eachy ∈ Y , in which case the last condition can be rewritten asX ` Z wheneverX ` Y
andY ` Z.
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We say that a setX ⊆ D is consistentif each finite subsetY ⊆ X is consistent
according toC. We say thatX is closediff x ∈ X wheneverY ⊆ X andY ` x. Putting
these things together, theelementsof the information system, the set of which is written
|Σ|, are the closed and consistent subsets ofD. Some of these we view naturally as the
partial (or incomplete) elements of the domain, such as the minimal element

⊥ = {x ∈ D | ∅ ` x}.

The total (or complete) elements are those elements maximal under set inclusion, that is,
elementsX ∈ |Σ| such thatY = X if Y ∈ |Σ| andX ⊆ Y . We write dΣe to mean
the set of total elements ofΣ. We say thatX approximatesY wheneverX ⊆ Y . Every
element in a domain is the limit of its finite approximations, and there is a rich theory of
approximation that forms the basis of the theory of computation over domains (see [Scott
1982]). Finally, ifX is consistent we defineθ(X) to be theclosureof X, the least closed
superset ofX, or in terms of approximations, the least element of|Σ| approximated byX.
θ thus corresponds to the usual operatorTh of deductive closure in ordinary logic.

The view of information systems in which data objects are “propositions” that describe
domain elements thus views each data objectx ∈ D as meaning the proposition{X | x ∈
X∧X ∈ |Σ|}. This view is also natural in that alternatively we can consider the elementary
notions of consistency and entailment as stemming from a propositional meaning function.
Specifically, every function[[]] : D → L that interprets each objectx ∈ D as an element[[x]]
of a complete latticeL yields natural notions of consistency and entailment.PW andPD,
with intersection as meet and∅ as⊥, are such lattices. IfX ⊆ D we define the meaning of
X to be the meet of the meanings of its elements, that is

[[X]] =
∧
x∈X

[[x]].

The consistent sets are thoseX ⊆ D such that[[X]] 6= ⊥, and we say thatX ` Y iff
[[X]] v [[Y ]], so thatX is closed iffY ⊆ X whenever[[X]] v [[Y ]]. Under the assumption
that [[x]] 6= ⊥ for everyx ∈ D, the meaning function determines an information system.

Our first constitutive assumption about the agent was thatD = B ∪ D ∪ I, and our
second was that each state inI is satisfying. Our third constitutive assumption is that there
is some information systemΣ over thisD such that each state of the agent is an element
of the domain defined byΣ. That is,I ⊆ |Σ|, and each state is closed and consistent with
respect toΣ.

The most common sorts of agent states in artificial intelligence are composed of data
structures and propositional representations patently amenable to the information system
viewpoint. Of course, a single state-space may admit different representations in terms of
information systems, each with different notions of data objects, consistency, and entail-
ment. In some cases states may be described exactly as the elements or total elements of
someΣ, so thatI = |Σ| or I = dΣe, but it is an open question whether this is possible
for every state space of psychological interest. Ideally, the specification of the structure of
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an agent should be indifferent to the choice of information system used to discuss it. (We
pursue the question of invariant representations in a subsequent paper.)

Many notions of entailment and consistency fit within the framework of information
systems. It should be clear that the ordinary logical notions of consistency and entailment
satisfy these axioms. Alternatively,C need not be taken to be the usual notion of consis-
tency, but may instead capture only lack of overt inconsistency, as in

C = {X ⊆ D | X finite ∧ ¬∃x[x ∈ X ∧ ¬x ∈ X]}.

Similarly,` need not be taken to be the usual notion of entailment, but might only capture
propositional deduction instead of first-order deduction, or only Modus Ponens (X ` y iff
eithery ∈ X or there is somex ∈ D such thatx ∈ X andx ⊃ y ∈ X), or only ground
instantiation (X ` y iff either y ∈ X or y is a ground instance of somey′ ∈ X), or
entailment in modal, relevance, or probabilistic logics. The minimal notion of consistency
is the vacuous restriction

C = {X ⊆ D | X finite}

in which all sets are consistent. The minimal notion of entailment is pure containment
(X ` y iff y ∈ X), a relation lacking all nontrivial deduction. When bothC and` are
minimal, every set is closed and consistent, so|Σ| = PD.

We can always choosè so that some set of attitudes is present in every state as an
unchangeable background to the agent’s reasoning. These “axioms” need not just be tau-
tologies, but substantial attitudes as well. In each information system, the fixed background
is just the least element⊥ = {x | ∅ ` x}. For example, in the minimal information system,
⊥ = ∅, so there are no background attitudes determined by the information system. (Since
I need not exhaust|Σ|, the states inI may still have non-empty intersection, and hence an
unchanging background, even if⊥ = ∅.)

The logic of states need not be confined to logics of belief, but may also specify logics
of other beliefs, such as closure and consistency conditions on desires and intentions, or on
likelihoods and preferences. Many logics proposed in philosophical logic, such as deontic
logics and logics of imperatives might also be cast in these terms. These are useful in
expressing the more subtle consistency and completeness conditions mentioned but not
pursued in section 2.1.3.

3.2.2 Satisfaction systems

Just as the abstraction of information systems permits discussion of logics of mental states
even when the elements of mental states are not just beliefs, we may abstract the notion of
constitutive intention away from our assumed psychology of beliefs, desires, and intentions
and their internal and external meanings. In the notion of satisfaction system, all we retain
is the assumption that some elements of mental states have constitutive meaning. We define
a satisfaction system to be an information systemΣ = (D, C,`) together with a meaning
function [[]] : D → PPD, the idea being that the meaning[[x]] of an elementx is the set
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of possible states (worlds) that satisfy the constitutive intent, if any, of the element, and
that satisfying worlds are closed and consistent sets that satisfy the constitutive import of
each of the elements they contain. (IfI? varies with the agent’s state, then these additional
propositional interpretations of data objects will depend on the state as well.) Ifx has
no constitutive import, then it places no restrictions on possible states containing it, so
[[x]] = PD. We extend[[]] to subsets ofD by defining

[[X]] =
⋂
x∈X

[[x]]

for eachX ⊆ D. We define the set‖Σ‖ of satisfyingdomain elements to be

‖Σ‖ = {X | X ∈ |Σ| ∧X ∈ [[X]]}.

Clearly, ‖Σ‖ ⊆ |Σ|. Note that the definition permits unsatisfiable elements (elementsx
such that[[x]] = ∅) which may not appear in any satisfying state.

We assume that there is a satisfaction systemΣ overD = B∪D∪I such thatI = ‖Σ‖,
thus refining our earlier assumption thatI ⊆ |Σ|. This assumption may be satisfied trivially
if ⊥ is nonempty and we choose[[x]] = I for eachx ∈ D, since thenI = ‖Σ‖. The more
interesting question, for which we supply no answer, is whether for each satisfaction system
Σ there is an information systemΣ′ such that‖Σ‖ = |Σ′| or ‖Σ‖ = dΣ′e.2

As seen earlier, propositional meaning functions give rise to information systems in
quite natural ways, so we may consider the case of the meaning functions[[]] appearing in
satisfaction systems. The main observation is that even if we stipulate that[[x]] 6= ∅ for
everyx ∈ D, the information system arising from[[]] alone is not really of interest. The
central idea of satisfaction systems is the idea of self-satisfying states, and self-satisfaction,
as opposed to satisfaction, is a notion absent from the information system framework. For
example, we might derive an information systemΣ? = (D, C?,`?) from Σ = (D, C,`, [[]])
by definingC? = {X ∈ C | [[X]] 6= ∅}, andX `? y iff X ∈ C? andX ` y. It is easily
checked that

|Σ?| = {X | X ∈ |Σ| ∧ [[X]] 6= ∅}.
Since[[X]] 6= ∅ if X ∈ [[X]], we see that‖Σ‖ ⊆ |Σ?|, that in fact,

‖Σ‖ = {X | X ∈ |Σ?| ∧X ∈ [[X]]}.
2The notion of satisfaction system not only generalizes the notion of constitutive intention to other psy-

chological organizations, it also recasts the notion of admissible state semantics of [Doyle 1983a,e] in simpler
terms. In [Doyle 1983a], elements were allowed constitutive meaning and states were satisfying or not just as
in the present treatment. The main difference in formulation concerned the background logic, which was not
discussed explicitly, but introduced only through a restriction setR ⊆ PD, with states of the agent required
to be satisfying elements ofR. In the present setting, we can better understand the nature of the restriction
set by assuming that for most applicationsR = |Σ| for some information systemΣ. (The treatment in [Doyle
1983a] is more general in that a specificR may not be definable as a domain overD, but this added gen-
erality may not be interesting.) This assumption satisfies both of the explicit motivations for choices ofR
given in [Doyle 1983a], namely to rule out the empty state, and to require consistency and closure of states.
Consistency and closure, of course, are what information systems are about. Nonemptiness of states comes
as a consequence of this, if we choose the notion of entailment so that the empty set is not closed.
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But in generalX /∈ [[X]], hence‖Σ‖ 6= |Σ?|, so|Σ?| is not of interest.

3.3 Laws of thought and legal actions

While some constitutive intentions may place restrictions on the legal states occupied by
the agent, others may restrict the sorts of changes suffered or actions performed by the
agent. That is, in addition to actions determined by executing a single intention selected
from the agent’s plans, we allow actions taken automatically in order to satisfy constitutive
intentions about actions. We say that a state changeSt 7→ St+1 is satisfyingif it satisfies
each of the constitutive intentions contained inSt. (To express this precisely requires the
larger view that intentions are about sets of possible histories.)

Constitutive intentions about actions may be used to capture the dynamic notion of
indicative conditionals, as rules for revising one’s attitudes upon learning new information,
and to express the transition rules for simple sorts of parallel machines, such as cellular
automata, where constitutive intentions stipulate the state changes of each cell as a function
of its current state and the current states of neighboring cells.

3.3.1 Constitutive priorities

Constitutive intentions about actions add another consistency requirement beyond those
imposed by constitutive intentions about states and the constitutive logic, for no satisfying
actions are possible if the current set of constitutive intentions specify inconsistent changes.
That is, satisfying state changes exist only if the constitutive intentions about actions are
consistent, that is, if the set

ι?(St) =
⋂

x∈St∩I?

ι(x)

is nonempty, so that we may haveSt+1 ∈ ι?(St).
One might think that one sort of inconsistency is as bad as another, but inconsistency

of intentions in general is at once more common and less serious than other sorts of incon-
sistencies, such as of beliefs or preferences. Intentions are frequently inconsistent solely
because priorities are lacking. Lacking priorities to separate the times to which the inten-
tions refer lets them all refer to the same time, at which they are mutually inconsistent.
When priorities are added, separating the times to which the intentions refer, they need not
be inconsistent.

We may employ this observation to permit constitutive priorities that remove inconsis-
tencies between constitutive intentions about actions by postponing some of the intentions
about actions, that is changing their interpretation so that they do not apply to the next state
but to some (usually unspecified) later state. Such constitutive priorities thus reduce the
set of constitutive intentions applicable in the current state. If the priorities are properly
chosen, the reduced set of intentions is satisfiable. Of course, for instantaneous intentions

41



DOYLE

postponement may be equivalent to abandonment, since if conditional the constitutive in-
tentions may no longer be applicable in the next state.

3.3.2 Constitutive preferences

If the agent’s constitutive priorities do not suffice to reduce the constitutive intentions about
actions to a consistent subset, the agent might reduce the set further by rationally choosing
a consistent subset, finding, for example, the maximally preferred subset of constitutive
intentions. This sort of rational resolution of inconsistent intentions mirrors the rational
selection of accommodations treated earlier. In each of these cases, we may simplify the
task of rational selection by assuming that the agent does not use all of its preferences
in making the selection, but only a subset chosen so that these cases of decision-making
are simple and tractable. We may think of these preferences asconstitutivepreferences
of the agent. That is, we identify a subsetD? ⊆ Dr of the agent’s preferences about its
own states and actions as constitutive, as always or automatically satisfied. We assume
that constitutive preferences are of a sufficiently simple nature that we may ensure their
consistency through the psycho-logic, that is, require that ifX ⊆ D? andX ∈ C, then

(
⋃
x∈X

π<(x))∗

is consistent. In this way, the notion of consistency captured in the constitutive logic agrees
with the notion of consistency resulting from comparison of meanings. One way of do-
ing this might be to always check consistency of the meaning of a potential constitutive
preference with the meanings of the current set before adopting it as a new one.

3.3.3 Conditional actions

Several common ideas in artificial intelligence can be naturally viewed as constitutive in-
tentions about actions. Foremost among these is the common sort of condition-action pro-
duction rule, which states that if the current state satisfies some property, specific elements
should be added and deleted to get the next state, or schematically,

κ =⇒ ∂+ \\ ∂−.

Sets of such rules are compatible (but not necessarily satisfiable) if the total specified
sets of additions and deletions are disjoint, that is, if⋃

x∈V (S)

∂+
x ∩

⋃
x∈V (S)

∂−x = ∅,

whereV (S) is the set of applicable conditional actions, that isV (S) = {x ∈ S ∩ I? | S ∈
κx}.
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Production system languages such as OPSprovide vocabularies for expressing simpler
or richer sorts of conditions. The simplest sort of condition checks for presence and absence
of specific elements, which we might write as

A \\ B =⇒ ∂+ \\ ∂−,

whose positive and negative meanings in stateS are respectively∂+ and∂− if A ⊆ S ⊆ Bc,
and are∅ and∅ otherwise.

Constitutive priorities about constitutive intentions also appear in artificial intelligence,
the foremost appearance being the “conflict resolution” rules employed in condition-action
production systems. These systems are designed with the aim of having exactly one pro-
duction rule applicable once the set of candidates has been reduced by means of the conflict
resolution rules. Typical conflict resolution rules consider the order in which the rules ap-
pear in a master list, their generality or specificity, and the recency or immediacy of their
applicability, preferences which explicitly refer to the history of the agent.
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Chapter 4

Representative self-government

When agents are constructed out of many attitudes from disparate sources, the possibility
of inconsistency arises. In the preceding, we have largely ignored this possibility, basing
our discussion on definitions holding when the likelihoods, preferences, and priorities of
the agent are consistent. But one cannot realistically assume inconsistency away. As a
computational problem, it may be very difficult, even impossible, and in any event very ex-
pensive to tell whether one’s attitudes are consistent. As a practical problem, most artificial
intelligence systems contain information supplied by several experts, in the case of expert
systems, or by populations of fields in the case of encyclopedias. But different experts have
different opinions, even when each expert is individually consistent. If all contributors do
not resolve their differences before informing the expert system, the expert system must
adjudicate them itself.

While in the long run the agent may work to make its attitudes consistent, in the short
run it must live with inconsistency. One way of living with inconsistency is to temporarily
impose enough consistency to allow rational action, that is, to choose coherent subsets to
act upon. These choices of consistent grounds for action may differ with each action taken.
Of course, this approach only produces the instantaneous appearance of consistency, and
when the agent is observed over time, its internal inconsistencies manifest themselves in its
actions. That is, the agent’s actions may appear inconsistent with each other in the sense
that the attitudes imputed to the agent by an observer will be inconsistent for different
actions. Either the observers will develop very elaborate but self-consistent apologies for
the rationality of the agent’s actions, or they will decide the agent does not know what it
thinks. In this way, the inconsistent attitudes are reflected in inconsistent behavior.

Inconsistency reduces the aim of rational self-government to the practice of mere self-
government. Though the notion of ideal rationality provides a standard for action when the
agent is consistent, there are no universally accepted standards for how to act under am-
biguity, whether the ambiguity results from incompleteness or inconsistency. Just as there
are many forms of government known for human societies, each with its own advantages,
disadvantages, proponents and foes, there are many forms of self-government, with simi-
larly various advantages and disadvantages. This is no accident. Conflict, or inconsistency
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of interests, is the heart of political theory, for when groups are unanimous or compatible,
there is no politics, only consensual action. How to act when inconsistent is what political
theory is all about, and there is a direct correspondence between political organizations for
human government and psychological organizations for individual self-government. The
conflict of intuitions about inheritance noted in [Touretzky et al. 1987] is real since ev-
ery plausible system of government is a possible system for inference, inheritance, and
consistency resolution.

4.1 Social agents

Since we may not realistically assume that the agent’s attitudes are consistent, we must face
up to this difficulty in our theories. The natural way to do this is to assume that the agent is
composed of many parts (for example, mental attitudes) which appear or act independently
of each other. The task then is to describe how the behavior of the whole agent arises out
of the behaviors and interconnections of its parts or subagents. We call this thesocialview
of agent structure and behavior.

The social agent view appears in psychology as notions of mental organs or faculties,
most explicitly in Gazzaniga’s [1985] “social brain,” Minsky’s [1986] “society of mind,”
and in the modularity hypotheses of Fodor [1983]. These authors view the mind as com-
posed of many disparate organs, faculties, and subagents. Gazzaniga, for example, does
not try very hard to motivate this hypothesis in terms of evolutionary biology or compu-
tational complexity, but instead focuses on explaining the observed behavior of humans
in these terms. In his view, the function of beliefs is to provide a self-image, a theory
for the agent to use in understanding its own actions. This theory need not be accurate.
Indeed, it cannot be if it is merely a coherent face put on an underlying conflict of at-
titudes. Sometimes (perhaps usually) when beliefs conflict with actions, the beliefs are
changed (Festinger [1957] calls this “cognitive dissonance”), and sometimes actions are
changed. Internal conflicts and imperfect self-knowledge also appear in theories of disap-
pointment, self-commitment, and self-deception (see [Hirschman 1982], [Scitovsky 1976],
[Elster 1979, 1983], [de Sousa 1971], [Schelling 1984a], [Maital 1982], and [Kydland and
Prescott 1977].)

More obvious cases of social agents are studied in sociology, economics, and politi-
cal theory, where they appear as groups, corporations, parties, organizations, and agencies.
Where psychologists consider minds composed of societies, social theorists treat societies
composed of minds, in which the attitudes and behaviors of the group derive from the orga-
nization, attitudes, and behavior of its members (see [Pareto 1927], [Berger and Luckmann
1966], [Mundell 1968], and [Mueller 1979]).

The social agent viewpoint comes naturally to artificial intelligence, which early on
designed agents organized into collections of separate modules, processors, databases,
frames, contexts, K-lines, local problem-solving memories, hierarchical descriptions, and
semantic networks (see [Minsky 1986], [Abelson and Sussman 1985]). The social agent
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view has recently received added attention due to increasing interest in the notion of par-
allelism. Parallelism is frequently proposed as a means for speeding up computations,
but if simultaneous activities are to be coordinated—that is, yield consistent results—then
substantial speedups from parallelism are not always possible. That is, some tasks are
inherently sequential in that there is no way to decompose them into many simultaneous
consistent subtasks. In these cases, seriality is the only way of guaranteeing consistency.
But if we permit agents to be inconsistent, these restrictions may not apply, and we might
as well employ naive parallelism, even if it makes the agent a bit more inconsistent.

In this chapter we wish to describe the composition and organization of social agents,
construed broadly enough to encompass the ideas of artificial intelligence, psychology, and
the social sciences. Thus we will view as social agents not just inconsistent individual
agents or persons, but also larger bodies (groups, societies, agencies, corporations) and
smaller ones (mental faculties and organs). The internal organization of social agents will
be described by structured sets of parts or members, and the external appearance of these
parts described by the attitudes of the agent and how these attitudes relate to the states of its
members, the agents of which it is a member, and other parts of the agent’s environment.

4.1.1 Associations

We use the neutral termbodyto refer to all sorts of social agents, at all levels. The largest
unit of organization is theuniversal bodyΛ, which we assume encompasses all other bod-
ies. We writeΩ to mean the set of all possible proper bodies, called theuniverseof bodies.
Λ is an improper body, in that we assume thatΛ /∈ Ω, but we define thecloseduniverseΩ̄
to be the set of all possible bodies, proper or improper, namelyΩ̄ = Ω ∪ {Λ}.

Possible worlds over the closed universeΩ̄ associate organizational and informational
structures with each body in̄Ω. We define anassociationφ = (Ωφ, mφ, Iφ, Sφ) to be a
collection of mappings over̄Ω, such that for eachA ∈ Ω̄,

1. Ωφ(A) is a subset ofΩ, called thelocal universeof A in φ,

2. mφ(A) ⊆ Ωφ(A) is the set ofmembersof A in φ,

3. Iφ(A) is a set, called thestate spaceof A in φ, and

4. Sφ(A) ∈ Iφ(A) is thestateof A in φ.

When the association under discussion is understood, we drop the subscripts and write
Ω(A), I(A), m(A), andS(A).

We write Φ to mean the collection of all possible associations.Φ is not necessarily
a set, since we have not restricted the selection of state spaces in any way, but that will
not matter here. In the social agent setting, the set of possible worldsW is a subset of
Φ, propositions are subsetsP ⊆ W ⊆ Φ, and instantaneous states of the world are just
associationsφ ∈ W.
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Let φ ∈ Φ. We definem∗(A), the populationof A, to be the set of members ofA,
members of members ofA, and so on. Formally, we definem∗(A) to be the least mapping
such that

m∗(A) = m(A) ∪
⋃

B∈m(A)

m∗(B)

for eachA ∈ Ω̄. If we view the graph ofm as a relation over̄Ω × Ω̄, m∗ is just the
transitive closure ofm. We write m̄(A) andm̄∗(A) to mean, respectively,m(A) ∪ {A}
andm∗(A) ∪ {A}. We define theglobal populationω to be the population ofΛ, that is,
ω = m∗(Λ), and writeω̄ to meanω ∪ {Λ}. We say that bodiesexist in an association
just in case they are in the global population of the association. IfA ∈ ω̄, we define the
environmentAe of A to be the set of all other existing bodies, that is,ω̄\{A}. We define the
properenvironmentA∗e to be the environment ofA’s population, that is,A∗e = Ae\m∗(A).

If A, B ∈ Ω̄, we writeA ≺ B if A ∈ m̄∗(B). Clearly, the relation≺ quasi-orders̄Ω. We
say that a bodyA is regular if A /∈ m∗(A), and thatφ is regular if every body is. Ifm(A) =
∅, thenB ≺ A impliesB = A and we say thatA is atomic. If m̄∗(A)∩ m̄∗(B) = ∅, we say
A andB areseparate. It is often natural to suppose that bodies communicate or constrain
each other’s states only through shared members or other incidence of populations.

If mφ(A) = mφ′(A) for all configurationsφ, φ′ of a history, we say thatA is rigid.
The single agent discussed previously may be viewed either as the caseΩ = ∅ andIΛ =

I if there is no environment, or asΩ = {A, E}, whereA is the agent,E its environment,
Ω(A) = ∅, andI(A) = I.

4.1.2 Attitudes

For the cases of interest here, it is natural to interpret the states of bodies as sets of attitudes
of the body, just as we interpreted states of the unitary agent earlier. As before, we may
describe each state spaceIφ(A) with an information systemΣφ(A) = (Dφ(A), Cφ(A),`φ,A

) which we call aframingof states ofA in φ if Iφ(A) ⊆ |Σφ(A)|.
If there is a universal set of attitudesD and set of framings such thatDφ(A) ⊆ D for

eachA ∈ Ω, we say the framings areuniform. Each uniform set of framings induces a
partial orderv on bodies, called thevieworder, such thatA v B iff S(A) ⊆ S(B) in the
framings. While different bodies may be atomic amongω̄, there is only one atomic set of
attitudes, namely the empty set. This may occur when a body has only one possible state.
In general, when a body’s state is constant in all associations in a history, we say the body’s
attitudes arerigid.

When states are sets of attitudes, we may view the instantaneous structure of bodies as
a uniform set of elements or contentsc(A) = m(A) ∪ S(A). When attitudes are drawn
from a universal setD, we may think of attitudes as atomic bodies, with no attitudes of
their own, andc(A) as an expanded notion of membership. In this case, description of
the social organization structure simplifies to a universeΩ′ = Ω ∪ D and a membership
functionm′ = c. This allows us to combine the local information systems describing the
framings of each body into a global information systemΣφ = (Dφ, Cφ,`φ) by defining
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1. Dφ =
⋃

A∈Ω̄ {A} × Dφ(A),

2. iA(X) = {x ∈ Dφ | (A, x) ∈ X} for eachA ∈ Ω̄ andX ⊆ Dφ,

3. Cφ = {X ⊆ Dφ | X finite ∧ ∀A ∈ Ω̄ iA(X) ∈ Cφ(A)}, and

4. X `φ Y iff ∀A ∈ Ω̄ iA(X) `φ,A iA(Y ).

This information system combines the local systems without introducing any additional
structure. If we wish to add further consistency and entailment conditions, we might allow
any Σφ such thatDφ and iA are defined as above, withCφ and`φ compatible with the
local conditions in the sense that for eachA ∈ Ω̄, Cφ(A) = {iA(X) | X ∈ Cφ} and
iA(X) `φ,A iA(Y ) iff X `φ Y .

Each of the notions of meanings, laws, actions, and accommodations previously de-
veloped in the context of single agents extends to the case of social agents. Where before
propositions were sets of possible worlds, they are now sets of possible associations, so that
attitudes that we earlier viewed as self-referential laws of thought are now better viewed
as attitudes about the social agent’s overall social organization. The earlier distinction be-
tween internal and external meanings of attitudes carries over and generalizes to the notion
of local meanings, that is, the meaning of one body’s attitudes toward another body. For
example, it is natural to consider intentions conditional on and concerning an agent’s mem-
bership and non-membership, and intentions conditional on and concerning the agent’s
member’s states and other aspects of its environment. Consider intentions like “any mem-
ber of one of my members should also be one of my members,” “A andB should not both
be members at the same time,” and “if each of my members believes something, so should
I.”

The notion of laws of thought generalizes to local laws of thought, so that the attitudes
of each body determine a set oflegal states for the universe, but legal only with respect to
that body. Since a body’s members are, strictly speaking, part of its environment, states of
the members may fail to satisfy the body’s attitudes even if the body’s own state does satisfy
its attitudes. That is, bodies may be mistaken in their beliefs about their members, and
members may be in states the body does not desire or intend. Members that do not satisfy
a body’s intentions toward them are said to be inillegal states with respect to the body. As
before, we may think of some intentions as constitutional in the sense that they define the
actual legal states of an agent. But the class of laws that may be taken as constitutional
is considerably broader than before. Previously, whether an intention was constitutive or
not was not up to the agent to decide. But within social agents, we may consider laws
adopted by one body that determine what intentions are constitutive for another body at
that time, or for itself in the future. In this setting, constitutions, charters, laws, regulation,
rules, and organizational structures are all much alike in general effect, differing mainly
in their sources (who or what makes them) and in their fixity (how hard they are for the
body itself to change, or for their sources to change). IfI?

t(A) is the set of constitutive
intentions ofA at t, thenφ = Wt is a legal association ifφ satisfies every constitutive
intention of every body. In the dynamic case, these laws concern not only the changes of
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attitudes of the various members, as before, but also changes in membership. When these
involve changes in the global populationω, we may think of them as cases of incorporation
and disincorporation, birth and death, or creation and destruction of agents. Such laws are
familiar as stated in human societies, where corporations are just legal persons, persons or
bodies created by and regulated by laws. The most familiar examples in computation are
actions that allocate and deallocate memory elements in a heap.

In the social agent case, the notions of action and accommodation generalize to local
action and accommodation. We allow that several bodies may take actions independently,
rather than there being a single effector of changes. These local actions may change, for
example, only the state of the body itself, or only a few other bodies with which it com-
municates. Accommodation to changes may also occur locally, with different versions
of accommodation (for example, different constitutive preferences) employed in different
bodies.

4.2 Representation

We may think of an association as describing a system of representation in the logical
sense, that is, as an interpretation or model in logic. Specifically, we may view associations
as (partial) interpretations of a language of typed variables, viewing each bodyA ∈ Ω as a
typed variable. In this view, associations interpret the types of bodies as their constitutions
Iφ, and bodies themselves as valuesSφ within these types. Generally speaking, we may
embed any system of typed variables and their interpretation in a universe of bodies and an
association.

One important example of this is the notion of attitudinal states. Earlier we remarked
that one might treat attitudes as atomic bodies with no attitudes of their own. But this does
not mean that attitudes must have trivial state-spaces. Instead, we may think of meanings
of attitudes as states of attitudes. Here we assignIφ(A) = P or Iφ(A) = Q to each
attitudeA, so thatSφ(A) may be defined to be the current meaning ofA. This permits us
to express both the attitudinal and semantic structures of states within a single notion, that
of association.

But systems of representation involve more than just the notions of sign and object.
They also involve notions of compositionality, or how the meaning of a complex relates
to the meanings of its parts. Questions of compositionality are central to both logical and
political theories of representation. In the case of logical representations, this means asking
how the interpretation or truth value of a set of sentences depend on the interpretations or
truth values of the individual sentences and their syntactical components. Most logical con-
nectives and operators (the exceptions being the modalities) are meaning-functional, that
is, they determine the meaning of a sentence as a fixed function of only the meanings of the
syntactical components. In the case of political economy, compositionality concerns how
the attitudes and decisions of a group or official depend on or represent the attitudes and
decisions of the members of the group or constituents of the official. Some normative the-
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ories of political representation strive for meaning-functionality, ruling out decision rules
that depend on things other than the attitudes of members.

In much of what is treated as representation in artificial intelligence systems, constitu-
tive psycho-logics and constitutive intentions relate the states or contents of one subsystem
or body to the states or contents of others. That is, the laws of thought or organization de-
scribe the representation relation between the subsystem and its constituents. Inheritance
networks and constraint systems are good examples. In inheritance systems, individual
concepts are represented as bodies, with features or properties represented as the attitudes
of the concepts. Laws of organization called inheritance links specify that the attitudes of
one concept include or are otherwise derived from the attitudes of other concepts, for ex-
ample its superiors or superconcepts. (See [Doyle 1980] and [Doyle 1983d] for treatments
of inheritance along these lines.) In constraint systems, concepts are represented as bodies
as in inheritance systems, but here the laws of organization are local to each concept or
constraint. Each constraint may have several parts—subordinate bodies that may be shared
with other constraints—and the constraint’s rules of organization specify how the states of
these parts are derived from each other. (See [Sussman and Steele 1980] and [Doyle 1983d]
for more on this.)

4.2.1 Rational representation

Many special problems of representation result when one restricts the sorts of bodies and
constitutions to be of special forms. One of the most interesting cases is that of rational
representation, in which the states of all bodies are assumed to be rational. This is the case
studied in political economy, which asks how members of a committee, bureaucracy, mar-
ket, or electorate control the actions of the committee, agency, exchange, or government.
The standard theories assume the members to be ideally rational agents, and aim for the
composite body to be rational as well. Rational representation is thus exactly the notion
of interest in designing agents whose actions should be rational even though the agent’s
attitudes may be inconsistent. In this setting, the agent’s attitudes are the conflicting indi-
viduals, and the agent’s selection of attitudes on which to act is the set of group attitudes.
We have already defined the agent’s attitudes so that they are very simple rational agents.
Specifically, each attitude can be viewed as an agent whose attitudes are described by its
meaning. Since we assumed these meanings are quasi-orders, we already have that the at-
titudes of attitude-agents are consistent, though incomplete. Thus the agent’s task in acting
can be viewed as formally identical to the problem of group decision for these attitude-
agents. (See [Doyle 1988c] for an application of this idea to default theories. [Nowakowska
1973] makes a similar point. See also [Levi 1986].)

In the context of rational representation, the laws relating member states to group states
are called decision rules or aggregation rules. A large literature is devoted to the study
of the properties or efficacy of different sorts of decision rules. Some of the most stud-
ied sorts of decision rules are those satisfying compositionality criteria. For example, the
Pareto condition is that the group should agree with the members whenever the members
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are unanimous, and the non-dictatorship condition is that the group’s attitudes should not
reduce to a function of the attitudes of a single member of the group.

The first problem of rational representation is to determine when rational representa-
tions exist. Rational representations always exist when no conditions are placed on the
decision rules involved. But famous results show that no decision rule satisfying several
general but mild conditions can guarantee that the group attitudes are rational. Other results
show that if the member attitudes are sufficiently coherent, for example if their statistics
are single peaked, then some simple decision rules like voting give rational group attitudes.
And in the case in which attitudes are complete enough so that the utility functions are
smooth, general equilibrium theory shows the existence of price systems which represent
the preferences of traders in markets. See [Arrow 1963], [Black 1963], [Buchanan and
Tullock 1962], [Mueller 1979], [Debreu 1959], and [Arrow and Hahn 1971].

The second problem of rational representation is that even if rational representations
exist, they need not be unique. In general there are many ways of resolving conflicts,
some ways satisfying one set of members, and other ways satisfying other members. This
non-uniqueness is reflected in one of the central notions of group choice theory, namely
Pareto optimality. A decision (or set of group attitudes)X is Pareto optimal if any other
selection fails to satisfy some preference satisfied byX. Thus if one changes the decision to
satisfy some preference unsatisfied byX, one does so at the cost of failing to satisfy some
other preference that was satisfied byX. Pareto optimality alone is a very weak condition,
however, and most systems of government go far beyond it.

Rational representation plays a big role in artificial intelligence, for we may view some
of the conflict resolution rules of production systems, the preferences guiding conservative
accommodation, and default rules of frame systems in this light. In the contexts of conser-
vative accommodation and conflict resolution rules, Pareto optimality means making the
selection on the basis of some maximal consistent subset of the current preferences. See
[Doyle 1985], which interprets a theorem of [Doyle 1983a] along these lines.

4.2.2 Self-representation

One special case of rational representation is rational self-representation. While in rational
representation the attitudes of the group represent the attitudes of its members to the exter-
nal world, so that the agent appears to be a single body with the attitudes of the group, the
group body need not have any realization in the world independent of its members. This
observation is behind the methodology of individualism in economics, which views col-
lective agents purely as functions of their members, with no member-independent state or
existence. But in psychology, it is common to think of the group agent as something more
substantial. Psychology tries to view agents as real individuals (humans, after all, have their
own bodies), even though they are composed of many conflicting parts. This assumption
simplifies discussion of reflective agents that think about their own states and relations to
their environments. (The field of “rational expectations” in economics also treats reflective
agents, but without substantiating the group agent.) The simplest way of substantiating the
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agent’s rational selections of attitudes is to introduce a body that, as a member of the agent,
contains the rationally selected attitudes and so represents the agent’s attitudes to itself as
well as to the environment. It is natural to call this special body the agent’s self-image.

Formally, we may think of the self-image as a bodyME contained in the agent (ME ∈
m(A)), and that the agent’s constitutive attitudes describe how the contentsc(ME ) relate
to the general contentsc(A) of the agent. In some cases, we may expect that the contents of
the agent determine the contents of the self-image, but in other cases we may allow that the
agent reorganizes its attitudes to conform with the self-image. In the Freudian vocabulary,
we may think of the overall agent attitudes as the id and the self-image as the ego, with the
constitutive attitudes, distributed among id and ego or possibly separated into a third body,
as forming the superego.

As the Freudian terminology suggests, it is natural to think that there may be a variety of
individually embodied self-images, each used in different circumstances. In the Freudian
case, one self-image (the ego) is used descriptively, and the other (the superego) is used
normatively. In our earlier discussion of deliberation we introduced the notion of decision
situation, a compilation of all the attitudes selected as grounds for making a decision. We
may easily view each decision situation as a very special self-image, namely the image of
one’s self with respect to the decision in question. One may also view the idea of temporal
or hypothetical contexts in artificial intelligence systems as cases of special-purpose self-
images.

When the agent’s self-image is used to represent a consistent selection from among the
agent’s general attitudes, it is a contraction or subset of the agent’s full set of attitudes,
that is,c(ME ) ⊆ c(A). But we may also apply the notion of self-image in cases where
the agent’s attitudes are consistent but incomplete to represent more complete grounds for
action. That is, if there is no action rational given the agent’s incomplete attitudes, the agent
may represent a completion of its attitudes with a self-image. In this case the self-image
is an expansion or superset of the agent’s actual attitudes, that is,c(A) ⊆ c(ME ). These
two cases may be thought of, respectively, as the will to cohere and the will to believe. Of
course, the agent may also construct grounds for action that both resolve some conflicts
and fill some incompletenesses, so that the self-image is neither a subset or superset of
the agent’s attitudes. This is the situation faced in nonmonotonic logic, which resolves
some conflicts between defaults by splitting the attitudes into different selections, and at
the same time adds some assumptions to each. The same situation appears in theories of
inheritance with exceptions [Touretzky 1986]. As these examples show, the existence and
uniqueness of rational self-representations is at least as problematic as for plain rational
representations.
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Chapter 5

Comparative self-government

As was suggested earlier, there is no easy solution to the problem of inconsistency. The
complexity of the world makes inconsistent attitudes practically unavoidable, and there
is no unique ideal of how to behave though inconsistent. We have identified systems of
government as ways of constructing bases for actions: ideally, bases that are rational even
though they omit conflicting attitudes and are incomplete with respect to entailment. In
artificial intelligence, systems of government are calledarchitectures. Going further, we
suggest there is also no easy solution to the problem of infeasibility of entailment. Even
though there is, in this case, a unique ideal standard, that of deductive closure, allocation
of effort towards determining partial sets of entailments is an economic problem, to which
there may be several possible rational solutions, each yielding a different set of discovered
entailments. The mulplicity of approaches to action and allocation reflect different so-
lutions to the economic problem. In artificial intelligence, the question of how to allocate
instantaneous resources of effort, attention, memory, and time is called thecontrol problem,
and patterns or procedures for making such allocations are calledcontrol structures.

In general, the agent’s degree of rationality reflects the results of its decisions in rea-
soning, that is, the efficacy of its control decisions about how to reason, or its wisdom in
allocating resources. Thus these degrees represent primarily economic limits, not logical
limits. That is, the path of reasoning depends on the agent’s motivations and choices, not
just on logic and the agent’s beliefs. All of the agent’s attitudes play a role in determining
its motivations and choices, and, through these, the agent’s mental resources. The agent’s
resources are always changing anyway through consumption and possibly through changes
in the agent’s environment, but the supplies of the most important mental resources are not
fixed. Instead, they are what the agent makes them through investment of effort in their
improvement or destruction. Hence there is no natural logic of the limits to reasoning, as
these limits are not just a matter of the agent’s beliefs. Each logic of limited reasoning
(such as Levesque’s [1984] logic of explicit and implicit belief, or Davis’ [1981] logic of
obvious inferences) reflects a fixed set of limits, and no such static logic applies to minds
possessed of the ultimate resources of intelligence and industry applied over time. Instead
one has only degrees of rationality that may vary over time with the agent’s actions.
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Unfortunately, ideal rationality can not be approximated satisfactorily. Even if one
agent is more rational than another, its actions need not be more rational in their results.
For example, consider the ideal play in chess approximated by lookahead at mostn ply
deep. In this case, a better approximation may completely change the results of the pre-
vious approximation, even if the results of the shallower search agree with the ideal play.
In deliberation, additional steps of reasoning may completely reverse tentative decisions,
even if the reversed decision is ultimately the correct one. Thus better approximations usu-
ally are only less limited in resources used or attitudes satisfied, not closer in result to the
ideal. In economics, the impossibility of approximating ideally rational results by apply-
ing increasing resources is called the problem of the “second best,” and reflects the fact
that partial optima (optima given stipulated boundary conditions) are generally not global
optima.

Each architecture or psychological organization involves different sorts of resources.
Since each approach suggests different dimensions or ways in which rationality might be
limited, we may compare different approaches with respect to the degree of rationality they
offer. These comparisons are necessarily incomplete, since there are many dimensions
that may be considered separately in each type of government, and different types of gov-
ernment present different sets of dimensions. For example, in the setting of the previous
chapters, the agent may be more or less rational with respect to beliefs separately from its
rationality with respect to desires or intentions. Thus the ordering of governments by their
rationality will be nonlinear, and selections of governments for designed agents will force
tradeoffs among desirable qualities. More generally, the intelligence of the agent depends
on its state of knowledge as well as its degree of rationality, and comparisons of states of
knowledge have even more dimensions than does rationality, for there are many more sep-
arate types of knowledge (factual, evaluative, procedural) and subjects of knowledge than
dimensions of rationality.

In this chapter, we offer some first steps toward formalizing comparisons of degrees
of rationality and states of knowledge as a number of quasi-orders over agents, states, and
meanings. These may then be applied to make overall comparisons of architectures, though
we do not do so here. In the simplest case, we may see if one system of government domi-
nates another, that is, if it yields actions of greater rationality than another when in the same
state. More generally, if we have expectations about the situations to be encountered by the
agent and the structure of its knowledge, we may numerically represent the quasi-orders
and compare the expected degrees of rationality of the different systems of government,
that is, whether one system yields more actions of comparable rationality over time when
averaged over possible circumstances.

5.1 States of knowledge

We compare states of knowledge of the agent according to their completeness in each
subject, including both internal and external subjects. Rather than simply comparing the
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sets of attitudes directly, we compare their meanings. That is, we will not consider one
agent more knowledgeable than another just because it has numerically more attitudes if
the import of those attitudes is the same. Formally, we first define orders on propositions
and quasi-orders by saying thatP ≤ P ′, for P, P ′ ∈ P, iff P ′ ⊆ P (that is,P ′ is stronger
or more meaningful thanP ), and that forM, M ′ ∈ Q, M ≤ M ′ just in caseM< ⊆ M ′<

andM ′∼ ⊆ M∼, so that bigger orders make more strict distinctions and are neutral about
fewer things.

With these orders on meanings, we may say that one consistent set of attitudes is greater
than another consistent set if the combined meanings of each type of attitude in one set is
greater than the combined meanings in the other. Thus ifX, Y ⊆ D are consistent sets of
attitudes, we defineX ≤ Y to mean that

1. β(X ∩Ba) ≤ β(Y ∩Ba) in P,

2. δ(X ∩Da) ≤ δ(Y ∩Da) in P,

3. ι(X ∩ Ia) ≤ ι(Y ∩ Ia) in P,

4. λ(X ∩Br) ≤ λ(Y ∩Br) in Q,

5. π(X ∩Dr) ≤ π(Y ∩Dr) in Q, and

6. $(X ∩ Ir) ≤ $(Y ∩ Ir) in Q.

This means that ifX ≤ Y , an agent with beliefsY knows at least as much as an agent with
beliefsX, even ifX 6⊆ Y . When we cannot assume agents are consistent, we say that one
set of attitudes represents more knowledge than another if consistent selections from the
two can always be made so that selections from one dominate selections from the other.
Formally, we say thatX ≤ Y for anyX, Y ⊆ D, if for each consistent setX ′ ⊆ X there
is a consistent setY ′ ⊆ Y such thatX ′ ≤ Y ′. This means that the more knowledgable
agent may always choose a consistent basis for action that equals or exceeds the choice of
the less knowledgable agent.

5.2 Degrees of rationality

Rationality involves both coherence and optimality of actions, so degrees of rationality
compare the degrees of coherence and degrees of optimality exhibited by agents.

We may compare the coherence of two agents by comparing the notions of consistency
they embody. To do this, we define a relation≤ between information systemsΣ = (D, C,`
) andΣ′ = (D′, C ′,`′) such thatΣ ≤ Σ′ if

1. D ⊆ D′,

2. X ∈ C if X ∈ C ′ andX ⊆ D, and
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3. X `′ x wheneverX ` x andX ∈ C ′.

It follows that≤ is a partial order on information systems, and that|Σ′| ⊆ |Σ| if Σ ≤ Σ′ and
D = D′. We may use this order on information systems to compare degrees of coherence
by using information systems to describe the different logics exhibited by agents at each
instant. (Later, we will use this same order to compare the strength of constitutions of
agents.) The order on information systems compares at least some aspects of coherence
since agents with larger sets of coherent subagents will be more consistent. That is, if we
suppose that some bodies are constitutively consistent (as we supposed individual attitudes
to be), or that some sets of bodies are constitutively conflict-free, then these suppositions
will be reflected in the structure of the consistency notion of the global information system
Σφ. There are other notions of coherence of importance in reasoning that go beyond simple
consistency, for example, single-peakedness of the individual preferences, but we will not
pursue these notions here (see [Mueller 1979]).

To compare degrees of optimality, we must think of degrees of rationality not in terms
of resources used, but in terms of the grounds or conditions of rationality, in terms of the
attitudes accounted for and satisfied by an action. To do this, we must separately compare
actions and accommodations with respect to preferences, since both choices of intended
action and choices of accommodation involve optimization. Formally, we say that an agent
A is more rational than an agentB just in the case that when both are in the same state
of knowledge, the consistent setsY andY ′ of preferences used byA in selecting, respec-
tively, the intent and the accommodation, dominate the corresponding setsZ andZ ′ used
by B, that isZ ≤ Y andZ ′ ≤ Y ′. Though it might seem to add little to the definition of
one agent being more knowledgable than another with respect to preferences, this defini-
tion is different in that it compares the preferences actually used to choose the intent and
accommodation, not just some possible selections of preferences.

Comparing the intents of actions compares their progressiveness, while comparing the
accommodations of these intents compares their conservativeness. A common confusion
occurs when we compare the progressiveness or conservativeness of full actions rather than
separately comparing volitions and accommodations. The progressiveness order views all
changes as good, while the conservativeness order views all changes as bad, so the more
conservative a complete action seems, the less progressive it will be, and vice versa. When
we require that intents be optimally progressive and that accommodations be optimally con-
servative, actions may satisfy both requirements simultaneously and constitute true limited
rationality.

It may be, however, that some applications of progressiveness and conservativeness re-
fer not to comparative notions but to absolute ones, with absolute progressive agents being
those that make a specified minimum amount of progress with each action, and absolutely
conservative agents being those that make no more than a specified maximum amount of
change with each action. These absolute notions might best be viewed as reflecting the
constitution of the agent, as treated below.

Because they concern how much change the agent makes in acting, degrees of progres-
siveness and conservativeness are important measures of the subjective speed of the agent,
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that is, its internal time-scale. Different agents, or different implementations of the same
agent, may appear slower or faster than one another when compared to each other or to the
rest of the external world.

5.3 Strength of constitution

Beyond the amount of knowledge and degree of rationality, the level of intelligence of
an agent depends also upon the strength of its constitution. We already have most of the
means for formally comparing constitutional strength of agents in the comparisonsΣ ≤ Σ′

on information systems andX ≤ X ′ on states of knowledge. The constitutive logic of
agents may be compared through the satisfaction systems describing their state-spaces.
By applying the order on intentions to compare constitutive intentions, the partial order on
information systems may be extended to one on satisfaction systems by saying thatΣ ≤ Σ′,
for Σ = (D, C,`, [[]]) andΣ′ = (D′, C ′,`′, [[]]′), if Σ ≤ Σ′ as information systems and if
[[x]]′ ≤ [[x]] in P for eachx ∈ D. Then if Σ ≤ Σ′, we have‖Σ′‖ ⊆ ‖Σ‖. Similarly,
we use the order on states of knowledge to compare the sets of constitutive priorities and
preferences used by the agent in the progressive and conservative stages of action.

We may thus consider levels of intelligence to be characterized by constitutive lower
bounds on knowledge and degrees of rationality. While even brilliant thinkers may make
allocation errors and so take stupid actions, dullards suffer from abnormally low lower
bounds on their rationality. It isn’t that they can’t perform the same reasoning in princi-
ple, but that so much more must be made conscious, at enormous costs in attention and
resources. Since the bookkeeping needed to keep attention focused must itself be attended
to, the result is that the half-wit will find things not uniformly twice as hard, but exponen-
tially (in the complexity of the problem) harder than the full-wit. This is a handicap even
extreme diligence will find hard to conquer. One important case of this is the difference
between novices and experts. Novices, even if possessed of adequate instructions, must
perform every step consciously, and expend much effort in keeping track of their progress
and of their understanding of the instructions. For the expert, almost all of this reasoning is
automatic, and seems effortless. Normal novices have adequate automatic reasoning pow-
ers, but have not yet committed their instructions to these powers. They may be intelligent
in other arenas, but in their new subject they are stupid.
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Chapter 6

Conscious self-government

One of the lessons implicit in the preceding is that consciousness is an activity, not simply
a property enjoyed by an agent. In artificial intelligence and philosophy, it is customary
to think of reflection and representation as passive relations between agent and object, not
as actions the agent intends or performs. But in making and changing assumptions, in
planning, and especially in deliberation, we see that reflection is a process of reasoning
and choice that the agent employs routinely in the course of living, so that self-delineation,
self-definition, self-evaluation, and self-modification are the very basis of rational self-
government.

The curious thing about consciousness, however, is its dispensability, not its necessity.
In almost every specific activity necessary to human life, self-consciousness is unnecessary.
Jaynes [1976] expands on insights from ethology (see, for example, [Tinbergen 1951]) to
illustrate this dispensability in many basic human activities, and current work on expert
systems illustrates its dispensability in many non-basic human activities. Recent work on
routines by Ullman [1983] and Chapman and Agre [1987] pushes this observation even
further.

But if consciousness is dispensable, when is it desirable? Consciousness’s major benefit
is that it makes the evolution or improvement of its practitioners more rapid. The rapidity
of the evolution of human living in historical times has no equal in macroscopic biological
evolution, and the rapidity of evolution of human living under capitalism, with its deliber-
ate pursuit of increasing productivity, has few equals in human history. (See [Jaynes 1976],
[Festinger 1983], [Drucker 1985], and [Rosenberg and Birdzell 1986] for interesting theo-
ries of the role of self-consciousness in human history.)

Though consciousness has many benefits even when it is not strictly necessary, the ben-
efits of consciousness do not come free. Consciousness misapplied during routine actions
interrupts their performance, or at least slows it down. If consciousness becomes an end
in itself or turns on itself, paralysis may result. (See [Schön 1983], [Dreyfus and Dreyfus
1985].)

Consciousness has some deeper consequences besides these benefits and costs regard-
ing the efficacy of reasoning. One consequence is that conscious self-government entails
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personhood. Frankfurt [1971] has developed a theory of personhood in which the criterion
of personhood is the possession of attitudes towards one’s own attitudes. Such attitudes
form the backbone of rational self-government. A more fundamental consequence of con-
scious self-government is absurdity. Without consciousness, people could not develop feel-
ings of self-insignificance, appreciations of the absurd. (See [Nagel 1979], [Doyle 1980].)
Lesser beings never destroy themselves. Conscious agents, in choosing their own evolu-
tion, must ask: “By whose values?” The answer is by those they have inherited or adopted,
but they may also ask: “Why these and not others?” In contemplating this question, the
meaning of existence is questioned, for it is easy to see paths to states in which removal of
all values and beliefs is rational. And that is the end.

If when my wife is sleeping
and the baby and Kathleen
are sleeping
and the sun is a flame-white disc
in silken mists
above shining trees,—
if I in my north room
dance naked, grotesquely
before my mirror
waving my shirt round my head
and singing softly to myself:
“I am lonely, lonely.
I was born to be lonely,
I am best so!”
If I admire my arms, my face,
my shoulders, flanks, buttocks
against the yellow drawn shades,—

Who shall say I am not
the happy genius of my household?

William Carlos Williams,Danse Russe
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Immediate implication and inconsistency

Under one interpretation, the primitive formal notions of information systems, “consis-
tency” and “entailment,” correspond naturally to Harman’s [1986] primitive (but informal)
notions of “immediate inconsistency” and “immediate implication.” Harman develops his
notions as the only fragments of logic visible in the psychology of ordinary reasoning.
When formalized as information systems, these notions provide the logic of the structure
of mental states, fragments of logic visible in the mental states themselves.

Immediate implications and inconsistencies can be interpreted formally in either of two
ways. In the first way, the sets of immediate implications and inconsistencies are fixed
throughout the history of the agent. ForX ⊆ D andx ∈ D, we writeX ⊃

i
x if the ele-

ments ofX immediately implyx, and we write¬
i
X if the elements ofX are immediately

inconsistent.
We can construct an information system from these immediate notions by definingCi

to be the finite sets not containing any immediately inconsistent subsets, that is, saying
X ∈ Ci iff

1. X is finite, and

2. there is noY ⊆ X such that¬
i
Y ,

and by defining̀ i to be provability using Modus Ponens on immediate implications, that
is, sayingX `i e iff X ∈ Ci and either

1. e ∈ X, or

2. there is a sequencee0, . . . , en of elements ofD such thate = en and for eachi,
0 ≤ i ≤ n, either

(a) ei ∈ X, or

(b) there is someY ⊆ D such thatY ⊃
i
ei and for eachy ∈ Y there is somej < i

such thaty = ej.
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It is easy to see thatCi and`i form an information systemΣi just in case no single element
or immediate implication is inconsistent, that is, just in case there is nox ∈ D such that
¬
i
{x}, and just in caseX ∪ {x} ∈ Ci wheneverX ⊃

i
x.

A very similar construction suffices to extend an initial information systemΣ = (D, C,`
) to an information systemΣ′ = (D, C ′,`′) that combinesC and¬

i
to getC ′, and combines

` and⊃
i

to get`′. It does not matter if some of the immediate implications and inconsis-

tencies redundantly restate some of the entailments ofΣ. Note thatΣ′ extends bothΣ and
Σi, that is,Σ ≤ Σ′ andΣi ≤ Σ′.

In either of these cases, each immediate implication or inconsistency directly represents
an entailment or consistency condition. In the second interpretation immediate implications
and inconsistencies are constitutive intentions contained in states, so that the implicit im-
mediate logic may vary from time to time. In this case we viewX ⊃

i
x and¬

i
X as elements

of D such that
[[X ⊃

i
x]] = {S ⊆ D | X ⊆ S ⊃ x ∈ S}

and
[[¬

i
X]] = {S ⊆ D | X 6⊆ S}.

Here we may construct an information systemΣ(S) for each stateS ∈ ‖Σ‖ to represent
the instantaneous logic expressed in that state. The construction is as above, only we use
only those immediate implications and inconsistencies contained inS.
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Temporal and logical nonmonotonicity

The adjective “nonmonotonic” has suffered much careless usage recently in artificial intelli-
gence, and the only thing common to many of its uses is the term “nonmonotonic” itself. In
fact, two principal ideas stand out among these uses: namely, that attitudes are gained and
lost over time, that reasoning is nonmonotonic—this we calltemporalnonmonotonicity—
and that unsound assumptions can be the deliberate product of sound reasoning, incomplete
information, and a “will to believe”—which we calllogical nonmonotonicity. Indeed,
much of the confusion reigning about the subject stems from a confusion between these
two sorts of nonmonotonicity, and between logical nonmonotonicity and nonmonotonic
logic.

Let us differentiate these uses in precise formal terms. In mathematics, the terms mon-
otonic and nonmonotonic (or monotone and nonmonotone) refer to properties of functions
between ordered sets, so to use these terms with precision in describing a reasoning agent,
we must identify specific functions with ordered domains and codomains to which we may
attribute these properties. When we view states through the lens of information systems as
closed sets of mental attitudes, we can distinguish two functions between ordered sets. Let
T be the set of temporal instants of a history ordered by increasing time. Consider the state
spaceI as a subset ofPD ordered by set inclusion, so that states with additional elements
are considered bigger. We may then view each history of the agent as a function

S : T → PD,

and the closure operator of the information system as a function

θ : PD → PD,

such thatS(t) = St = θ(St) for each instantt.
Now S andθ are functions between ordered sets, and so may be monotonic or not. We

say that monotonicity ofS with increasing time istemporalmonotonicity of the agent’s
attitudes; that is, the agent’s mental states exhibit temporal monotonicity if they arecumu-
lative, if St ⊆ St′ whenevert ≤ t′. Logicalmonotonicity is the usual property of deductive
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closure functionsθ; the set of conclusions grows monotonically with increasing sets of ax-
ioms, that is,θ(X) ⊆ θ(X ′) wheneverX ⊆ X ′. Thus temporal or logical nonmonotonicity
occurs when the agent’s characterization employs nonmonotonic functions forS or instead
of θ.

The idea that reasoning may be nonmonotonic is very old, for in almost all familiar
situations the attitudes of agents change nonmonotonically over time; that is, the function
S is temporally nonmonotonic in ordinary situations.

Rational agents provide a good example of logical nonmonotonicity. When meanings
are constant and environments ignored, we may assume the existence of a transition func-
tion

τ : I → I

such that
τ(St) = St+1.

In rational agents, such functions, considered as functionsτ : PD → PD over sets of atti-
tudes, are ordinarily nonmonotonic, as they typically involve choosing actions on the basis
of the transitive closures of incomplete sets of likelihoods and preferences, so that larger
states, which may contain more preferences and likelihoods, may yield different maxima.
Thusτ is logically nonmonotonic. Of course,τ also describes the agent’s (possibly non-
monotonic) temporal evolution, and this encourages a degree of confusion between the two
sorts of nonmonotonicity.
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Glossary of Some Key Terms

These glosses are meant to suggest the senses in which we use these terms, but should not
be taken as strict definitions, since many are primitive terms whose exact character stems
from the roles they play in the formal treatment.

Accommodation: A change of legal state undertaken in order to incorporate some
attitudes.

Attitudes: Mental stances towards things, such as hopes that certain conditions are
true, or hatreds of certain activities. While humans exhibit many sorts of attitudes, we are
mainly concerned with beliefs, desires, and intentions.

Belief: The attitude toward a proposition of believing it to be true, believing the propo-
sition describes the actual world. Relative beliefs are called likelihoods.

Conservative: Changes of state that are as small as possible.
Constitution: The organization of the agent’s legal states and actions, as expressed by

the underlying constitutive logic (or psycho-logic) and constitutive attitudes.
Desire: The attitude toward a proposition of wanting it to be true. Sometimes also

called wants or goals. Relative desires are called preferences.
External: A part of the world viewed as part of the agent’s environment.
Habitual: Actions or steps of reasoning taken by the agent without thinking about

whether to do them.
Inference: See reasoning.
Intent: The attitude toward a proposition of intending to act to make the proposition

true. Sometimes also called plans or goals or aims. Relative intentions are called priorities.
Internal: A part of the world viewed as part of the agent.
Legal states: States closed and consistent according to the agent’s constitutive logic

and satisfying all the constitutive attitudes they contain.
Likelihood: Comparative belief that one proposition is likelier to be true than another.
Logic: A formal system describing the internal structure of some subject. In logical

reasoning, the set of attitudes adopted and abandoned reflect those mentioned in inference
rules of the logic.

Preference:Comparative desire for one proposition to be true more than another.
Priority: Comparative intention to make one proposition true before another.
Proposition: A set of posible worlds. For example, the set of exactly those worlds in

which some condition is true. A proposition holds, or is true, if it contains the actual world.
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Rational: Ideally, an action is rational if the action is of maximal expected utility
among all the actions available to an agent at some instant.

Reasonable:Actions humans find acceptable or normal. Reasonability may differ from
rationality, especially when the agent’s attitudes conflict.

Reasoning: The process of changing one’s attitudes. This may involve adopting or
abandoning attitudes of any type.
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