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Abstract

Goals, as typically conceived in AI planning, provide
an insufficient basis for choice of action, and hence are
deficient as the sole expression of an agent’s objectives.
Decision-theoretic utilities offer a more adequate ba-
sis, yet lack many of the computational advantages of
goals. We provide a preferential semantics for goals
that grounds them in decision theory and preserves the
validity of some, but not all, common goal operations
performed in planning. This semantic account pro-
vides a criterion for verifying the design of goal-based
planning strategies, thus providing a new framework
for knowledge-level analysis of planning systems.

Planning to achieve goals

In the predominant AI planning paradigm, planners
construct plans designed to produce states satisfying
particular conditions called goals. Each goal represents
a partition of possible states of the world into those
satisfying and those not satisfying the goal. Though
planners use goals to guide their reasoning, the crude
binary distinctions defined by goals provide no basis for
choosing among alternative plans that ensure achieve-
ment of goals, and no guidance whatever when no such
plans can be found. These lacunae pose significant
problems for planning in all realistic situations, where
actions have uncertain effects or objectives can be par-
tially satisfied.

To overcome these widely-recognized expressive lim-
itations of goals, many AI planners make ad hoc use
of heuristic evaluation functions. These augment the
guidance provided by goals, but lack the semantic jus-
tification needed to evaluate their true efficacy. We
believe that heuristic evaluation functions should not
be viewed as mere second-order refinements on the pri-
mary goal-based representation of objectives, support-
ing a separate “optimizing” phase of planning. Our
thesis is that relative preference over the possible re-
sults of a plan constitutes the fundamental concept
underlying the objectives of planning, with goals serv-
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ing as a computationally useful heuristic approxima-
tion to these preferences (Doyle, 1990). Our purpose
here is to provide a formal semantics for goals in terms
of decision-theoretic preferences that supports ratio-
nal justifications for planning principles. The ground-
ing in decision theory enables designers to determine
whether their planning systems act rationally in ac-
cord with their goals, and provides a principled basis
for integrating goals with other types of preference in-
formation.

We begin by summarizing some basic concepts of
preference. We then develop formal decision-theoretic
semantics for goals and examine some standard plan-
ning operations in light of the semantics. We conclude
by discussing some related work and offering some di-
rections for future investigation.

Preferences and utility

Decision theory starts with the notion of preferences
over outcomes (Keeney and Raiffa, 1976; Savage,
1972). Outcomes represent the possible consequences
of the agent’s decisions. In the planning context, an
outcome might be taken to be the state resulting from
execution of a plan, or perhaps the entire history of
instantaneous states over the lifetime of the agent. To
provide an adequate basis for decision, the set Ω of pos-
sible outcomes must distinguish all consequences that
the agent cares about and are possibly affected by its
actions. We represent the agent’s preferences by a total
preorder (a complete, reflexive, and transitive relation)

∼
� over Ω, called the preference order. When ω ∼

� ω′ we
say that ω is weakly preferred to ω′, which means that
the former outcome is at least as desirable as the latter.
The strict preference order � consists of the irreflexive
part of ∼

�, that is, ω � ω′ (ω is preferred to ω′) if and
only if (iff) ω ∼

� ω′ but ω′ 6∼
� ω. When both ω ∼

� ω′ and
ω′

∼
� ω, we say the two outcomes are indifferent, and

write ω ∼ ω′. Decision theory postulates that rational
agents make choices so that the chosen alternatives are
maximally preferred among those available. In plan-
ning, agents choose among courses of action, or plans.

In a perfectly predictable or deterministic environ-
ment, the situation in which a plan is applied uniquely
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determines the outcome. For each situation s, we write
ρs(π) to denote the result of executing the plan π in
s. When the situation is fixed or clear from context,
as in choosing among plans from a particular state, we
omit the situation subscript and just write ρ. Under
conditions of determinism, preferences on outcomes in-
duce preferences on plans: π ∼

� π′ iff ρ(π) ∼
� ρ(π′). In

the more common case of uncertainty, plans influence
outcomes only probabilistically, and we must replace ρ
by a probability distribution over Ω (called a prospect),
conditional on π. Accounting for uncertainty requires
that we enlarge the domain of ∼

� to express preferences
over the set of all prospects.

Much of decision theory is concerned with conditions
under which ∼

� is representable by an order-preserving,
real-valued utility function, and with identifying regu-
larities in preferences that justify utility functions with
convenient structural properties (Keeney and Raiffa,
1976). Although we expect that utility theory will have
much to offer for the design of planning systems, our
basic preferential semantics for goals depends only on
the underlying preference relation.

What’s in a goal?

What does it mean to say that an agent has a goal
γ? The most direct interpretation would define the
problem to have two relevant outcomes, Ω = {γ,¬γ},
with a preference order consisting of γ � ¬γ. Any two-
valued utility function u satisfying u(γ) > u(¬γ) would
suffice to represent this preference. However, this sim-
ple preferential interpretation of goals is inadequate for
several reasons.

First, goals serve a dual role in most planning sys-
tems, capturing aspects of both intentions and de-
sires (Doyle, 1980). Besides expressing the desirabil-
ity of a state, adopting a goal represents some com-
mitment to pursuing that state. These two attitudes
must be disentangled in any semantical treatment of
goals. In our treatment, we concentrate exclusively on
the role of expressing desirability, recognizing that the
result is only a partial account of the use of goals in
planning systems. For an analysis focusing on inten-
tions, see, for example, Cohen and Levesque (1990).
Ultimately we seek a comprehensive theory of goals ad-
dressing both their preferential and intentional facets.

Second, even if we limit our attention to desirability,
the two-outcome interpretation described above falls
short because it considers only a single goal. In par-
ticular, it says nothing about the important issues of
how planners should combine, specialize, reformulate,
trade off, or otherwise manipulate sets of goals.

Finally, the binary utility function interpretation
provides a questionable basis for analyzing planning
systems because decisions concerning a particular goal
ordinarily have consequences for other factors that
the agent cares about. The set Ω must thus include
more than two possible outcomes to differentiate all
the relevant factors, in which case the single-goal out-

comes γ and ¬γ correspond to a partition {γ̂,¬γ̂} of
Ω. But the binary preference interpretation fails in
this setting, as γ̂ and ¬γ̂ are sets of possible out-
comes, not individuals, and preferences are variable
within each set. Consider, for example, the famil-
iar “hungry monkey.” Outcomes satisfying the goal
has-bananas might differ on how long it took to get
the bananas, the quality or quantity of bananas pos-
sessed, whether the monkey slips on a peel along the
way, or whether it wins the state lottery ten years
later. These finer distinctions mean that many out-
comes satisfying has-bananas are actually less desir-
able than many others satisfying ¬has-bananas, and
plans attending only to has-bananas likely result in
significant suboptimality. Yet analyses taking goals as
the gold standard for preference would reveal no lack
of rationality in the monkey’s behavior.

We maintain that a diversity of relevant objectives
characterizes most, if not all, planning situations. Even
in situations where two values seem sufficient to de-
scribe the final outcome, as in chess, it often appears
necessary for control of search to evaluate medial situ-
ations (e.g., board positions) in terms of intermediate
utilities. In such cases, the appropriate utility measure
is the probability of goal achievement (Good, 1962).
But even in chess, winning isn’t everything, and the
two-outcome model merely approximates the more pre-
cise preference structure that would consider the pos-
sibility of draws and the relative importance of games
within a broader match or tournament context.

In the following sections, we answer the question
“what’s in a goal?” by providing an interpretation of
goal predicates in terms of preference orders. We then
consider the constraints induced by goals on rationally
chosen plans.

Preferential semantics

A proposition is a subset of the outcome space, Ω, i.e.,
the set of outcomes where the proposition holds. A
goal proposition is, intuitively, a proposition compris-
ing some desirable property of the outcome. We for-
malize this intuition by specifying conditions on the
preference order under which a given proposition can
be termed a goal.

The underlying idea of our semantics is that each
goal proposition determines a “dimension” along which
outcomes may vary. We view the goal proposition as
indicating a direction along this dimension, with its
complementary proposition indicating the opposite di-
rection. We then call a proposition a goal just in case
utility increases in the direction defined by the propo-
sition, ceteris paribus (“all else being equal”). This
approach suggests a direct generalization to multiva-
lent, or non-propositional, outcome features influenc-
ing preference (such as the cost of some activity), as
long as each feature can be ordered in the direction of
increasing preference.

Since the set of outcomes lacks any particular struc-
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ture at this point, the primary effort of formalizing
the intuitive semantics lies in providing ways of deter-
mining directions and when “other things” are equal.
In this paper we follow the path of analytic geometry
and multiattribute utility theory and factor the out-
come space into the cartesian product of a number of
smaller spaces. The factor spaces correspond to di-
mensions or “attributes,” and “all else being equal”
means varying one attribute while holding all others
constant. Elsewhere, we present a more general for-
malization that avoids coordinate systems in favor of
a “metric” over outcomes closely related to standard
theories of counterfactuals (Wellman et al., 1991).

Definition 1 (Framings) A framing of a set of out-
comes Ω is an injective (one-to-one) map φ : Ω → A,
where A =

∏n

i=1
Ai.

A framing φ of Ω induces an isomorphism of Ω
with its image φ(Ω) ⊆ A, and we call φ exact just
in case it indicates an isomorphism Ω ∼= A with all
of A. Because framings are one-to-one, they directly
represent the chosen outcome space without blurring
distinctions or introducing new ones. That is, they
just provide alternative names for existing outcomes.
The cartesian structure of the attributes space in-
duces projection functions φi : Ω → Ai such that
φ(ω) = 〈φ1(ω), . . . , φn(ω)〉 for each ω ∈ Ω. For nota-
tional convenience, we sometimes identify an outcome
with its representation and assume that preferences
over representations mirror preferences over the out-
comes they represent. We abbreviate projections by
subscripts so that, for example, ωi means φi(ω).

One ordinarily introduces framings in order to pick
out certain attribute values as targets or thresholds.
For example, the proposition {ω ∈ Ω | ωi = a} consists
of all outcomes for which the ith attribute achieves the
target value a. Similarly, if Ai is ordered by a relation
vi, then the proposition {ω ∈ Ω | a vi ωi} consists of
all outcomes for which the ith attribute value meets or
exceeds the threshold value a.

The most interesting framings pick out significant
dimensions along which utility varies. We say that
a framing is redundant just in case there is some di-
mension i that is completely determined by the other
dimensions, or formally, that for all ω ∈ Ω, we have
x = y whenever xj = yj = ωj for all j 6= i. Similarly,
a framing is preferentially redundant just in case there
is a dimension i that is neutral with respect to prefer-
ence, i.e., for all ω ∈ Ω, x ∼ y whenever xj = yj = ωj

for all j 6= i.
We define goals relative to framings that distin-

guish the goal proposition as an attribute. Let γ be
a proposition and φ = 〈α, β〉 a framing of Ω, where
α : Ω → {γ,¬γ}.

Definition 2 (Goal) γ is a goal in φ, written
goal (γ, φ), just in case for all ω ∈ Ω, (γ, ωβ) ∼

�

(¬γ, ωβ) whenever both (γ, ωβ) and (¬γ, ωβ) are in
φ(Ω).

Definition 3 (Strict Goal) γ is a strict goal in
φ, written GOAL(γ, φ), just in case goal(γ, φ) and
¬goal(¬γ, φ).

According to these definitions, γ is a goal just in case
any outcome in γ is weakly preferred to its corre-
sponding outcome—if any—in ¬γ, holding constant
the residual attributes given by β. It is a strict goal
when at least one of these preferences is strict. Resid-
ual factors may sometimes render a goal irrelevant
(through indifference between outcomes in γ and ¬γ)
but cannot cause a preference reversal with respect to
the goal. Moreover, a strict goal cannot be entirely
irrelevant because preference is strict for at least one
value of the residual. The ceteris paribus condition
that outcomes be compared with respect to fixed values
of the residual serves two purposes. First, the reference
to context allows us to avoid the unrealistic assertion
that any outcome achieving the goal is preferred to any
that does not. And second, by quantifying over these
contexts, we are permitted to compare preferences in
particular situations, where something is known about
the values of residual outcome attributes.

Finally, we note that this definition covers the fully
multiattribute case since using the residual attribute β
to represent several attributes (with β = 〈φ2, . . . , φn〉)
requires no substantial change to the definitions.

The relativity of goals
Goalhood of a proposition depends in general on the
framing of the outcome space. For example, consider
an outcome space Ω consisting of all combinations
of three logically independent propositions: p, “I am
wearing a raincoat”; q, “I am out in the rain”; and
r, “My dog has no fleas.” We assume that r is pre-
ferred to ¬r, all else equal, that ¬q is preferred to q,
all else equal, and that p is preferred to ¬p given q,
but the preference is reversed given ¬q, again all else
equal. The exact framing with attributes correspond-
ing to each of these propositions yields the intuitive
results that ¬q and r are goals, but neither p nor ¬p is
a goal. Yet p is a goal in the (nonredundant) framing of
Ω with attributes p, r, p∧¬q, and ¬p∧¬q, because we
cannot vary p in this framing—holding all else equal—
unless q also holds. Hence, the only situations which
can be compared are those where p is preferred to ¬p.

However, goals need not depend entirely on par-
ticular choices of framings. In fact, suitably related
framings support related goals, and some goals do not
depend at all on how one represents residuals. Let
φ = 〈α, β〉 and φ′ = 〈α, β′〉 be alternative framings of
Ω with α : Ω → {γ,¬γ}, β : Ω → B, and β′ : Ω → B′.
We say that φ subsumes φ′ iff there exists a mapping
f : B′ → B such that β′−1

(b) ⊆ β−1(f(b)) for all
b ∈ B′. In other words, for every residual proposition
expressible in φ′, there is a corresponding residual in
φ that includes a superset of its outcomes. Note that
every framing subsumes itself and that exact framings
of Ω subsume all other framings of Ω.
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Proposition 1 If φ subsumes φ′, then

1. goal (γ, φ) implies goal(γ, φ′), and

2. GOAL(γ, φ′) implies ¬goal (¬γ, φ).

Thus goalhood in an exact framing implies goalhood in
all framings. However, ambiguity in an exact framing
admits a strong frame dependence.

Proposition 2 If there is some framing 〈α, β〉 of Ω,
α : Ω → {γ,¬γ}, such that neither γ nor ¬γ is a
strict goal, then either γ is preference neutral in ev-
ery framing of Ω, or there exist nonredundant framings
φ′ = 〈α, β′〉 and φ′′ = 〈α, β′′〉 such that GOAL(γ, φ′)
and GOAL(¬γ, φ′′).

The ceteris paribus condition of Definition 2 is a
form of what multiattribute utility theory calls pref-
erential independence (Gorman, 1968; Keeney and
Raiffa, 1976), which requires that preference for each
goal attribute be independent of the other attributes.
(The usual definition of preferential independence,
however, does not allow strictness to vary as in the
goal definitions.) When one set of attributes does not
exhibit preferential independence, we can sometimes
restructure the outcome space into attributes that do.
For example, one may incorporate the necessary qual-
ifications into the goal proposition. In our example
above, reframing with attributes ¬q ∨ p, ¬p∨ q, q, and
r renders the proposition ¬q ∨ p a goal. Alternatively,
one may express the goal in terms of more fundamen-
tal attributes (Keeney, 1981). For example, the goal
“I am dry” is a deeper expression of our preference for
wearing raincoats when out in the rain. Taking yet an-
other approach, we may express the goal conditionally,
that is, with respect to a framing of a subset of the out-
comes. In the example, p is a goal in an appropriate
exact framing of the reduced outcome set Ω′ = q ⊆ Ω.
Though straightforward, a comprehensive treatment of
these approaches falls beyond the scope of this paper.

Finally, we note that achieving a goal does not imply
an improvement in expected utility because while the
goal is preferred to its contrary ceteris paribus, it may
have negative consequences via its probabilistic and
logical relation to other attributes.

Preferences from goals

Definition 2 shows how to define goals in terms of pref-
erences. In this section, we show, conversely, how to
derive preferences from sets of goals, and discuss the
implications of these preferences for choices of plans.

Each goal proposition constrains the preference or-
der over Ω; combining several goals yields a partial
specification of the complete order, with preference be-
tween competing goals or alternate ways of achieving
the same goal not defined. Let Γ = {γ1, . . . , γm} be a
set of goals in a framing φ = 〈α1, . . . , αm, β〉 such that
αi : Ω → {γi,¬γi} for each i = 1, . . . , m.

Definition 4 (Goal Preferences) We say that out-
come ω is goal-preferred to ω′ with respect to Γ in φ,

written ω ∼
�

Γ,φ ω′, iff ωβ = ω′

β and either ωi = γi or

ω′

i = ¬γi for each i = 1, . . . , m.

In other words, one outcome is weakly preferred to an-
other if the two have the same residual and the former
satisfies all goal propositions satisfied by the latter.
These comparisons make sense only for identical resid-
uals because the agent may have arbitrary preferences
over this attribute—by definition, the part of the out-
come not covered by goals.

The goal preference order ∼
�

Γ,φ is a partial preorder,
actually a sub-order of the complete preference rela-
tion ∼

�. For exact framings φ, the partial order takes
the mathematical form of a collection of separate lat-
tices, one for each distinct residual outcome ωβ . In
this case, goal preference completely characterizes the
preferences derivable from goals alone. We say that a
preference order is congruent with a goal set Γ in φ if
goal(γ, φ) holds according to the order for every γ ∈ Γ.

Proposition 3 If φ is exact, then ω ∼
�

Γ,φ ω′ holds

just in case ω ∼
�′

ω′ holds for every preference order

∼
�′ congruent with the goal set Γ in φ.

For inexact framings, goal preference is equivalent to
agreement with every congruent preference order over
an exact completion of the outcome set.

The incompleteness of the order ∼
�

Γ,φ means that
goals do not, by themselves, prescribe a unique choice
of action in all circumstances. If one seeks to en-
sure unique rational choices, one must augment the
goals with more detailed specifications of objectives—
by specifying the relative strength of preference for
competing goals and the form of the interactions un-
derlying preference for combinations of goals. Never-
theless, the partial preference order induces a partial
ranking of plans. In deterministic planning, we can
extend goal preference directly to plans by defining
π ∼

�
Γ,φ π′ iff ρ(π) ∼

�
Γ,φ ρ(π′). Expanding the defi-

nition, we see that π ∼
�

Γ,φ π′ means that π achieves all
the goals that π′ achieves and both produce the same
residual outcome. Defining goal preferences in plan-
ning under uncertainty involves the notion of stochastic
dominance (Fishburn and Vickson, 1978). See (Well-
man et al., 1991) for a detailed development in terms
of utility theory.

Goal operations in planning

We seek, in the long term, to use our semantics for
goals to provide a set of principles for designing and
analyzing planning systems. For example, one may in-
vestigate whether the computational operations com-
monly applied to goal expressions, such as introducing
and eliminating conjunctions and disjunctions of goals,
only produce new goals from existing ones. If not, the
choices made by planning agents may be incoherent
with respect to the underlying preferences. In fact, our
semantics reveals that these operations are not always
valid.
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Proposition 4 Let φ = 〈α, α′, β〉 be a framing in
which attributes α and α′ represent the propositions γ
and γ′. If we denote combinations of these attributes
by boolean combinations of the attribute designators,
then

1. goal (γ, φ) implies
goal (γ ∧ γ′, 〈α ∧ α′,¬α ∧ ¬α′, α′, β〉), and

2. goal (γ, φ) implies
goal (γ ∨ γ′, 〈α ∨ α′,¬α ∨ ¬α′, α′, β〉),

but the converse implications are invalid.

Invalidity of the converses indicates that subgoaling
on conjunctions and disjunctions in AND/OR search
need not always produce bona fide goals. Viewed se-
mantically, the subgoals may have undesirable prop-
erties (side-effects) in addition to their relation to the
compound goal. In general, preferences over composite
propositions tell us little about preferences over their
constituent parts.

Moreover, goalhood of a proposition implies goal-
hood of a conjunction or disjunction only for particu-
lar framings. In fact, even if we have goal (γ, φ) and
goal (γ′, φ) in an exact framing φ, it remains possible
that γ ∧ γ′ not be a goal in some framing where α∧α′

is an attribute.
Although one cannot usually justify the behavior of a

planning system using mere goals—due to the extreme
incompleteness of the goal-preference order ∼

�
Γ,φ—the

behavior can sometimes be validated conditional on ad-
ditional restrictions, such as assumptions of preferen-
tial independence given combinations of propositions.
We present a more detailed discussion of this approach
elsewhere, along with analyses of other common goal
manipulations (Wellman et al., 1991).

Related work

Simon’s (1955) initial critique of decision-theoretic ra-
tionality objected to straightforward descriptive uses of
decision theory and to normative uses that fail to ac-
count for procedural factors. His theory of “satisficing”
views goals as threshold “aspiration levels” that signal
“satisfactory” (as opposed to optimal) levels of utility.
Simon gives examples of how an agent might set ac-
ceptance levels given more precise description of pref-
erences. The semantics presented here provides condi-
tions that this mapping must satisfy, and in addition
addresses the inverse problem: given goals, derive what
one can about preferences. Our approach is to accept
and exploit utility theory as the fundamental seman-
tics for objectives, then consider bounded rationality
in the design of decision-making procedures. The lit-
erature on satisficing does not appear to recognize this
role for utility theory, even though it provides a way
of relating procedural and substantive rationality and
directly serves Newell’s (1982) objective of knowledge
level analysis.

Numerous authors have advocated and proposed
techniques incorporating decision-theoretic ideas in AI

planning, with Feldman and Sproull’s (1977) work be-
ing perhaps the earliest and best known. For the most
part these authors have either rejected goal-based spec-
ification of objectives entirely in favor of numeric util-
ity functions, or have adopted ad hoc interpretations
of goals, for example assigning them constant utility
increments. While such interpretations are consistent
with respect to our semantics, they also entail restric-
tive regularities in preference that we believe go far
beyond the ordinarily intended preferential content of
goals.

We attribute the paucity of previous work relating
goals and preferences to the prevailing attitudes that
either goals suffice for effective planning or that they
represent trivial preferences (i.e., the binary utility
interpretation). Some work in AI, however, has at-
tempted to combine notions of goals and utilities (Dean
and Wellman, 1989; Farquhar, 1987; Haddawy and
Hanks, 1990; Loui, 1990). In particular, Haddawy and
Hanks (1990) present some methods for mapping be-
tween the two concepts in the context of planning un-
der uncertainty. One major difference between their
treatment and ours lies in the ceteris paribus condi-
tion in our definition of goalhood. While they also
recognize the inappropriateness of preferring all out-
comes satisfying the goal to all others, their approach
deals with the problem by placing bounds on the util-
ity difference among outcomes within each part of the
partition. However, for problems with multiple goals
or competing objectives, variations in other salient fea-
tures of outcomes can defeat any fixed bounds on util-
ity differences for a particular goal proposition.

Finally, we note that the semantics developed
here formalize the methods in our previous work on
decision-theoretic planning, which defined preference
for a proposition by specifying a positive qualitative
influence on utility (Wellman, 1990a). The use of qual-
itative influences in that work suggests how to extend
our framework to account for preferences over ordinally
scaled quantities in addition to propositions.

Conclusions

We have shown both how to give goals a nontrivial se-
mantics in terms of decision-theoretic preferences, and
how to construct preferences corresponding to specific
sets of goals. The incompleteness of the preferences in-
duced by goals formally establishes the inadequacy of
goals as the sole basis for rational action. Despite their
limitations, however, goals offer significant heuristic
advantages over the utility functions developed in deci-
sion theory. The latter offer a more encompassing basis
for rational action, but seem to require onerous com-
putational expense, at least in straightforward mecha-
nizations of decision-theoretic principles. The heuris-
tic advantages of goals stem from the way planners use
them to encode both preferential and intentional infor-
mation. By fixing attributes of the outcome space, the
intentional import of goals reduces the dimensionality
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of the utility function, focuses and organizes the search
process, and provides a convenient skeleton for spec-
ifying control strategies. The preferences induced by
goals, in turn, present a simpler decision problem than
full expected utility maximization, by setting bounds
on the search and by making the stopping criterion
locally testable. Our preferential semantics provides
an avenue for exploiting these heuristic advantages of
goal-based planning representations without necessar-
ily sacrificing decision-theoretic accountability.

The definition of goals in terms of preferences for-
malizes the intuition that goals are propositions that
are preferred to their opposites, other things being
equal. We demonstrated how for some goals this de-
sirability depends on how one describes outcomes, and
offered some suggestions for avoiding this sensitivity to
representation. We also showed that while this seman-
tics displays some intuitive properties, it also reveals
that other seemingly natural planning operations are
not always valid. To justify their systems’ behavior,
therefore, designers of planning architectures need ei-
ther to provide further constraints on the meaning of
goals or to find other means for expressing preference
information. This highlights the importance of devel-
oping more refined languages for specifying the objec-
tives of planning agents.

The semantics presented here constitutes part of a
comprehensive decision-theoretic account of planning
(see also (Wellman, 1990a; Wellman, 1990b)), and a
more thorough treatment of the issue of goals and utili-
ties is in preparation (Wellman et al., 1991). We expect
that much might be learned by developing planning ar-
chitectures which combine goals with other preferences
in a manner faithful to our semantics.
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