Published in Proceedings of the 2008 AAAI Workshop on Advances in Preference Handling,
J. Chomicki, V. Conitzer, U. Junker, and P. Perny, eds., AAAI Technical Report WS-08-09,
Menlo Park, California, USA, pp. 128-133

Comparing Preferences Expressed by CP-networ ks
(Extended Abstract)

Andrew W. Wicker and Jon Doyle
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206
{AWWicker, JonDoyle} @ncsu.edu

Abstract constructing metrics on CP-networks that can be computed
efficiently and that reflect comparative judgments related
to those of the Kemeny, Snell, and Bogart metrics. We
continue a focus on CP-networks rather than more gen-
in interest matching, social networking, collaborative filter- eral logical languages for specifying prefer_ence_s, for ex-
ing, and personali?ation. We develog metrics over prefer-  ample (Doyle, Shoham, & Wellman 1991; Kiessling 2004;

ences represented compactly by conditional preference net-  Chomicki 2003). We reformulate the usual development of
works (CP-networks) and their variants. Our metrics exhibit CP-networks in functional terms so as to better facilitate the

Comparisons of similarity or dissimilarity between systems
of preferences over multiple attributes play important roles

intuitive properties and support efficient (polynomial-time) statement and analysis of our metrics and other functions

algorithms for computing similarities. of preference orders. For lack of space here we state our
theorems without proofs, which can be found in (Wicker &
Doyle 2008).

I ntroduction

Decisions to interact with or accept recommendations from Preferences

others in social networking environments rely in part on as-

sessments of_the degree_ to which one’s interests and tastesAttributes

are shared with or are different from those of others. We

focus on comparing decision-theoretic preferences of agents . ) .
on the assumption that such preferences can serve as a reaVVe consider preference representations that employ a finite
sonable proxy for or representation of many pertinent as- S€tA of one or moreattributesof possibly different types.
pects of interests and tastes. This assumption seems realn all the following, we presume an enumeration of the at-
sonable in that the notion of preference formalized in eco- tributes agA) = (ao, a1, ..., an). We write individual at-
nomic decision theory provides quite a bit of expressive tributes asa or a;, with subscripts on attributes normally
power, both in traditional multiattribute utility function ap- ~ "éferring to the enumeration ordering. Each attributeas

proaches and in theories of prefererweris paribusat a set or domain o_f at_tributﬁaluesVa that it can take, which
the focus of much recent research (Wellman & Doyle 1991; We here assume is finite. We often writeas shorthand for
Doyle, Shoham, & Wellman 1991). Va;, and sometimes write as shorthand fo¥/,. Distinct

attributesa # o’ can have the same set of values, that is,

In previous work (Wicker 2006; Wicker & Doyle 2007), we Vo= Var.
studied the use of preference-similarity measures developed

by Kemeny and Snell 1962 and Bogart 1973 in comparing

the interests of agents. That work used these existing met- Outcomes
rics to compare preference orders expressed by conditional
preference networks, or CP-networks (Boultilier, et al 1999;
2004), which provide a simple graphical representation for thatw(a) € V, for each attribute for whichw(a) is defined.
one common form of preference expression (as dep'Ct.ed Nt wis defineg exactly for the attributes in a sktwe say that
Figure 2). These metrics, however, have bad computational < 4omain (of definitiondf w and writedom (w) = A.

properties. We write 2 to denote the set of all outcomes, and wfig
to denote the set of outcomes with domain of definitibn

An outcomeis a partial functionv : A — (J,c 4 Va Such

In this paper, we extend the results of (Wicker 2006) by

Copyright(© 2008, Association for the Advancement of Artificial ~ Each outcomev € Q4 thus corresponds to a total func-
Intelligence (www.aaai.org). All rights reserved. tion from A to (J,c 4 Va. The setQ24 is thus isomorphic
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to [],c 4 Va, With the factors of the product ordered by as- as the strict part of a weak preference ordering, that is, an
cending attribute enumeration order, and with each outcome irreflexive, antisymmetric, and transitive binary relatien
corresponding to a tuple of attribute values for attributes in defined so that > y iff « =~ y andy % x. Indifference

the domain of definition. We sometimes writg to refer to consists of the equivalence relation formed by the symmet-
the valuew(a;) of a; in w. We write2,, to abbreviate,;, ric portion of a weak preference ordering, defined so that
which is isomorphic to the set of valu&s of a. With these x ~ yiff x 77 y andy 2z x. Our focus in this paper is on

definitions, we haveé), = { () } being the set consisting  strict preference, so when we speak of orders, we normally
of the unique O-tuple§2 4 being the set of total outcomes  will mean strict partial orders.
defined on all attributes, afdl = |J ;- 4 Qa.

B We write O to denote the set of all preference orders over

We write p4(w) or p(w, A) to denote theetraction of an homogeneous outcomes, defined as follows. Specifically,
outcomew to an outcome over a set of attributes contained We write O 4 to mean the set of all strict partial orders over
in A, with p4(w) obtained by discarding the valuesdn Q4, write O, to mean the set of orderings over the Qet,
corresponding to attributes not in. Formally, we define of values of attribute, and writedom (o) to denote the com-
pa(w) to be the outcome such tha (w)(a) isw(a) if a € mon domain of definitiornlom(w) of outcomes ordered by

AnNdom(w), and is undefined for all other attributes. Ifthe 0. We then obtain the full set of orde8 = |J, 4 Oa
domain of definition ofv is A’ andA C A’, then the domain by combining all the limited sets of orders. We write,
of definition of p 4 (w) will also be A. If A ¢ A’, then the to mean theempty orderover Q4 in which no outcome is
domain of definition ofp 4 (w) will be a proper subset od. strictly preferred to any other.

In particular, if A and A’ are disjoint, we definps (w) = ().

We write 774 (w) or n(w, A) to denote thesxpansiorof an Preference ceteris paribus
outcomew to outcomes over a set of attributes containing

A. Where the value gb4(w) is a single outcome, the value | the present treatment, we interpret preferences over the
of na(w) is a set of outcomes, namely, all those outcomes values of one attribute as preferenceseris paribus that

with domains of definition includingl that would returnto  is, as expressions of preference for one value over another
w under retraction. Formally, we define other things being equal. Formally, we interpret a preference
def , v > v’ for one valuev € V,, over some other valu€ € V,
na(w) = {w" € Qavdom(w) | Pdom(w) (W) = w}- as expressing a preference orfies- '] over full outcomes

If every outcome in a se$ of outcomes has the same do- N {240 th?u = w'in [v - v'] whenevew; = v, w; = v/,
main of definition, we say that is homogeneousnd extend andw; = w’; for eachj # .

the notion of expansion t§ in the natural way by defining . ]
na(S) =Uyegna(w). More generally, for any set of attributes C A, we define

the ceteris paribuexpansiom 4 (v > v’) of the comparison
To simplify some definitions and computations, we assume v > v’ from the domairi/, to domain(2., by
that the values of each attributeare totally ordered by a 7y def /
. . - = , €4 x0N
reference order,. We combine the enumeration order of na(v-v) = {(w,w) A Al

attributes with the reference orders of attribute values to ob- Pray(w) = v A
tain a reference order on outcomes. Specifically, we define piar (W) =0 A
. {a}
the reference order on each $&f to be that obtained as (w) = )
the lexicographic ordering with respect to the attribute enu- PA\{a}\W) = PA\{a} '

meration and reference order of the attribute values. A fi- We clearly havelv > '] = na(v > ¢'). We extend the
nite set of outcomes consists of a finite number of attributes, order-interpretation notation to wrife - v'] 4 to denote
each of which has finitely many values. In this case, a ref- the expansiom (v >~ v'), thatis, the preference order over
erence ordering provides reference enumeratioof out- 4 entailed by the condition > v’.

comes. Moreover, for finite sets of binary attributes, we

can obtain a simple enumeration of outcomes by interpret- Note that ifa ¢ A, then the expansioms (v = v') = [v >
ing each outcome as the binary representation of an integer, v'] 4 consists of the empty order ov@r, that leaves all out-
and using the natural ordering of the resulting integers. comes incomparable.

If w € Q andv andv’ denote values o, we define the
Preference orders restricted preference conditiqv = v > v 4 to mean the
restriction of the ordefv > v'] 4 to outcomes subsuming

Economics formalizes preferences in terms of notions of thatis,

weak preference, strict preference, and indifferenteak [w=v>=v]a def (W, w”) € [v>= 0] |
preferencerefers to a partial preordering of a set of alter- ’ ,

natives, that is, a reflexive and transitive binary relation Pdom(w) (W) = w A
Strict preferenceonsists of the strict partial order obtained Pdom (w) (W) = w}]a.
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We have]w = v = v']a = 0 if a € dom(w), for then

axioms such metrics must satisfy beyond the ordinary ax-

the only possible restricted comparisons are ones that haveioms for metrics, and Bogart 1973 provided an enlarged set

the same value far, which cannot be preferred to itself. We
also havdw = v > v'] 4 = 0if Aanddom(w) are disjoint.

If S'is a set of restricted or unrestricted conditions on prefer-
ences, we writS] 4 to denote the preference order entailed
by the transitive union of the conditions i) that is,

Mh=[U%hr

ses

where the notatio?* means the transitive closure of the
binary relationR. In particular, ifo € O, anda € A, we
write [o] 4 to denote the expansion of the order oggrto
an order ovef? 4 formed as the transitive union

b= | U M»Mhr

(v,v")€0

of the set of expansions of all comparisans, v’.

Reusing the same notation, we generalize the noticeof
teris paribusexpansion to change of basis of an order to an
order over any other set of outcomes. We define the expan-
sion or change of > ', wherew,w’ € Q 4, to a compar-
ison between outcomes over a domdiy

Naw = o) E {(w",w") € Qa x Q4 |
par(w”) = panar(w) A
par(W”) = panar (W) A
PA\A’ (WH) = pa\A’ (Wm)}-

Clearly, if A’ C A, this expands the original comparison to
ones over the larger domain of attributes in a way consistent
with the preceding definition afeteris paribusgxpansion.

If A C A’, achange of basis from’ to A has the effect of
reducing the comparison 14, x Q4 to a comparison in
Q4 xQ 4. We say thad € O 4 is thecompactioror minimal-
basis representationf o’ € Op just in caseo’ = np(0)
andA C A’ whenever” € Oy ando’ = na/(0").
o is the compaction ob’, then we writeo = k(o).

We

of axioms extending this metric to strict preference orders.
Although defined in terms of a natural matrix representation
of orders, their metric has a simpler restatement in terms of
the set-theoretic representation of the preference orders. If
one regards strict ordessando’ as sets of ordered pairs and
writes the symmetric difference of these sets @s o', then

we also have

da(0,0') =lo A 0. 1)

We now extend the KSB metri€, on the several order sets

O 4 to a single metriel : O x O — R over the full set of
orders®. We do this by recasting both orders as orders over
their minimal common domain and taking the KSB distance
of those minimal representations.

If k(o) € O4 andk(o’) € Oy, then we say thdts(o)] aua
and[x(o")] auas are theminimal common expansion§the

the orderso and o/, respectively. That is, we expand the
compaction of each order to the minimal attribute set such
that the orders are each over the same outcomes. We say that
AU A’ is theirminimal common domaiand denote this by

(o, 0").

Theorem 1. For eacho € O and A C A, we haveo]4 =

[x(0)]a

We define an extended KSB metkic: © x @ — R over
the full set of orderg) by finding the KSB distance of or-
ders when translated to their minimal common domain. For-
mally, if 0,0’ € O, then we define the distandéo, o’) by

def
d(O, 0/) = du(o,o’)([[oﬂu(o,o’)v [[Olﬂu(o,o’))' (2)

Clearly, if two orders are both over their minimal common
domain, thenl agrees with the KSB distance.

Another way to obtain this distance measure is to expand
each of the orders under comparison to the full set of at-
tributes, find the KSB distance of the expanded orders, and

observe that no order can be reduced to a smaller basis than"ormalize by the number of complete outcomes over the at-

that of its compaction in a consistent way, gd4 = 0 if
A C dom(k(0)).

We define general order expansions of an orderO 4+ to
a set of attributeg! in terms of the transitive union of their
individual comparison expansions by

fla=| U M>Mhr-

(w,w’)€0

K SB metric extension

Kemeny and Snell 1962 developed a metfic : O4 x
04 — R on finite orders (see (Wicker 2006)) by advancing
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tribute set by which their minimal common domain has been
expanded. Thatis, (2) is equivalent to

_ da([ola; [T4)

d =
(0,0") [P

®)

Conditional preference (CP) networks

Conditional preference networks (CP-networks) were devel-
oped to provide a natural and compact representation of
simple ceteris paribuspreferences (Boutilier, et al 1999;
2004), namely preferences over the possible values of indi-
vidual attributes when these preferences depend on the val-
ues taken by other attributes.



Network structure

An attribute graphover a set of attributed is a pair(A4, F)
such thatEl € A x A represents a set of directed edges
from parent to child attribute nodes. It is common to restrict

attention to acyclic graphs, but we do not assume that here.

We write G 4 to denote the set of all attribute graphs over

andg © Uac.4 G4 to mean the set of all attribute graphs.

We represent an individual graghe G as(A(g), E(g)) or
just(A, E).

The key aspects of attribute graphs in analyzing CP-
networks are the sé®ar(a,g) = {a’ € A(g) | (¢/,a) €
E(g)} of parentsand the seChd(a,g) = {a’ € A(g) |
(a,a") € E(g)} of childrenof a nodex in the attribute graph

g. When the graph in question is clear from the context, we
sometimes writePar(a) instead ofPar(a, g). Naturally,

if A does not appear in a gragh we havePar(a,g) =
Chd(a, g) = 0.

CP-networks represent preferences by mearSRtables
associated with each attribute node. In each row of each

TZz1Y =Y
rYy=y exrpansion 2 Yy =~y
T:y=y - Tz:Y -y

TZ: G-y

te T{X}Y) n(t, {X, Z})

Figure 1: CP-table expansion. The table on the left involves
only one parent, attribut&. On addition of a parent at-
tribute Z, each row in the original table splits into rows for
each value of the new attribute, with each of the split rows
indicating the same value ordering as in the unsplit row of
the original table.

of these statements, that is,

[N]a= [[{ w=tla,w)|acA weQparan} ]]A( )
4
Some presentations of CP-networks express this same in-
duced order in algorithmic terms, saying that «’ justin
case there exists a “value-worsening” sequence of outcomes
w=w', ..., w* = w such that each pair of successive out-

: o sue . .
such table, the last column states an order over the valuesComes.’ "’_‘nd;_djf_ differ in exactly one attribute, for which
of the attribute node, and the other columns, if any, state an the value inw’™" is less preferred than the valuedn ac-
assignment of values to the parent attributes. Each CP-table ¢ording to the CP-network preference tables.

has one row for every combination of values for the parent
attributes, making the size of the table exponential in the
number of parents.

We represent CP-tables as functions from outcomes to or-

ders. Formally, for eactd C A, the set of CP-tables for

(parents)A and (child)a is the set of functiong(A, a) def

(@4 — O,). We obtain the set of CP-tables for attribute

a by combining these functions over different possible sets

of parents into the set of functiofi¥ a) def UacaT(4; a).

We define the set of all CP-tables I%Tyd:ef Usea T(a).

We thus represen€CP-networksby combining attribute
graphs with appropriate CP-tables. Formally, a CP-network
N = (g,t) or N = (A, E,t) consists of an attribute graph

g = (4, FE) together with a function : A — 7 such that
t(a) € T(Par(a),a). We write N4 to denote the set of all
networks ovelG 4, and\ to denote the set of all networks
overg.

Networ k semantics

If N = (A, E,t) is a CP-network|[N] 4 denotes the overt
meaning of the network as the induced order o%ky.
Specifically, ifa € A, w € Qpgr(a,n), aNdo = t(a,w), we
interpret thev row of the CP-table for in N as making the
restricted preference statements- 0. We then obtain the
induced ordef N] 4 by transitive closure of the conjunction
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The preference statements contributing to CP-table mean-
ings in (4) can vary in size, depending on the graph struc-
ture of the network. In fact, we can express the network
semantics as a set of statements of uniform size and struc-
ture simply by considering meanings in terms of the full set
of attributes4. That is, we consider the meaning to be the
ceteris paribusexpansion of the overt meanings to the full
set of attributes, given by

[w=tlaw)]=[{w =taw)]
W EeEQA
W = PpPar(a,N) (w/)} ]] .

In this view, each table ovePar(a, N) expands into a ta-
ble overA in which each row ovefp,, 4, n) Subdivides
into rows oveK? 4 that agree on the attributesftur(a, V).

The order specified in each of the subdivision rows is the
same as theeteris paribusrder specified in the subdivided
row when expanded frofp,,.(,, vy t0 £24. More precisely,
each of thgQp,,(4,n)| rows in the table for attribute ex-
pands into

Q24

Q ar(a BT —
| A\Part ,N)| |QPar(a,N)|
rows in the table over all attributes j.

To facilitate the discussion, we define #ansiom(t, A’)
of a CP-tablet € T'(A4,a) to a tablet’ € T(A’,a) over an
extended set of attribute4’ © A by the requirement that
t'(w) = t(pa(w)) foreachw € Q4. Figure 1 depicts a sim-
ple example of a CP-table expansion fréim, to QO x 7.



Observe that orders stated in the expanded CP-table do notWe clearly can transform any network into the empty net-

depend on the values of the expansion attribute, and are iden- work by successively changing all CP-table entries to the

tical with the values assigned for the original attributes in the empty order, then removing all edges, and finally remov-

original table. ing all nodes. We can thus transform any network into any
other by transforming the first to the empty network and then
inverting the sequence of operations needed to reduce the

Metrics on CP-networks other network to the empty network. Indeed, this sort of

transformation through “zero” forms the basis for the KSB
axioms on order distances.

Referential distance

The main drawback of this simple structural metric is that it

yields distances and relative comparisons at odds with those

To obtain a distance metric on CP-networks, we only need to . . ; X
obtained using the referential semantics.

apply the distance metric on orders to the orders denoted by
the CP-networks. Formally, we define tteferentialmetric

d: N x N — R by Table expansion metric
d"(N,N") = d([N],[N']). (5) . _
To find a metric on networks that has the low-cost com-
putability of the simple edit distance but exhibits order-

Although the referential metric provides a reasonable and compatibility with the underlying reference metric, we in-
precise comparison between CP-networks, it has terrible troduce thetable-expansion metrié® : ' x N — R, de-
computational properties. First of all, computing the dis- fined for networksV = (A, E,t) andN’" = (A’, E', ') by
tance between two networks over the sam@&lues requires . J\ def

examination of on the order ¢2")? comparisons between d*(N,N') =
outcomes for binary attributes, and examination of even d(n(t(a aW(w).n(t (a aW)(w
more for attributes with more than two values. Such compu- Z Z (n(t(a), A{ap)(w). n(t (a), A{a})(w)
tations are infeasible except for the smallest networks. Sec-
ond, the indirect connection of network distance with net- 7

work structure makes it difficult to predict the magnitude of This measure compares orders specified by tables under all
distances between networks from network differences them- conditions. To do this, it interprets each row of each table
selves. Put together, these problems impel one to seek met-as specifying one or more entries in the full condition table,
rics on networks defined in terms of the structural properties and adds up the KSB distances between the orders indicated
alone, without the referential detour through the orders over by each of these maximally-specific rows.

outcomes indicated by the network semantics.

a€AWER A\ {a}

The table expansion metric works no matter what size the
For the purpose of measuring similarity between preference original networks are, and works even if the orders specified
orders, we need not demand perfect agreement betdfeen in table entries are not total orderings of the attribute values.
and some new distance measdfgeonly strategic equiva- The table expansion metric also works with tables that lack
lence in the sense that the two measures agree on relativesome rows, if one regards the missing rows as having empty
distance comparisons. Formally, we seek an efficiently- orders.
computablel’ such that for everyv, N', N € A/, we have
. , . D e , , " Computing the table expansion metric directly is not feasi-
d'(N,N') < d"(N,N") iff d'(N,N") <d'(N,N"). (6) ble because there are exponentially many rows in the full
condition table. However, one can compute the metric in
! ) time proportional to the size of the table by simply finding
Simple structural distance the least common refinements of comparable nodes in the
networks under comparison, and then weighting each table

To avoid the high cost of computing the referential distance S_n_try Of_ thﬁ n;)(iles “”def comparison by the number of con-

measure, we look to identify distance measures defined di- itions In the full expansion.

rectly over the CP-network representation rather than indi- Theorem 2. If N = (A, E,t), N' = (A, E. ),

rectly through the meanings of these networks. The simplest A* = AU A’, and Par™ (a) = Par(a) U Par'(a), then

candidate along these lines is an edit distance measure tak- ge(n. N') = (|0, )1 . 0 .

ing into account both graph and order elements. (N, V) = ([ D) a;; [ anpart ]
+ / +

In (Wicker & Doyle 2008), we analyze five types of CP- QZ d(n(t(a), Par™(a))(w), n(t(a), Par™(a))(w))

network edit operations: addition of a new attribute, removal ~ “<*rert@

of an attribute, addition of an edge, removal of an edge, and

change of preference order. Consider the CP-networkd; and N, depicted in Figure

132



Yy:r =7 Ty = TY
T | ..... > g: >_* <> xg>_jg

(V1)
@ Ty -y Ty =Yy Ty = Y
Ty | Tl xiyg=y || 2y - 2y
Y:T = Ty = Y
T | ..... gz -a > Iy -z

(IN2)
@ Ty -y iY==y Ty = Y
z:y-y | Tlz:g=-y | 77| 2y - 2y

Figure 2: Two CP-network expansions of tables. Each CP-
network (left column) is shown with the expanded CP-tables
(middle column) and the the orders specified by each row
(right column).

2. We can see the expansion of each of the CP-table rows
into the maximally specific CP-table. We count the KSB

distances between each of the corresponding rows in these

maximally specific tables and gét(N;, N») = 3. For com-
parison, we also get' (N1, N3) = 9.

Although a CP-network might have nodes that are children

of all the nodes, in practical applications one expects to see
bounded branching in the networks. In this case, distances
can be computed efficiently.

Theorem 3. For each integek, the expansion distance be-
tween two networks in which the number of parents of nodes
is bounded by; can be computed in time polynomial in the
sizes of the two networks.

It is not hard to show that expansion distamerovides a
lower bound on referential distand&

Theorem 4. d°(N, N') < d*(N, N') for eachN, N’ € N.

Itis also not hard to show half of the desired strategic equiv-
alence (6).

Theorem 5. If d*(N, N') < d*(N,N"), thend®(N,N’) <
d°(N,N").

We currently lack proof or disproof of the other half of the
desired equivalence.

Conclusions and future work

We have described a table expansion metric on CP-networks

that uses expansions of CP-tables to determine similarity.
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This approach builds upon a previous approach, which uti-
lized the KSB distance metric to determine similarity be-
tween preference orderings represented by CP-networks.
The table expansion metric, however, provides a much more
efficient computation than the KSB distance on the induced
orderings.
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