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Abstract

Specification of objectives constitutes a cen-
tral issue in knowledge representation for
planning. Decision-theoretic approaches re-
quire that representations of objectives pos-
sess a firm semantics in terms of utility func-
tions, yet provide the flexible compositional-
ity needed for practical preference modeling
for planning systems. Modularity, or sepa-
rability in specification, is the key represen-
tational feature enabling this flexibility. In
the context of utility specification, modular-
ity corresponds exactly to well-known inde-
pendence concepts from multiattribute util-
ity theory, and leads directly to approaches
for composing separate preference specifica-
tions. Ultimately, we seek to use this utility-
theoretic account to justify and improve ex-
isting mechanisms for specification of prefer-
ence information, and to develop new repre-
sentations exhibiting tractable specification
and flexible composition of preference crite-
ria.

REPRESENTING UTILITY FOR
PLANNING

As generally conceived, the AT planning task aims to
use beliefs about the world and predicted effects of
available actions to synthesize a course of action fur-
thering some objectives. Decision-theoretic planning,
which measures beliefs in terms of Bayesian probabil-
ity and objectives in terms of expected utility, chal-
lenges the architect of planning systems to design rep-
resentation constructs that can be interpreted faith-
fully in terms of probabilities and utilities, that can
be scaled to facilitate expression of general knowledge
about broad domains, and that support computation-
ally tractable inference about plans and partial plans.

Multiple objectives, partially achievable objectives,
and uncertainty about the effects of actions all pose
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difficult problems for traditional goal-based planning
systems. In themselves, goal conditions provide no
means for resolving tradeoffs among competing ob-
jectives or for expressing varying degrees of partial
satisfaction. Since these difficulties arise in most (if
not all) realistic planning problems, builders of prac-
tical planning systems commonly augment goal-based
representations with heuristic measures of goal impor-
tance, partial goal achievement, or other priority rela-
tionships. These augmentations might assign, for ex-
ample, numeric achievement values to individual goals,
costs to individual actions, and penalties proportional
to the measured distance from a goal. The planner
then combines them in some straightforward way (e.g.,
achievement values minus costs minus penalties) to
evaluate an overall plan. Although such ad hoc mecha-
nisms might provide reasonable performance in partic-
ular planning systems, they typically lack any precise
meaning, and so provide neither a basis for evaluating
their coherence and appropriateness for other problem
domains, nor a justification for the inference opera-
tions and choices executed by the underlying planning
architecture.

In contrast, interpreting specifications of objectives in
terms of decision-theoretic preferences permits the de-
signers of planning systems to judge both the coher-
ence of the objectives and the effectiveness of the plan-
ning system in furthering these objectives. But deci-
sion theory per se does not address the problem of
designing convenient representations for preference, or
its corresponding measure, utility. Applying the con-
cepts of decision theory directly (as in decision analy-
s18) requires specifying a utility function over the en-
tire domain, ranking plan results by their desirabil-
ity in any conceivable planning situation. This places
unwarranted burdens on the modeler, since different
features of the situation are relevant with respect to
decisions made at different levels of abstraction or at
intermediate stages of plan synthesis. To make utility
specifications more convenient, we seek modular rep-
resentations that separately specify preference infor-
mation concerning particular factors, so that we can
dynamically combine those factors deemed relevant to



a particular problem and level of abstraction.

The following builds a framework for modular speci-
fication of utilities on firm decision-theoretic founda-
tions. We begin by presenting our view of modularity
in knowledge representation as specification of flexibly
composable model elements. Next, we present some
background material on multiattribute utility theory
prerequisite to our account of modular utility specifi-
cation. We then demonstrate the correspondence be-
tween separability in specification and well-established
independence concepts from utility theory, and exhibit
the consequences of the theory for composition oper-
ations on utility representations. We conclude with a
summary discussion of related issues and work.

2 MODULARITY AND MODEL
COMPOSITION

AT planning distinguishes itself from other approaches
to automated decision making by emphasizing compo-
sitional synthesis of a course of action from primitive
action elements (i.e., operators) together with speci-
fications of the effects of each of these primitive ele-
ments in isolation. To synthesize a composite plan, a
planner must determine the overall effects of the com-
posite plan as a modular combination of the effects of
its constituent actions. Modular specification of effects
is essential to giving planners the freedom to compose
primitives as necessary. But modular specification of
planning objectives is equally important. Access to
preferences regarding specific outcome features (with-
out specifying them over complete outcomes) is essen-
tial when it is impossible or infeasible to characterize
the entire outcome space in advance, when different
features are relevant for different decision problems,
and when preferences for particular aspects of the out-
come depend on background context.

For example, consider the problem of planning large-
scale military transportation operations. At a high
level, we might consider monetary costs and whether
the specified movement requirements are met, whereas
a more detailed analysis would consider the timeliness
of cargo movements, the amount and type of cargo
moved, stress on transportation resources, and safety.
When making isolated decisions about parts of the op-
eration (the usual case), it often proves advantageous
to treat resource reservations that impact the rest of
the plan as part of the outcome, and to summarize the
value of those resources as opportunity costs.

Assessing a global utility function covering all of these
outcome features and their subconcepts seems imprac-
tical. We believe it more reasonable to specify utility
functions over individual features or small groups of
features, combining these as needed for making trade-
offs in decision problems involving sets of features.
For example, we might have a measure of the value
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of moving various types of cargo and a relation de-
scribing the tradeoff between monetary cost and tar-
diness for particular movement classes. When faced
with a particular decision problem, the planner assem-
bles the relevant outcome features and corresponding
utility specifications, then constructs a comprehensive
utility model by composing the individual utilities.!

To realize this approach, we must develop interpreta-
tions for isolated preference specifications, and meth-
ods for defining composition operators and composing
selected partial specifications. Fortunately, utility the-
orists have developed a rich framework for analyzing
the composition of utility functions over multiple at-
tributes, motivated by the need to simplify assessment
even when attributes are fixed in advance.?2 We can ex-
ploit this theory for more flexible utility representation
as well, both to make sense of modular specifications
and to determine the appropriate form of composition
operators. In the remainder of this paper, we present
the relevant utility theory, and demonstrate its appli-
cation to the problem of flexible composition of mod-
ular utility specifications.

3 PREFERENCES AND UTILITY
FUNCTIONS

Utility theory starts with the notion of preferences
over outcomes (Keeney and Raiffa, 1976). Outcomes
represent the possible consequences of the agent’s de-
cisions. In the planning context, an outcome might
be taken to be the state resulting from execution of
a plan, or perhaps an entire history of instantaneous
states over the lifetime of the agent. To provide an ad-
equate basis for decision, the set  of (mutually incom-
patible) possible outcomes must distinguish all conse-
quences that the agent cares about and are possibly
affected by its actions. We define the agent’s prefer-
ences by a total preorder (a complete, reflexive, and
transitive relation), =, over possible outcomes, called
the preference order.

Given a few topological restrictions on =, the pref-
erence order can be captured by an order-preserving,
real-valued wutility function, u. The function u repre-
sents 7 in the sense that outcomes can be ranked by
comparing the numeric values of the utility function

'The task of dynamically constructing decision mod-
els for particular problem instances from general do-
main knowledge is gaining increasing attention from re-
searchers (Wellman et al., 1992). Most of the work to
date concerns probabilistic modeling, but some addresses
the equally important problem of generating utility mod-
els (Haddawy and Hanks, 1990; Loui, 1990).

*Researchers in multiattribute utility theory tend to re-
fer to decomposition rather than composition because they
look to assess a fixed outcome space in a top-down manner,
rather than the bottom-up assembly of primitive utility
specifications.



applied to those outcomes, with w = w' iff u(w) >
u(w') for w,w' € Q. However, the utility-function rep-
resentation is not unique. If u(w) > wu(w'), then it
must also be the case that ¢(u(w)) > p(u(w')), for
any monotonically increasing function . Since they
represent the same preference order—and thus would
sanction identical decisions (under certainty)—we say
that v and ¢ o u are strategically equivalent.

When there is uncertainty, plans influence outcomes
only probabilistically, and we must represent the an-
ticipated result of a plan by a probability distribution
over §), or prospect, and extend 2 to order prospects.
The central result of utility theory is a representation
theorem that establishes (given some restrictions on
) the existence of a utility function v : 2 — R such
that preference over prospects is represented by the
expectation of u over those prospects. The key point
here is that u is defined over outcomes alone; the ex-
tension to prospects via expectation is a consequence
of the axioms of probability and utility (Savage, 1972).

As in the deterministic case, the utility-function
representation for a preference order over uncertain
prospects is not unique. However, monotone trans-
formations do not generally preserve expectation or-
derings, and hence the class of strategically equivalent
functions is more limited in the uncertain case. Specif-
ically, expected utility functions® are unique up to a
positive linear transformation. That is, for positive
linear function ¥ (i.e., ¥(x) = ax + b, a > 0), the util-
ity functions u and v o u are strategically equivalent.

In principle, we could avoid utility functions altogether
and perform decision-theoretic reasoning directly in
terms of preference orders, but numeric representa-
tions offer distinct advantages in compactness and an-
alytic manipulability. Multiattribute utility theory ex-
ploits these advantages as far as possible, by decom-
posing complex outcome spaces into modular struc-
tures and specifying complex utility functions in terms
of combinations of lower-dimension functions.

4 MULTIATTRIBUTE OUTCOMES

In realistic decision situations, there are commonly
many objectives, and hence an outcome would rep-
resent a highly complex set of features describing the
plan’s result. In utility theory, preference-relevant fea-
tures of an outcome are called attributes, and a sub-
stantial body of work has been devoted to relating
preference on individual attributes to preference for
complex outcomes. The first requirement for sepa-
rating overall preference into that for individual at-
tributes is some structure on the outcome space. This
structure is provided by a framing, which defines a

3Henceforth, we assume the more general, uncertain,
case, and refer exclusively to utility functions that exhibit
the expectation property.
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multiattribute representation of the given outcome
space (Wellman and Doyle, 1991). A framing repre-
sents each outcome w as a vector (wi,...,w,) of at-
tributes, where each outcome attribute w; is drawn
from an attribute space A;. The framing thus views
the set of outcomes Q) as a subset of the multiattribute
space A = [, A;. In the following, we assume that
every attribute vector corresponds to some outcome,
that is, that the attributes characterize the outcomes
exactly.*

Given a particular framing, the utility function over Q
can be expressed as a multi-dimensional function over
A. The modularity advantages of the multiattribute
representation accrue if this multi-dimensional func-
tion can in turn be decomposed into some regular com-
bination of lower dimension subutility functions, each
representing preferences over one or more attributes.

5 SEPARABILITY AND UTILITY
INDEPENDENCE

Indirect specification of a multi-dimensional function
as a combination of functions of lower dimension de-
pends on separability of the various dimensions. In the
context of utility theory, we are further concerned that
the lower-dimension functions themselves have some
meaningful interpretation in terms of preferences, ide-
ally that they be considered subutility functions in
some sense. What, then, does it mean to say that
u; is a subutility function for attribute i? We can an-
swer this question in terms of invariance of decisions,
or strategic equivalence.

If we wish to interpret u; : A; — R as a utility func-
tion, then it must correspond to some preference or-
der, ,, over prospects involving A;. To talk sensi-
bly about preferences over A; without referring to the
remainder of the outcome vector, preferences for at-
tribute ¢ must be invariant in some sense with respect
to the other attributes. If we indeed specify an entire
utility function for that attribute, we are uniquely de-
termining =, and in effect determining all decisions
involving that attribute, assuming that all others are
fixed. In other words, u; determines the optimal deci-
sion (or decisions, in case of ties) for all choices involv-
ing prospects where outcomes differ only in attribute
1. Moreover, this decision does not depend on what
fixed values the other attributes take.

This invariance property is a fundamental concept in
multiattribute utility theory, called wutility indepen-
dence (UI) (Keeney and Raiffa, 1976).

“For our purposes here (although not for other pur-
poses (Wellman and Doyle, 1991)), we can safely satisfy
this assumption by padding the outcome space and ex-
tending the preference order in a manner consistent with
other given constraints.



Definition 1 (UI) One attribute is utility indepen-
dent (UI)> of the remaining attributes if preferences
for prospects over this attribute, holding other attribute
values fized, do not depend on the fized values of those
attributes.

We can generalize this to UI between two sets of at-
tributes by considering prospects where attributes in
the first set vary and those in the second set are fixed.
Note that UI is not symmetric—for instance, when
n = 3, it is quite possible that {4;} be UT of { A2, A3},
but {A2, A3} not be UT of {A;}.

Utility independence appears to be a minimal require-
ment for modular specification of preferences. The
reason is that without implicitly invoking UTI relation-
ships, it is generally not coherent to refer to prefer-
ences on individual outcome features via subutility
functions. If we accept the view that specifying prop-
erties of subutility functions on individual features or
small groups of features is the essence of modularity,
we find that extensive application of utility indepen-
dence is pragmatically unavoidable.

Fortunately, the UI condition justifies some strong sep-
arability results, leading to well-structured utility rep-
resentations. The separable form of a utility func-
tion over UI attributes follows directly from the in-
variance condition. Suppose n = 2, and A; is UI of
As. The overall utility is a function of both attributes,
u: Ay X Ay — R. We know from the UI condition
that the conditional utility function u(-,w}) where the
second attribute is fixed at the constant value w} must
be strategically equivalent (with respect to the first at-
tribute) to the conditional utility function correspond-
ing to any other value. Because utility is unique up to
a positive linear transformation, this implies, for util-
ity conditioned on wj, that

u(wy,wy) = au(wy, ws) + b

for some constants a > 0 and b. Indeed, such a rela-
tionship must hold for any value wy € As, although
the a and b parameters may depend on ws. This ob-
servation yields a general form for the overall utility
function,

u(wr,w2) = glwa)u(wr,ws) + h(ws).

Defining the subutility function u;(w;) as w(wy,w}),
for the particular constant wj, we have

(1)

In fact, the functions g and h can also be expressed in
terms of conditional utility functions for attribute 2,
with the first attribute fixed at particular values. (See
Keeney and Raiffa (1976, Chapter 5) for the details of
this decomposition.)

u(wr, w2) = glwa)uq (w1) + h(ws).

5We use the same abbreviation for both noun and ad-
jective forms of the concept.
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6 MULTIATTRIBUTE UTILITY
FORMS

The development above establishes the separability of
an attribute subset from its complement in the fram-
ing, when UT holds. In framings with many attributes,
we would expect to have partial preference information
in the form of subutility functions (hence implicit UT
conditions) corresponding to a variety of attribute sub-
sets and individual attributes. When certain patterns
of UI hold over the entire multiattribute space, general
forms for the overall utility function follow. There are
two elementary forms of multiattribute decomposition,
in both of which the overall utility function can be ex-
pressed as a modular combination of single-attribute
subutility functions.®

In the multilinear decomposition, the n-dimensional
utility function is separable into n — 1 subutility func-
tions for individual attributes, with perhaps one other
(which we take to be the first, without loss of general-
ity) not expressible as a subutility,

u(wla cee 7wn) = f(wlau2(w2)v v 7un(wn))'

The form is called multilinear because the function f
is linear in each argument save the first, holding the
remaining arguments fixed. It is a valid decomposition
as long as each attribute (except possibly the first) is
UI of the rest, that is, has preferences validly expressed
as a subutility function. The disadvantage of the mul-
tilinear form is that it requires that we specify O(2")
parameters (called scaling constants) in addition to the
single-attribute functions.

The multiplicative form corresponds to the sum or
product of the subutility functions, each weighted by
a scaling constant. Since this form requires only O(n)
parameters, it is far easier to specify (i.e., more modu-
lar) than the multilinear form. The price paid for this
simplicity is that each subset of the attributes must
be UI of its complement. Of course, we could not ex-
pect to have explicit UT assertions or subutilities corre-
sponding to all subsets; specifying these would defeat
the purpose of modularity anyway. Fortunately, the
utility independence of some sets of attributes often
entails the UI of related sets. The theory of UT rela-
tions provides a basis for deriving the most modular
form corresponding to a given set of fundamental in-
dependence relations.

The basic mechanism for deriving new separability
conditions from a set of UI relations is based on a
result originally due to Gorman (1968). Suppose we
have two attribute sets, each UI of its complement,

5The decompositions actually require a slightly weaker
condition than UI, called generalized utility independence
(GUI) (Keeney and Raiffa, 1976) or autonomy (von Sten-
gel, 1988). In the following discussion, we continue to ap-
peal to UI, since the preferential interpretation of subutility
functions implicitly invokes the stronger concept.



with a nonempty intersection, Y. We can write the
first set as X UY and the second as Y U Z, with X,
Y, and Z disjoint attribute sets. Then it follows that
all combinations of these sets—X, Y, Z, X U Z, and
X UY U Z—are also UI” of their respective comple-
ments. From this fact, we see that a small number of
UI conditions for overlapping attribute sets can implic-
itly entail a large number of independence relations.

7 MODULAR COMPOSITION OF
UTILITY FUNCTIONS

The general utility-model composition problem is as
follows. Suppose we are given a collection of subu-
tility functions and other preference information in-
volving attributes from a given framing.® Taking the
existence of subutility functions to implicitly assert a
corresponding Ul condition, our task is to find a mod-
ular composition of these subutilities into an overall
utility function. In doing so, we exploit the UI condi-
tions entailed by those implicit in the given subutility
functions according to the rule described above.

First, note that determining the form of the overall
utility function is not simply a matter of verifying
whether the given UI conditions collectively justify
an n-attribute multiplicative or multilinear decomposi-
tion. There is actually a structural continuum between
these forms, defined by the space of hierarchical de-
compositions in which each node is a multiplicative or
multilinear function of some partition of the attribute
set. For example, with n = 5, the top-level decompo-
sition might be a multilinear combination of the form

u(wi, ..., ws) = flwr,uz(w2), us 4.5(ws, wa, ws)),

and uz 4,5 might be recursively decomposable as a mul-
tiplicative combination of its three attributes.

In fact, there exists a unique decomposition hierarchy,
or wutility tree, corresponding to any set of UI condi-
tions (Gorman, 1968; von Stengel, 1988). Moreover,
we can derive this tree from a given set of UI premises
without enumerating all of the Ul relationships that
follow from these premises. We have developed an al-
gorithm (to be reported in detail elsewhere) that com-
putes the decomposition hierarchy corresponding to an
arbitrary collection of Ul assertions in an incremen-
tal manner, permitting a “structural sensitivity anal-
ysis” of the implications of additional UI axioms or
subutility functions. The basic ideas in the algorithm
follow from the constructive demonstration of the de-

"Technically, only in the generalized sense noted above.

8A more flexible approach would be to construct the
framing dynamically based on attributes for which we have
preferential information. In this discussion, we abstract
from the problem of defining the framing, as well as that
of obtaining the subutility functions, although both are
critical steps in utility model composition.
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composition theorems by Gorman (1968), Keeney and
Raiffa (1976), and von Stengel (1988).

8 AN EXAMPLE

To illustrate the hierarchical structure of a multiat-
tribute utility function, we adduce an example from
the transportation domain. The attributes and inde-
pendence relations we employ are selected purely for
expository purposes and are not intended to represent
real salience or independence in this domain.

Suppose we are considering alternate modes of trans-
portation for a particular cargo movement, say M. To
evaluate the results of this movement, we might con-
sider the following outcome attributes: (1) amount of
bulk cargo transported in M, (2) monetary expenses
associated with M, (3) tardiness of M with respect
to some target arrival time, (4) opportunity costs as-
sociated with vehicles employed in M, (5) opportu-
nity costs of facilities (e.g., warehouses, loading equip-
ment) employed in M, (6) human resources (e.g., ve-
hicle crews) used in M, and (7) safety. In a more
concrete instance, these attributes would be directly
associated with particular resource and cargo types.

Suppose further that we have preference information
about these attributes in the form of subutility func-
tions. Let u; ;.. denote the subutility function corre-
sponding to attributes i, j, ... in the numbering above.
In our example, suppose that we have (given or per-
haps derived from some more fundamental informa-
tion) the subutility functions:

Ul, U2,3, U2,456, Uds, and ur.

That is, we have subutility functions for the individual
attributes bulk cargo movement and safety, and joint
subutility functions describing the tradeoff between
monetary expenses and tardiness, as well as among
monetary expenses and the various resource costs. We
also have a specification of the particular tradeoff be-
tween vehicle and facility resource usage.

We interpret the existence of these subutility functions
as implicitly asserting UI between the domain of each
function and the rest of the attributes. These UT con-
ditions, in turn, lead to a unique utility tree describing
the modular composition of these subutilities into an
overall utility function. Figure 1 depicts the tree cor-
responding to the subutility functions listed above.

At the top level, the utility function is a multilin-
ear combination of the given subutilities u; and wur,
along with a joint subutility function for the remain-
ing attributes. This in turn is composed of subutili-
ties ug, us, and u4 5,6, none of which are among those
originally specified. However, all of the leaf subutili-
ties are derivable from the originals given the implied
UI conditions.” For example, uy and us are condi-

9As are many of the necessary scaling constants.



multilinear

(2) bulk cargo multiplicative (7) saefety
(2) expenses (3) tardiness

(6) human resources

Figure 1: The utility tree for the transportation ex-
ample. Except for human resources, each of the leaves
corresponds to a separable subutility function.

(4) vehicles
(5) facilities

tioned versions of us 3, obtained by fixing attributes 3
and 2, respectively, at arbitrary levels. These are in-
deed subutilities—hence the freedom in choosing con-
ditioning values—by virtue of the UI relations implicit
in the overlapping Ul index sets {2,3} and {2,4,5,6}.
If in fact wyg is not separable, then this subutility
function is incompatible with the existence of subutil-
ity ug,4,5,6.10 Finally, the subutility us 56 is separable
via a two-attribute multilinear form. This composition
corresponds to the UT form (Equation (1)) separating
{4,5} from {6}. Note that {6} is not UI of {4,5}, and
therefore preference for attribute 6 is not expressible
as a subutility. And note also that attributes 4 and 5
are not separable; the utility tree employs the joint
subutility u4,5.

9 CONCLUSIONS

In summary, we have argued that modularity is an
essential feature of utility representation for decision-
theoretic planning, and that separate specification of
utility for isolated outcome features is tantamount to
an assertion of utility independence. The indepen-
dence relations implicit in a collection of modular util-
ity components dictate the form in which they should
be composed to define an overall utility function. Cus-
tomized utility models can be constructed dynami-
cally to reflect the relevant factors in a particular de-
cision situation via bottom-up composition according
to rules of multiattribute utility theory.

When the modular preference specifications are par-
tial (i.e., not complete subutility functions), the cor-
responding invariance property implicit in the sepa-
ration is generally weaker than utility independence.
For example, specifying only ordinal subutilities (e.g.,
monotonicity conditions) is tantamount to preferential
independence, another well-known concept of utility

0The problem of dealing with overconstrained or other-
wise inconsistent utility specifications is an important issue
in utility composition but beyond the scope of this paper.
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theory. In principle, we could extend this analysis to
cover a broad spectrum of independence concepts with
a variety of implications for utility composition.

Our investigation is in the spirit of analogous anal-
yses relating modularity and probabilistic indepen-
dence (Heckerman, 1990; Heckerman and Horvitz,
1988; Wellman, 1990). In both cases, we must in-
voke independence to justify scalable representation
schemes, and we may exploit the independence rela-
tions to define valid composition rules. Utility trees
can be viewed as an analog of probabilistic dependence
graphs, the underlying basis for the most prevalent
modeling scheme for probabilistic reasoning (Char-
niak, 1991; Pearl, 1988).

The notion of incremental utility specification and
combination has also been advocated by Loui (1989;
1990). Our analysis serves to determine when such
combination is sanctioned by utility theory, and to
constrain the form that it might take. It may also
be reasonable to heuristically apply modular combi-
nation rules when they are not theoretically justified,
as the computational benefits may outweigh the cost
of potential errors.

We are currently attempting to incorporate these ideas
in the design of a scheme for utility representation to
be used as part of common Knowledge Representation
Specification Language for the DARPA /Rome Labo-
ratory initiative on Transportation Planning. The ex-
perience gained in using these techniques to build a
substantial KB for use by several research groups will
be invaluable in developing more refined representa-
tions for decision-theoretic planning.
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