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Abstract
Effective persuasion requires identification and selection of points of leverage in the belief system
of the person or population being addressed. This paper describes a model in which personal beliefs
are held and changed through a combination of reasoned, rational, and reflexive means, and in
which the same attempts at persuasion can yield different outcomes in different people. The model
is used first to interpret a logic of possible changes of belief, and second to develop mechanical and
economic measures of the difficulty and probability of different changes of belief.
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1. The problem of changing minds

Sometimes it is easy to persuade someone to change his mind; sometimes it is hard. Contrast
“Brave, brave, Sir Robin” with “Hier stehe ich nicht; ich kann nicht anders.”

If one has no idea why someone thinks the way he does, one can only use appearances or
other knowledge to identify populations to which the person belongs and then try methods based
on models of how people think who belong to those populations. The more one knows about the
specifics of how a person thinks, the more leverage one can bring to bear in choosing methods that
will best influence that individual. However, persuading someone to change how he thinks can be
very difficult despite detailed knowledge of why he thinks the way he does. Indeed, changing one’s
own beliefs can be very difficult, even for people seemingly very aware of why they believe as they
do.

In line with these observations, we develop a mathematical model of belief and belief change
that provides formal means for comparing and measuring the difficulty of different changes and the
likelihood of different changes via different means for influencing beliefs. Applying these measure-
ments to models of the beliefs specific to particular populations or individuals of known or assumed
character, one can identify changes of minimal expected effort, to gauge risk by identifying changes
of minimal and maximal effort, to distinguish changable beliefs from unchangeable ones, and to
identify the best point of leverage for producing a desired change. We do not address here the prob-
lem of how one identifies the belief or character of a specific individual or population, a problem
already studied in decision analysis and social psychology with methods adaptable to the model
presented here.

1.1 Approach

Our model involves a rich conception of belief and belief change in which belief states can exhibit
some ambiguity about what is actually believed, and in which beliefs can be influenced by rational
incentives for change, by new information that changes assumptions or triggers predictable habits of
thought, and by motivations internal to the individual. To address these aspects, our model involves
desires, preferences, intentions, motives, habits, and logical, structural, and habitual connections
in characterizing possible belief states and changes. The structures considered here encompass
supports or foundations of beliefs, the inherent constitution of mental and belief states, and the
organization of belief states into locales or substates corresponding to mental subagencies. The
preferences considered here differentiate beliefs and changes according to their sources, content,
foundations, and history, among other things.

The main elements of the model developed here are quite abstract and cover a considerable
range of models of belief. We augment these with some more specific elements that remain quite
abstract but support several important means for analyzing the difficulty and likelihood of belief
changes, and that point the way for how to extend the model to handle other models of belief.

We concentrate on formalizing those aspects of the mental substructures that generate entrench-
ment and resistance to change. These aspects include models of reasoned inferential policies that
capture common patterns for justifying existing beliefs, as well as preferential and game-theoretic
policies that capture common decisions reflecting and reinforcing existing beliefs. These models
take into account second- and higher-order preferences and goals of the individual regarding its be-
liefs, actions, and relations to different social groups. We do not assume that all individuals think
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in the same way, and our model provides means for characterizing individuals who differ in, for
example, constitutive degrees of mental integrity and inferential capacity.

1.2 Background

The model presented here draws on numerous extant theories. Epistemology and economic theo-
ries study belief change in terms of idealized conceptions of logical or economic rationality that
presume epistemic omniscience and consistency, as in modal logics of belief and knowledge [33];
instantaneous and complete assimilation of new information, as in Bayesian conditionalization [52];
and effortless, instantaneous deliberative reasoning in microeconomic and game-theoretic theories
of individual and group action [36, 57]. Despite their ideal character, however, these theories have
limitations. Bayesian updating, for example, does not address learning of new information that
contradicts current beliefs. That case is addressed by theories of epistemic entrenchment [31], in
which one belief is more entrenched than another if it is given up before the other when faced with
contradictory information, but these theories in turn do not seek to characterize why or how one
belief becomes more entrenched than another, and so provide little or no predictive power.

The investigation reported here attempts to study a more realistic conception of change in which
the degree of logical and economic rationality is limited by structural or informational properties
of the believer. The aim is to better understand belief and belief change when inconsistency and
ignorance can persist with indefinite duration, in which learning takes time, and slows as habits
accumulate, in which reasoning requires concentrated effort, in which change requires motivation
and acceptance, and in which resistance to change can be passive or active. This portion of the
model draws on prior work on truth or reason maintenance systems (TMS/RMS) [9, 20]; on related
theories of nonmonotonic logics [41] and reasoned assumptions [11, 19]; on theories of econom-
ically rational belief revision [17, 16]; on theories of reflective and argument-oriented dialectical
deliberation [7, 10, 13]; and on cognitive mechanics [21, 22]. We also draw on work in progress
by Wicker [60] to formalize the notion of influence mechanism, by which individuals or groups
engender different kinds of changes on the beliefs of others.

2. Believers

2.1 Individuals

We begin by considering a set U of individuals. For the moment, we make no assumptions regarding
the nature of these individuals, whether they be humans, legal persons, or artificial agents. The
following will focus mainly on finite sets of individuals, but many aspects of our formalization also
cover the case of infinite sets of individuals, as are studied in economic theories of markets with a
continuum of individuals [3].

We assume that each individual falls into one or more of a finite set of types T1, . . . , Tn. Within
U , we identify the individuals of type T by T (U), which we also denote UT . We write T v T ′ when
T is a subtype of T ′. We require that T (U) ⊆ T ′(U) when T v T ′, and that v is transitive.

2.2 Groups

We regard a group g ⊆ U as a set of individuals. The set U itself constitutes the largest group, and
the empty set of individuals ∅ constitutes the smallest group. We sometimes treat singleton groups
g = {i} as if they were the individuals they contain.
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We write G to denote the set of all groups. More generally, we follow Noll’s notion of material
universe [43] or materially-ordered set [45] and assume that G forms a Boolean lattice of subsets of
U in which the lattice meet and join of groups g and g′ are respectively the maximal group contained
in and the minimal group containing both of them. We call the lattice complement ge the exterior
or social environment of g.

For finite U , we normally assume that every subset of U forms a group, so G consists of the
power set 2U . In this case, meet and join are just set intersection and union, respectively, and
ge = U \ g.

For infinite U , we often will assume that U carries a topology and concomitant notions of topo-
logical interiors and closures. Different assumptions about the nature of groups motivate different
topological definitions of groups. If singleton sets of individuals are to be degenerate groups, it
is natural to regard G as the set of all subsets of U , that is, to assume that U carries the discrete
topology. If groups are conceived as containing all the neighbors of each individual in them, one
might regard G as the set of regularly open subsets of U , that is, sets which are the interiors of their
closures, that is, g = int clo g.

As with individuals, we assume that each group falls into one or more group types T1, . . . , Tm,
and write T v T ′ to mean that T is a subtype of T ′. We write T (G) or GT to denote the set of
groups of type T , and require that T (G) ⊆ T ′(G) if T v T ′.

2.3 Group individuals

It is sometimes natural to regard the individuals of some type as forming a group. Conversely, it
is also natural to regard some individuals, such as legal persons, corporations, organizations, and
clans, as consisting of groups of other individuals. We thus partition U into a subset A of atomic
individuals and the remainder set C = U \ A of corporate or group individuals, and assume a
membership function members : C → G. It is natural to extend members to all of U by defining
members(i) = ∅ for each atomic i. We assume that the membership hierarchy contains no cycles,
and that the depth of the hierarchy is bounded by some finite number.

We do not identify group individuals with the set of their members, so two different corporate
groups may happen to have the same set of members without being the same group individual.
Indeed, we do not require that group individuals have any members at all. We therefore cannot
use lack of members as distinguishing corporate from atomic individuals. In particular, such an
extensional view of corporations would make all atomic individuals the same, as each has the same
(empty) set of members.

Membership alone is a crude proxy for the great variety of different roles that individuals play in
a realistic organizations, but it is all that will be considered here. Doyle [13] treats a simple case of
individuals that represent others in the political sense, and Wicker [60] presents a related formalism
for analyzing social change that provides for individuals standing in different relations to each other,
as means to understanding the influences that groups exert on individuals and each other.

3. Belief and mental states

One cannot develop a reasonable theory of belief on the basis of sets of beliefs alone. Understanding
and explaining changes of belief also requires knowing something about the structure, content, and
environment of belief states. In the following, we will introduce and motivate each of these notions.
The present section sets out the conception of belief and mental attitudes within which we examine
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these issues (Section 3.2), the forms of ascription of belief to individuals in different states or con-
figurations (Section 3.3), and the ways in which states of individuals relate to mental configurations
(Section 3.4). The following section treats details of the primary forms of mental configurations,
including logical and constitutive connections between beliefs that underlie the notion of coherence
(Section 4.1), grounding of beliefs via reasons and arguments (Section 4.2), and preferences guiding
choices among alternative assumptions (Section 4.3).

3.1 States

We assume that for each individual i ∈ U , one identifies a set Ψi of all the states that imight inhabit
at each time of interest. We assume that groups inhabit states similarly, with Ψg denoting the set
of possible states of group g ∈ G. If g ⊆ g′, we assume that states of the more inclusive group
determine states of the less inclusive group. We can thus describe this determination in terms of a
projection mapping πΨ(g, g′) : Ψg → Ψg′ . In the simplest setting, it is natural to assume that Ψg is
isomorphic to the product

∏
i∈g Ψi of the constituent individual states. Even if group states do not

take this simple product form, we will assume that if g = {i}, then Ψg is isomorphic to Ψi. We will
sometimes write as if Ψg = Ψi in this case. We make no assumptions here about the state of a group
individual, other than that a group individual typically inhabits states that need not be identical to
the product state of its members.

We do not assume that the states so identified are Markovian, that is, we make no general
assumption that the behavior of an individual depends only on the instantaneous state inhabited
by the individual regardless of what prior states preceded the current one. Instead, we allow that
changes occurring at some time might depend on past or even future states, although in the cases
examined here changes will depend at most on the very recent past (first or second derivatives).

We also do not assume that the states in Ψi are strictly mental ones, but do not treat questions
of physical embodiment in the following. If states have both mental and physical components, one
can expect some degree of indeterminacy in considering mental and physical states, with distinct
physical states corresponding to the same mental state, or with distinct mental states corresponding
to the same physical state, depending on how one regards the relation between mind and body.

3.2 Belief content distinctions

We write Bi to denote a set chosen to distinguish the contents of different beliefs that one might
ascribe to an individual i ∈ U . For simplicity, we also will use the same set B across all individuals,
even though differences in the conceptual apparatus of individuals, such as languages of thought,
are important in contexts not treated here. We need not assume that every belief in B can be ascribed
to each individual; indeed, we might obtain B as the union

⋃
i∈U Bi.

We assume that B is finite or countably infinite and can be represented by a recursive set using
a suitable grammar to express the content of beliefs. In most instances, we will proceed as though
B is the set of sentences in a first-order predicate or modal logic.

We make no assumptions about how expressive the set of possible beliefs need be other than
to assume the existence of a recursive function ¬ : B → B that maps each belief b to an opposite
belief ¬b. We do not assume that beliefs in B are individuated in semantic terms, and so allow the
possibility that different beliefs can involve different statements that have the same meaning, but
we also do not assume that syntactic structure never encodes any semantic structure. In particular,
we allow that beliefs might embed a degree of semantic structure in which ¬(¬b) = b, or even that
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beliefs form the elements of a Lindenbaum algebra in which each belief constitutes an equivalence
class of logically equivalent statements.

As mentioned previously, understanding realistic notions of belief change requires consideration
of additional aspects of mental states besides belief. In the following, we identify roles for other
types of mental attitudes, namely desires, preferences, and intentions, and for structural aspects of
mind related to belief change, such as reasons or structural connections between beliefs. To provide
a uniform but abstract framework for considering mental states containing these other elements as
well as beliefs, we phrase the development in terms of a set D that contains B as well as other
attitudes and mental elements we find cause to consider, such as sets D of desires and preferences,
I of intentions, and R of inference policies we call reasons. In simple cases, one can regard D as
the simple union B∪D∪I∪R∪ . . . of the sets of possible beliefs, preferences, reasoning policies,
arguments, and other mental attitudes. More generally, we can regard D as a set of mental elements
or properties such that particular elements or properties can constitute more than one mental attitude.

3.3 Belief ascriptions

We regard belief ascriptions as observable properties of individuals and groups. We make no as-
sumptions about the methods by which one might ascribe beliefs in the absence of knowledge of
the specific forms of mental states examined in the following, but we do consider two possible form
of such ascriptions, binary ascription, in which one ascribes a set of beliefs to the individual, and
graded ascription, in which one ascribes degrees to which the individual holds each possible belief.
Most of our attention in Sections 4, 5, and 6 will be on binary belief ascriptions, turning to focus on
graded ascriptions in Section 7.

3.3.1 BINARY ASCRIPTION

In the binary form of ascription, one ascribes a set bel∗i (ψ) ⊆ D to individual i. We use RMS
terminology [9] to say that b ∈ D is In (the set of held beliefs) if b ∈ bel∗i (ψ), and is Out otherwise.

Because we assume that the set of possible beliefs is closed under negation, we obtain four
possible states of binary ascriptions regarding each belief b, as depicted in Figure 1: either (1) b is
In and ¬b is Out the set of ascribed beliefs, (2) ¬b is In and b is Out; (3) both b and ¬b are In; or (4)
both b and ¬b are Out. The first two of these states represent the normal mode of unambiguous belief
in either b or its negation. The third state represents the unfortunate condition of having conflicting
or inconsistent beliefs. The fourth state represents the common condition of having no opinion on
b or its negation. These four states of affairs form the basis of some relevance logics for belief first
developed by Dunn [26] and Belnap [4], and for some of the bilattices studied by Ginsberg [32].

The following development describes the sets of beliefs and other mental elements of interest
in two different but equivalent ways: as sets in 2D and as vectors in the binary vector space of
characteristic functions overD. Formally, we write D to denote the binary vector space ZD2 over Z2.
By the natural vector-set correspondence that reads 1 as meaning that the corresponding element of
D is In the set and reads 0 meaning that the element is Out of the set, each vector in D corresponds
to a subset of D.

We write 0 = (0, 0, . . .) and 1 = (1, 1, . . .), respectively, to denote the binary all-zeros and
all-ones vectors, so that 0 represents ∅ and 1 represents D. We define 1 − x to denote x = D \ x.
Vector addition corresponds to symmetric difference, so x+ x = 0 and x− y = x+ y. Pointwise
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Figure 1: Fourfold states of information regarding a belief b, in which a belief and its contrary can
be held or not independently of each other. The state at the head of each arrow contains
more information than the state at the tail.

multiplication corresponds to intersection, so that xy corresponds to x∩y. We obtain the difference
x \ y as xy and the union x ∪ y as the sum of products xy + xy + xy.

A binary belief ascription bel∗i : Ψi → D, as just described, constitutes a complete ascription;
not complete in the logical sense that every possible belief is either held or its contrary is held,
but in the sense that every possible belief is either known to hold or to not hold. Although such
complete ascriptions seem natural when considering ascribing beliefs to humans, they seem less
natural when considering ascriptions to artificial computational individuals that build up beliefs by
computing sets of beliefs in piecemeal fashion. In ascribing beliefs to such individuals, it can be
useful to consider partial ascriptions that do not indicate whether a belief is held or not.

An incomplete binary ascription bel∗i : Ψi → D × D specifies In and Out labels for some
proper subset of B, and says nothing about whether the remaining possible beliefs are held or not.
We characterize partial binary ascriptions in terms of pairs (x, y) in D × D, also writing x \\ y,
read as “x without y”, as an alternative to the pair notation. The first component x of such a pair
characterizes the set of In beliefs, the second component y characterizes the set of Out beliefs, and
beliefs in neither set, that is, beliefs in x̄ȳ, constitute beliefs that are neither In nor Out, a status we
call Nyl, for “not yet labeled”. If y = x, then x \\ x indicates a complete binary ascription.

If xy 6= 0 in x \\ y, the two sets overlap and thus constitute an inconsistent ascription. We could
avoid consideration of inconsistent ascriptions by instead regarding a partial ascription as assigning
one of the three labels In, Out, and Nyl to each element of D. Doing so, however, complicates the
algebraic structure of the set of possible ascriptions The space D×D, like D, is a vector space over
Z2, but phrasing a three-valued ascription directly in vector terms would mean replacing the vector
space D with spaces based on ZD3 or D⊥ = {0, 1,⊥}D over Z2.

One can regard the partial ascription x \\ y as denoting the interval [x, ȳ] in the inclusion-
ordered lattice of subsets of D, namely the interval [x, y] = {z ⊆ D | x ⊆ z ⊆ ȳ}. For a complete
ascription, we have [x, x̄] = {x}. We say a complete ascription z is compatible with or an extension
of (x, y) iff z ∈ [x, y].
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3.3.2 GRADED ASCRIPTION

In the graded form of ascription, one ascribes to each belief a numerical grade or degree in R. We
write G to denote the vector space RD over R, and write grade∗i : Ψi → G to denote a graded
ascription function.

Most approaches to graded belief ascription focus on grades taking values in the interval [0, 1]
that represent probability values or fuzzy truth values, but we do not restrict attention to functions
in [0, 1]D because portions of the subsequent development require that G constitutes a vector space,
and the functions in [0, 1]D do not form a vector space over R or Z2 in the obvious algebras.

Graded ascriptions might be made partial in many different ways, from simple omission of
grades for some beliefs, to arbitrary bits of information about individual grades themselves. The
most straightforward analog of the preceding approach to partial binary ascriptions is to regard a
partial graded ascription grade∗i : Ψi → G×G as specifying a subinterval of R for each potential
belief, that is, a pair of functions (x, y) ∈ G × G in which we interpret x(b) as providing a lower
bound on the grade of b and y(b) as providing an upper bound on the grade of b. In this approach,
the improper subinterval R provides no information about the grade, while a degenerate subinterval
[γ, γ] ties the grade down exactly. Of course, such interval grades cannot express all forms of partial
information about grades. In particular, no element of G×G represents the improper interval R.

3.3.3 TRANSLATING BETWEEN ASCRIPTIONS

Summarizing the preceding, we assume that one can ascribe complete or incomplete binary or
graded beliefs to states:

Ψi



bel∗i−→ D
Bel∗i−→ D× D
grade∗i−→ G
Grade∗i−→ G×G

(1)

We do not assume or require any specific relation between binary and graded ascriptions to the
same individual, and in Section 3.4 regard such relations as characteristic of different types of indi-
viduals. The subsequent development will consider some translations that make sense for specific
mental structures under consideration. For the moment, we merely sketch some of the most obvious
possibilities and problems.

One can, for example, translate a complete binary ascription into a graded one by reinterpreting
the 0, 1 values of vectors in D as the 0, 1 values of vectors in G, and so obtain the translation

grade∗(ψ)(b) = bel∗(ψ)(b). (2)

This same formula serves to define the translation for partial binary ascriptions into partial graded
ascriptions by assigning the interval [1, 1] to In elements, assigning [0, 0] to Out elements, and
assigning [0, 1] to all Nyl elements. These translations need not be appropriate for conceptions of
the grading space G different than the one considered here, and need not always be appropriate even
for the grading space treated here.

The obvious means for going the other way and translating graded ascriptions into binary ones
leave many more questions open. Focusing on grades that fall in the interval [0, 1], one can translate
a partial graded ascription into a partial binary ascription by assigning In to all elements graded
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[1, 1], assigning Out to all elements graded [0, 0], but then one has many choices for how to label the
remaining elements, the simplest being to label each of them with Nyl. In this case, starting with a
partial binary ascription, translating to a partial graded ascription, and then back to a partial binary
ascription yields the same as one started with, but a double translation starting from a partial graded
ascription will generally not return to the initial ascription. But with G not restricting grades to the
unit interval, even the preceding range of translations need not apply.

3.4 States and mental configurations

If belief ascriptions constitute observable properties of individuals, states and mental configurations
characterize the underlying reality of individuals under observation. Mental configurations consti-
tute the internal mental structures characteristic of the individual, and serve as the primary notion of
mental structure that shapes belief ascription and belief change. States, in contrast, express and limit
indeterminacy or uncertainty about configurations and changes of configurations of individuals.

Conceptions of mental configurations are as numerous as conceptions of mind. Most of the
conceptions of mental configurations considered in the following involve more complex structures
over D than mere binary or graded belief ascriptions. The few varieties considered here seek to
understand belief change by distinguishing sets of base beliefs from conclusion beliefs, by picking
out arguments supporting conclusion beliefs, and by identifing recent changes to beliefs. We write
Φi to denote the set of mental configurations possible for individual i, and provide candidates for
what such sets might contain in Section 4.

We assume that each type of mental configuration supports both binary and graded belief ascrip-
tions, either partial or complete. That is, we require the identification of binary ascription functions
beli : Φi → D or Beli : Φi → D × D and graded ascription functions gradei : Φi → G or
Gradei : Φi → G×G, which we summarize as

Φi



beli−→ D
Beli−→ D× D
gradei−→ G
Gradei−→ G×G

(3)

It is easily seen that each complete binary or graded ascription function can be recast in the form of
a partial ascription function and, as noted earlier, each binary ascription function can be recast as
a graded ascription function, so these multiple requirements do not represent different constraints.
Nevertheless, we will focus on binary ascriptions in the following.

In the following, we consider individuals characterized by three types of relations between states
of the individual in Ψi and mental configurations in Φi, namely definite states that correspond
to specific configurations in Φi, indefinite states that correspond to sets of configurations in 2Φi ,
and distributional states that correspond to probability distributions over possible configurations in
Pr[Φi]. Writing βi to represent the function associating the configurational structures of individual i
with states of individual i, we summarize the relations between states and configurations as follows.

Ψi
βi−→


Φi

2Φi

Pr[Φi]
(4)
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Complementing the function βi that interprets states in terms of configurations, we assume
ascription-combination functions β∗beli, β∗Beli β∗gradei, and β∗Gradei that ascribe beliefs to
the configurational representations of states, that is, functions

Φi

2Φi

Pr[Φi]



β∗beli−→ D
β∗Beli−→ D× D
β∗gradei−→ G
β∗Gradei−→ G×G

(5)

such that the beliefs ascribed to states directly match those assigned to configurational structures in
the sense that

bel∗i (ψ) = β∗beli(βi(ψ)) (6)

Bel∗i (ψ) = β∗Beli(βi(ψ)) (7)

grade∗i (ψ) = β∗gradei(βi(ψ)) (8)

Grade∗i (ψ) = β∗Gradei(βi(ψ)), (9)

or schematically,

Ψi
βi−→


Φi

2Φi

Pr[Φi]


β∗beli−→ D

bel∗i←−
β∗Beli−→ D× D

Bel∗i←−
β∗gradei−→ G

grade∗i←−
β∗Gradei−→ G×G

Grade∗i←−


Ψi. (10)

3.4.1 DEFINITE CONFIGURATION STATES

An individual has definite configuration states when its states determine mental configurations
uniquely, in which case the association of configurations with states takes the form of a function
βi : Ψi → Φi. If we seek to simplify the analysis by identifying definite states with the configura-
tions they determine, then we have Ψi = Φi and βi is the identify map on Φi. In this case we can
simplify the earlier equations to obtain

bel∗i (φ) = β∗beli(φ) (11)

Bel∗i (ψ) = β∗Beli(φ) (12)

grade∗i (ψ) = β∗gradei(φ) (13)

Grade∗i (ψ) = β∗Gradei(φ) (14)

3.4.2 INDEFINITE CONFIGURATION STATES

An individual has indefinite configuration states when its states determine a set of possible mental
configurations, in which case the association of configurations with states takes the form of a func-
tion βi : Ψi → 2Φi that maps each state ψ ∈ Ψi to a set βi(ψ) of belief states in Φi. We leave open
the possibility that βi(ψ) can be empty, finite, or infinite. One can regard definite configuration
states as a special case of indefinite configuration states, in which each state determines a singleton
set of mental configurations.
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Nonmonotonic logics and other approaches involving grounded belief configurations such as
those treated in Section 4.2 provide the most common motivation for considering indefinite belief
individuals. The simplest conception of grounded belief configuration regards each mental config-
uration φ ∈ Φ as a pair (m,x) ∈ D× D in which m consists of a set of base elements in D, and x
consists of a set of conclusion elements in D. One typically can have different sets of conclusions
grounded in the same set of base beliefs. In this setting, one assumes that each mental configuration
determines a unique set of base beliefs, and that the set of possible belief states consist of the set of
“expansions” of the belief base.

Unlike the case of definite configuration states, in which we can obtain ascriptions to states
directly from ascriptions to configurations, many alternatives exist for constructing or defining as-
criptions to states from ascriptions to sets of configurations. Indeed, we regard the relation between
these types of ascriptions, as expressed in the functions β∗beli, β∗Beli, β∗gradei, and β∗Gradei
as characteristic of the individual, as part of its constitution, so that one finds different relations
characteristic of different individuals. We will identify some such relations characteristic of special
types of believing individuals in Section 7, but otherwise leave the question open.

Consider first indefinite ascriptions based on complete binary ascriptions. Borrowing terminol-
ogy from [41] introduced in the context of grounded belief, we say that b is arguable iff there is
some φ ∈ βi(ψ) such that b ∈ beli(φ) and that b is provable iff b ∈ beli(φ) for each φ ∈ βi(ψ). We
also say that b is doubtless iff there is some φ ∈ βi(ψ) such that ¬b /∈ beli(φ) and that b is conceiv-
able iff ¬b /∈ beli(φ) for each φ ∈ βi(ψ). In definite belief individuals, b is In iff b is arguable iff b
is provable. We can depict the inclusions between these classes of beliefs as in Figure 2.

Arguable Doubtless

Provable

Conceivable

HH
H

HH
HY

��
�
��
�*

�
��

�
��*

H
HH

H
HHY

Figure 2: Inclusion relationships between classes of beliefs distinguished by the appearance of a
belief and its contrary in alternative mental configurations. The class at the head of each
arrow includes the class at the tail.

For the case of partial binary ascriptions, one gets a more complicated set of descriptors and in-
terrelations. These four descriptors still apply because their definitions refer only to what is In. One
gets additional concepts by considering what is Out and Nyl. One obtains a still more complicated
picture when considering complete and partial graded ascriptions.
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3.4.3 DISTRIBUTIONAL CONFIGURATION STATES

An individual has distributional configuration states when its states determine probability distribu-
tions over all possible mental configurations, in which case the association of configurations with
states takes the form of a function βi : Ψi → Pr[Φi], where Pr[Φi] denotes the set of all probability
distributions over mental configurations in Φi. Definite belief individuals form a special case of
distributional belief individuals, in which each state assigns probability 1 to one configuration and
probability 0 to all others.

We do not attempt to examine here all possibilities for defining β∗beli, β∗Beli, β∗gradei, and
β∗Gradei for distributional individuals. There are 16 cases to consider, namely complete or incom-
plete binary or graded ascriptions to states derived from complete or incomplete binary or graded
ascriptions to configurations. More importantly, different types of individuals might reasonably ex-
hibit different constitutions, in which case there is no single definition for all cases. At this point
we only illustrate two of the possibilities for defining ascriptions to states based on ascriptions to
configurations, and return to this question later to consider additional possibilities.

First, one might derive complete graded ascriptions from complete binary ascriptions as follows.
When combined with a complete binary belief ascription, each probability distribution PrΦ : Φ→
[0, 1] over mental configurations induces a measure β∗grade : D → R over elements in D by the
definition

β∗grade(b) =

∫
PrΦ({φ ∈ Φ | b ∈ bel(φ)}), (15)

which we abbreviate by writing Pr(b) to mean β∗grade(b). These induced measures are not in
general probability measures in the absence of assumptions about the completeness and consistency
of the possible belief ascriptions, for without such assumptions, one can have Pr(b) + Pr(¬b) < 1
or Pr(b)+Pr(¬b) > 1. In particular, for definite belief individuals, Pr(b) = 1 if b is In, Pr(b) = 0
if b is Out, and Pr(b) + Pr(¬b) can take the values 0, 1, or 2.

Second, one might derive incomplete graded ascriptions to states from incomplete binary as-
criptions to configurations as follows. In this case, we derived β∗grade : D → (R× R) by

β∗grade(b) =

(∫
PrΦ({x \\ y ∈ Φ | b ∈ x}),

∫
PrΦ({x \\ y ∈ Φ | b /∈ y})

)
, (16)

in which the lower bound in this confidence interval is the probability of only the beliefs in x being
In, and the upper bound is the probability of only the beliefs in y being Out.

4. The structure of belief configurations

We distinguish three dimensions along which approaches to the study of belief change differ. These
dimensions represent different assumptions about the properties required of mental configurations.
We do not claim these represent the only ways of distinguishing approaches, only that they represent
distinctions clearly visible in current approaches.

• Coherence: Rather than follow traditional epistemic logics in assuming that beliefs cohere
in the sense of exhibiting ideal logical closure and consistency, mental configurations can
exhibit coherence based on weaker constitutive logics that requires beliefs to exhibit lesser
degrees of consistency and closure, and that coherence might involve nonlogical connections,
including nonmonotonic closure conditions.
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• Foundation: Rather than consisting of a set of beliefs related only by coherence criteria,
beliefs might admit a division into base beliefs and those beliefs derived or constructed from
the basis beliefs.

• Optimality: Rather than only depending on beliefs, mental configurations might represent the
result of choices among alternatives based on preferences among beliefs and mental configu-
rations.

The following will present representatives of some alternatives along each of these dimensions in
some detail.

4.1 Coherence of beliefs

Quine painted a picture of mental change in his image of the “web of belief” [48, 47], in which
changes of belief are restrained or shaped by a network of connections between beliefs, such that
the overall change resulting from some sets of pokes and tugs satisfies his principle of minimum mu-
tilation [46], in which the resultant change is the “smallest” change that accomodates the perturbing
pokes and tugs.

Philosophy and artificial intelligence have explored connections between beliefs of several
types, including notions of logical entailment and consistency that connect beliefs through their
meanings, and notions of nonmonotonic and nonlogical inference that connect beliefs through what
one might think of as habits of thought or patterns of plausible reasoning. These types of connec-
tion between beliefs certainly do not exhaust the ideas relevant to understanding belief change. For
example, logical and reasoning dependencies between beliefs do not touch on temporal connections
between beliefs, the most prominent of which is the persistence of memory, in which a belief con-
cluded at some point in the past is believed currently only because nothing worked to remove it. Nor
do logical and reasoning dependencies reflect certain kinds of active dependence in which motives
maintain beliefs by constant action that resists change and restores their targets. We consider these
types of connections between beliefs in subsequent sections.

Formalizing notions of coherence requires only a very simple conception of mental configura-
tion, namely as a complete or partial set of beliefs and other mental elements, that is, configurations
of type D or of type D2. The belief ascription functions for each of these is obviously the identity,
that is, bel(φ) = φ for φ ∈ D and Bel(φ) = φ for φ ∈ D2, the former being complete ascriptions
and the latter partial.

Of course, not every subset need be considered coherent, so we identify assumptions about the
mental constitution [13, 19] that can (but need not) restrict coherent configurations to including only
some elements of D or D2.

4.1.1 CONSISTENCY AND CLOSURE

This section considers constitutive assumptions requiring that beliefs ascribed to mental configura-
tions must satisfy logical consistency and closure conditions. For example, one type of constitution
might rule out overtly inconsistent sets of beliefs by restricting the individual to beliefs that never
include both b and ¬b; another might require that the beliefs contain b and c if it contains a belief
expressing “b and c.”

We treat constitutive logics abstractly by using Scott [53] information systems to present the
requirements of inherent inference in direct terms rather than in terms of axioms phrased in some
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particular logical language. A Scott information system over D is chararacterized formally by three
items (D,Con,`), in which D constitutes the set of atomic “propositions”. The set Con consists of
the finite subsets of D that are “consistent”, that is, that satisfy the constitutive consistency condi-
tion, and the relation ` on Con × D consists of the finite “entailments” inherent in the constitutive
inference conditions, writing x ` a to mean (x, a) is in `. To capture what we would think of as
actual consistency and entailment conditions, Con and ` must satisfy the following conditions.

The conditions on consistency are that subsets of consistent sets are consistent, or formally, that
x ∈ Con if x ⊆ y ∈ Con; and that each element is itself consistent, or formally, that {a} ∈ Con if
a ∈ D. We say that a set x ⊆ D is consistent iff each finite subset y ⊆ x is consistent according to
Con.

The conditions on entailment state that addition of entailed elements preserves consistency, or
formally, that x ∪ {a} ∈ Con if x ` a; that consistent sets entail their own members, or formally,
that x ` a if a ∈ x; and that entailment is transitive, or formally, that y ` a if y ` b for all b ∈ x,
and x ` a. We say that x is (inferentially) closed iff a ∈ x whenever y ⊆ x and y ` a. We extend
the notation of entailment in the natural way to say that x ` y iff x ` a for each a ∈ y, in which
case the transitivity of entailment condition can be rewritten as x ` Z whenever x ` y and y ` Z.
We then introduce a closure operator θ, defining θ(x) to be the least closed superset of x. We also
broaden the notation x ` a to mean a ∈ θ(x).

To apply the notion of inherent logic to mental configurations of type D or type D2, we require
that the set In elements ascribed to the configuration be consistent and closed. For configurations of
type D, this means the set x ∈ D, and for configurations of type D2, this means the first component
of (x, y) ∈ D2.

These abstract notions of consistency and closure cover many possibilities, ranging from the
ordinary logical notions of ideal consistency and entailment to individuals who enjoy no nontrivial
powers to identify inconsistencies or entailments, for which case one considers every finite set to be
consistent, and for entailment to be just simple containment x ` a iff a ∈ x, so that every subset
of D is both consistent and closed. These notions also provide the means to require that sets of
conclusions always contain certain elements, in that an entailment ∅ ` a requires that a be in every
closed set.

4.1.2 CONNECTIONS BETWEEN BELIEFS

Logical consistency and closure notions do not exhaust the properties relevant to coherence of be-
liefs. In particular, consistency and closure are incapable of expressing nonmonotonic connections
between beliefs, such as a requirement that b should be held if ¬b is not.

In the following, we consider coherence constraints that can be expressed as connections be-
tween specific beliefs, which we interpret formally as the requirement that one can express each
such constraint as a specific Boolean combination of In and Out predicates, such as In(b) ∨ In(¬b).
The original motivation for considering such cognitive connections was as means for recording fi-
nite traces of past derivations in a reason maintenance system (RMS) [9]. In this setting, these
recorded reasons represent logical or nonlogical inferential relationships among beliefs and other
mental attitudes and representations. One may also regard them as mental habits or policies re-
garding when to hold or not hold certain beliefs, or as nonmonotonic closure policies or constraints
on sets of conclusions. As such connections play important roles in understanding commonsense
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Reason type Full form Abbreviation
Premises ∅ \\ ∅ ‖− C \\ ∅ ‖− C
Monotonic reasons A \\ ∅ ‖− C \\ ∅ A ‖− C
Nonmonotonic defaults A \\ B ‖− C \\ ∅ A \\ B ‖− C
Normal defaults A \\ {¬b} ‖− {b} \\ ∅ A \\ {¬b} ‖− {b}
Pure assumptions ∅ \\ {¬b} ‖− {b} \\ ∅ \\ {¬b} ‖− {b}
Pure denials ∅ \\ ∅ ‖− ∅ \\ D ‖−\\ D

Figure 3: Special cases of interval conditionals and their abbreviations.

reasoning, a comprehensive theory of coherence must augment the logically monotonic notions of
consistency and closure with means for characterizing nonmonotonic constraints between beliefs.

In line with these motivations, we focus on reasons that can be phrased as conditionals written
in the form A \\ B ‖− C \\ D, for A,B,C,D ⊆ D, read as “antecedents A without defeaters B
gives consequences C without denials D,” meaning that each element of the consequences C must
be In and each element of the exclusionsD must be Out if each element ofA is In and each element
of B is Out. For example, one could cast the requirement “Hold (c) ‘Sasha can fly’ if (a) ‘Sasha is
a bird’ is not held, and (b) ‘Sasha cannot fly’ is held” as the reason {a} \\ {b} ‖− {c} \\ {}.

Formally, each such reason corresponds to a coherence condition on mental configurations. We
write [[A \\ B ‖− C \\ D]] to denote the meaning of this condition, namely the set of mental
configurations satisfying the condition. For configurations of type D, the satisfying configurations
are given by

[[A \\ B ‖− C \\ D]] = {x ∈ D | Ax+Bx = 0→ Cx+Dx = 0}, (17)

and for configurations of type D2, the configurations satisfying a reason are given by

[[A \\ B ‖− C \\ D]] = {(x, y) ∈ D2 | Ax+By = 0→ Cx+Dy = 0}. (18)

We say a reasonA \\ B ‖− C \\ D is valid with respect to configurations x or (x, y) if its antecedent
conditions hold, that is, if Ax+Bx = 0 or Ax+By = 0.

Figure 3 lists several special cases of such conditional reasons corresponding to common uses
in automated reasoning systems. Premise reasons can be used to stipulate axioms or other re-
quired conclusions. Records of ordinary logical inferences take the form of monotonic reasons, but
monotonic reasons in general need not be logically sound. Nonmonotonic default reasons state con-
ditional assumptions and commonly represent heuristic or plausible inferences by making assump-
tions absent information that would contradict or defeat the assumptions. Nonmonotonic default
reasons cannot forbid the presence of elements in mental states. Normal defaults represent a com-
mon form of simple nonmonotonic assumptions, and pure assumptions represent the unconditional
form of normal defaults. Pure denials are used to mark contradictions in the dependency-directed
backtracking methods of Sussman and Stallman [56, 55] and [9].

With our earlier notice that A \\ B identifies an interval in the lattice of subsets of D, namely
those subsets that contain all elements of A but contain no elements of B, we can also call reasons
of the form A \\ B ‖− C \\ D interval conditionals, as such reasons require that beliefs fall in the
interval C \\ D if they fall in the interval A \\ B. One can transform arbitrary Boolean conditions
on specific beliefs to sets of relations between intervals by conversion to disjunctive normal form
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and then regarding each disjunct as either a positive interval conditional A \\ B ‖− C \\ D or as
a negative interval conditional A \\ B ‖− ¬(C \\ D). Positive interval conditionals have the con-
ceptual advantage of relating to individual beliefs either in a positive way (appearance in C) or a
negative way (appearance in D), as opposed to general conditions in which the relation need not be
either purely positive or negative. Positive interval conditionals also express definite constraints on
beliefs, in contrast to negative interval conditionals, which express possibly ambiguous disjunctive
constraints.

Consistency and closure represent global coherence conditions not tied to individual beliefs. If
we also regard the set of cognitive connections as static, we obtain a view of belief akin to that
taken in Reiter’s [49] default logic, which augments ordinary logical closure and consistency with a
fixed set of defaults that correspond to interval conditional schema without denials. In that setting,
the default and logical inference combine to yield sets of conclusions via grounding definitions
akin to those described in Section 4.2. In considering active reasoners, however, one finds attitudes
that are naturally regarded as intentions or habits that state policies that constrain the structure
of mental states and the conduct of reasoning, such as nonmonotonic reasoning rules discussed
presently. Such policies can be themselves adopted or abandoned in the course of reasoning, unlike
global notions of logical consistency and closure. In such cases, it is natural to regard an interval
conditional as a mutable element of the mental state, as an element r ∈ D that constrains states to
fall in the set [[r]] = [[Ar \\ Br ‖− Cr \\ Dr]] for some sets Ar, Br, Cr, Dr ⊆ D. We can extend
this interpretation to all state elements, even ones that are not intended to constitute reasons, by
interpreting non-conditional elements as the vacuous conditional ∅ \\ ∅ ‖− ∅ \\ ∅, which has the
unconstraining meaning [[∅ \\ ∅ ‖− ∅ \\ ∅]] = D for configurations of type D and the meaning D2

for configurations of type D2.

With identifications of the (possibly trivial) connective meaning of every element of D, we can
formulate an expanded notion of coherence as follows.

We say that a configuration x ∈ D is self-satisfying just in case it satisfies the conditions ex-
pressed by each of its In elements, that is, just in case x ∈ [[e]] for each e ∈ x. We extend the
meaning function to a function over sets of reasons by defining [[∅]] = D and [[x]] =

⋂
e∈x[[e]] for

each nonzero x ∈ D, so that x is self-satisfying iff x ∈ [[x]]. A configuration (x, y) ∈ D2, in turn,
is self-satisfying just in case it satisfies the conditions expressed by each of its In elements, that is,
just in case (x, y) ∈ [[e]] for each e ∈ x. We extend this meaning function as well to a function over
sets of reasons by defining [[∅]] = D2 and [[x]] =

⋂
e∈x[[e]] for each nonzero x ∈ D, so that (x, y)

is self-satisfying iff (x, y) ∈ [[x]]. In either case, therefore, a configuration is self-satisfying just in
case it respects the consequences and denials of each of its valid In reasons.

Summing up, we obtain a more comprehensive notion of coherence of beliefs by augmenting
satisfaction of global consistency and closure conditions with satisfaction of all connective condi-
tionals present in the state. We say that configurations x of type D or (x, y) of type D2 is coherent
just in case its In elements are consistent and closed, that is, that θ(x) = x, and that the configura-
tion as a whole is self-satisfying, that is, that x ∈ [[x]]. The subset of coherent vectors in D or D2

need not form a vector space.

One can exploit such mutable reasons to avoid the need to remove reasons from mental states,
allowing reasoning to purely accumulate reasons over time. To do this, one assumes the existence
of “defeater” elements in D specific to each reason and then includes these defeater elements in the
constraints expressed by the reason. That is, one assumes that the element defeated(r) represents
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the defeat of the conditional A \\ B ‖− C \\ D, which one then interprets as

r = A \\ B ∪ {defeated(r)} ‖− C \\ D. (19)

4.2 Grounding of beliefs

Gärdenfors [29, 30] distinguishes two types of theories of belief, those in which the set of beliefs
is derived from some set of stipulated foundational or basis beliefs, and those in which the set of
beliefs subsists on its own without any notion of foundation. Both types of theories regard beliefs as
consistent and closed with respect to some logic of belief. In the ungrounded or coherence theories
the consistency and closure constraints are the only assumptions made about the set of beliefs,
while in the grounded or foundations theories the set of beliefs must satisfy additional constraints
regarding derivation or construction from the stipulated foundation or basis [14]. For example, one
might regard the basis to be some arbitrary set of beliefs, and the definite beliefs resulting to be the
closure of this set under entailment in a classical logic, such as the modal logic of belief K4. If
the logic of belief is a nonmonotonic one, such as Moore’s [42] autoepistemic logic, the same base
beliefs can generate a set of possible belief configurationss, corresponding to an indefinite belief
state.

Our exemplar for foundational systems is that of truth or reason maintenance systems
(TMS/RMS) [9], in which the base structures are called justifications or reasons, and in which
reasoning is organized to systematically add reasons that represent steps of reasoning as they are
made, for example, through chunking or similar notions. To obtain a belief set that contains some
specific belief, one adds a new reason to the RMS base that draws the target belief as a conclusion.
RMS reasons persist in memory until explicitly expunged, so the new conclusion persists as well
barring further changes to the set of base reasons. To remove an existing belief, one changes the
base so that it no longer draws the target belief as a conclusion. This could be done by finding and
removing some base reason underlying the target belief, but RMS reasons are nonmonotonic, so that
one can defeat some conclusion by adding new reasons that defeat the reasons formerly supporting
the target. Removing some conclusion indirectly can require defeating more than one underlying
reason, as RMS retains consequences that have alternate support.

The notion of constructive belief applies even with different notions of base beliefs. For exam-
ple, one might take the base structure to consist of Bayesian networks or artificial neural networks
and regard constructive beliefs as derived by means of probabilistic or neural-element thresholds.
For simplicity, we focus on constructive schemes starting and ending with the elements of D intro-
duced in the preceding.

4.2.1 GROUNDING CONFIGURATIONS

Standard theories of nonmonotonic reasoning focus on the possible states of conclusions derivable
from base beliefs and nonmonotonic inference rules, calling these sets extensions or “expansions” or
“answer sets”. We treat such extensions presently, but develop them by considering first the notion
of grounding configurations that identify the different ways in which conclusions can be grounded
in base beliefs.

Grounding configurations correspond more closely to practicable means for producing or re-
vising belief states via reasoning or computation from base beliefs than do the conceptions of
configuration-free extensions. Rather than focus only on the conclusions reached, grounding config-
urations focus on the means by which these conclusions are reached. Grounding configurations thus
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distinguish a set of conclusions reached by one set of arguments from the same set of conclusions
reached by a different set of arguments. In this setting, a new set of beliefs constructed following a
change to base beliefs might, in some cases, be the same as the previous set of constructive beliefs,
in which case we regard the two belief states as having both different base beliefs and different
internal configurations.

Distinguishing configurations from conclusions yields a formalization closer to the structure of
computational systems like RMS than to the structure of a plain nonmonotonic logic. Configura-
tional structure played a key role in the original RMS implementations, with a belief state consisting
of both a labeling of conclusions as In and Out and an assignment of supports, such as supporting
reasons, to each conclusion labeled In.

Writing S to denote the space of functions (D → D), we define a complete belief configuration
to be a triple (m, s, x) ∈ D × S × D, in which we regard m as the basis set, x as the constructed
set, and s as picking out a set of supports for each mental element. Naturally, a complete belief
ascription of a configuration of this type consists of the third component, that is, bel((m, s, x)) = x.
We define a partial belief configuration similarly to be a quadruple (m, s, x, y) ∈ D × S × D2, in
which the components x and y characterize the In and Out conclusions separately, so that we have
the natural partial belief ascription given by Bel((m, s, x, y)) = (x, y).

The notion of coherent configuration described previously reflects one half of the basic RMS
stability principle by requiring that state elements be In (or Out) if a valid reason requires them to
be so. The simplest notion of grounding reflects the other half of the stability principle, that state
elements be In only if they have a valid reason for being held. The notion of local grounding places
no restriction on the valid reasons used to justify holding a belief, whereas the notion of global
grounding requires that the justifying reasons form part of a noncircular argument for holding the
belief. We treat these grounding varieties in turn, and define both only in terms of configurations of
type D × S × D2, as complete grounding configurations correspond to a subset of these satisfying
the same definitions under the constraint that y = x.

4.2.2 LOCAL GROUNDING

We say that a configuration (m, s, x, y) is locally grounded, or that s locally grounds (x, y) in m, if
the presence or absence of conclusions in (x, y) exactly corresponds to the existence of supporting
reasons in s that are valid with respect to (x, y) and m. Formally, (m, s, x, y) is locally grounded
iff x is coherent (consistent, closed, and self-satisfying), and for each e ∈ D, x(e) = 1 (that is, e is
In) iff

1. ∅ ⊆ s(e) ⊆ m ∪ (x \ {e}) and s(e) ` e, or

2. ∅ ⊂ s(e) ⊆ m ∪ x and for each r ∈ s(e), there are A,B,C,D such that r = A \\ B ‖− C \\
D, Ax+By = 0, and e ∈ C,

The first of these conditions requires that every element of m be in x because {e} is by assumption
consistent and entails its own element. If we say e is stipulated in x with respect to m just in case
e ∈ m, then a state element is locally grounded just in case it is either stipulated, logically derivable
from other In elements, or is a required conclusion of some In reason.

Mutually supporting beliefs appear frequently when reasoning about equality or logically equiv-
alent statements. These give rise to alternative configurations for the same set of conclusions and to
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self-supporting cycles in locally grounded extensions. Figure 4 displays a situation in which three
base reasons support two beliefs in three distinct locally grounded configurations.

Base reasons Conclusions
‖− a a

+ a ‖− c a, c
+ c ‖− a a, c

Conclusion Supports
c a ‖− c

and
a ‖− a; or

c ‖− a; or
‖− a, c ‖− a

6

a

c

�
���

'
?

Figure 4: Three distinct configurations with same conclusions.

Locally grounded configurations permit self-supporting cycles, mutually supporting beliefs that
arise easily in reasoning about equality or logically equivalent statements. For example, starting
from any two of the equalities X = Y , Y = Z, and X = Z, one might infer the other. A simple
example is displayed in Figure 5, in which one starts with no base beliefs and adds and removes
various reasons, some of which connect beliefs, and others of which stipulate the presence of beliefs.
At the end, one has left only the connective reasons a ‖− c, b ‖− c, and c ‖− b. This set of reasons
plays into two distinct locally grounded configurations, one in which both b and c are held, and one
in which neither is held. The latter is also a globally grounded configuration, as discussed presently.

Base reasons Conclusions
‖− a a

+ a ‖− c a, c
- ‖− a
+ ‖− a a, c
+ b ‖− c a, c
+ ‖− b a, b, c
- ‖− a b, c
+ c ‖− b b, c
- ‖− b b, c (local); none (global)

6 6

a b

c

�
�
��

@
@
@I

$
?

Figure 5: Local versus global grounding of conclusions. The conclusion sets are obtained by start-
ing with an empty set of reasons and adding and removing reasons.

4.2.3 GLOBAL GROUNDING

The conception of global groundedness underlies the belief revision effected by RMS and the no-
tions of extension and answer sets of most systems of nonmonotonic or default logics and answer-
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set programming systems. In contrast to the extensions admissible in locally-grounded beliefs,
grounded stable extensions omit self-supporting cycles of the sort seen in Figure 5.

We say that a configuration (m, s, x, y) is globally grounded if the presence or absence of con-
clusions in x exactly corresponds to the existence of noncircular supporting arguments starting
from m. Formally, (m, s, x, y) is globally grounded iff (m, s, x, y) is locally grounded and there is
a well-ordering < on D such that for each e ∈ D, either

1. ∅ ⊆ s(e) ⊆ m ∪ x<e and s(e) ` e, where x<e
def
= {b ∈ x | b < e}, or

2. ∅ ⊂ s(e) ⊆ m ∪ x<e and for each r ∈ s(e), there are A,B ⊆ x<e such that r = A \\ B ‖−
C \\ D, Ax+Bx = 0, and e ∈ C.

These conditions parallel those defining locally grounded configurations, but require that the sup-
porting inferences or reasons be developed prior to the conclusion they support. Globally grounded
extensions thus omit self-supporting cycles of the sort seen in Figure 5, requiring instead at least
one noncircular derivation from base beliefs by either logic or reasons.

We say that a locally or globally grounded configuration (m, s, x, y) is minimal if elements
obtained by entailment have minimal supporting sets, that is, if s′ 6` e whenever s(e) ` e and
s′ ⊂ s(e). We say that the configuration is functional just in case the support function s identifies
exactly one supporting reason for every element in x, that is, if for each e ∈ x, if s(e) 6 ` e, then
|s(e)| = 1. The original RMS [9] and related systems relied on functional globally grounded states,
in which one of the possible valid reasons for a belief was distinguished as the supporting reason.

4.2.4 GROUNDED EXTENSIONS

For each locally or globally grounded configuration, we say that the complete or incomplete sets of
conclusions of the configuration constitute a grounded extension of the base beliefs of the configu-
ration. Thus x would be a grounded extension of m given a grounded configuration (m, s, x), and
x \\ y would be a grounded extension of m given a grounded configuration (m, s, x, y). We write
αL(m) to denote the set of all locally grounded extensions of m, and αG(m) to denote the set of all
globally grounded extensions of m.

When all reasons are monotonic, there is one and only one globally grounded extension. There
may be more than one locally grounded extensions, but in this case there is one locally grounded
extension that contains all the others as proper subsets.

A different situation prevails when some reasons are nonmonotonic. Nonmonotonic logics char-
acteristically exhibit multiple extensions in which a set of base reasons can support zero, one, or
more grounded extensions, none of which need include the others. Figure 6 displays a simple case
in which the full set of reasons supports an extension in which a is believed but b is not, and another
in which b is believed and a is not. Moreover, reasoning exhibits hysteresis, in that adding a reason
that defeats one extension but is later removed can lead to an extension other than the one originally
entertained. As the accompanying table indicates, adding and removing base reasons one at a time
can determine which of the extensions one has in hand. The first extension {a, e} found will persist
under such sequential revision until defeated, at which time the other extension {b, d} will be held,
even if the the reason that originally defeated it is restored.

Because beliefs might be in one extension but not in others, we require additional terms to
characterize the relation of some b ∈ D to the grounded configurations of the individual. We reuse
the terms presented in Figure 2 to classify beliefs as arguable, provable, doubtless, and conceivable
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Base reasons Global conclusions
\\ d ‖− a a

+ \\ e ‖− b a, b
+ a, b ‖− c a, b, c
+ a ‖− e a, e
+ b ‖− d a, e
- a ‖− e b, d
+ a ‖− e b, d

6b 6b
a b
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d e
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Figure 6: Two incompatible extensions, with sequential revision exhibiting hysteresis

depending on the presence or absence of a belief and its contrary in the beliefs ascribed to the
extensions in α(m). When the logic of belief includes first-order logic, all these inclusions shown
in Figure 2 are proper.

Dung [25, 5] develops a theory of abstract arguments and “attack” relationships between them
that provides a general framework for formalization of multiple extensions grounded in basis beliefs.

Local and global grounding need not exhaust the possible notions of grounding. One can con-
sider intermediate forms in which beliefs are grouped into different “regions” and consider regional
grounding in which grounding is acyclic within each region but may be cyclic among regions, as
in the rational distributed reason maintenance system of [20]. That treatment had in mind regions
representing “subagencies” of a single mind, but one might use the same ideas in considering beliefs
that are regionally grounded within subtheories corresponding to different subject matters (religious,
moral, political, scientific, etc.) or authorities.

4.3 Preference among beliefs

Some theories of belief augment coherence or grounding conditions with optimality conditions,
such as Rescher’s preferred maximal consistent subsets of conflicting beliefs [50], that require that
belief configurations be the best of those available, according to some standard of comparison.

Abstractly, theories of preferred configurations posit a weak preference relation ∼≺ on mental
configurations, that is, a complete (φ ∼≺ φ′ or φ′ ∼≺ φ) and transitive (if φ ∼≺ φ′ and φ′ ∼≺ φ′′, then
φ ∼≺ φ

′′) ordering of mental configurations, for which we define indifference∼ by φ ∼ φ′ iff φ ∼≺ φ
′

and φ′ ∼≺ φ, and define strict preference ≺ by φ ≺ φ′ iff φ ∼≺ φ
′ and φ′ 6∼≺ φ.

If Φ′ is a set of mental configurations, we say that a configuration φ ∈ Φ′ is optimal or maximally
preferred with respect to Φ′ and ≺ iff there is no φ′ ∈ Φ′ such that φ′ ≺ φ.

To add a requirement of optimality of indefinite belief states to requirements of coherence and
grounding, we require that each indefinite belief state contains only configurations optimal with
respect to the indefinite belief state. To add an optimality requirement to distributional belief states,
we require that each of the configurations assigned nonzero probability by a distribution is optimal
with respect to all other configurations assigned nonzero probability. For grounded definite belief
states, optimality requires that each selected mental configuration be optimal with respect to the
possible grounded alternatives. For nongrounded definite belief states, optimality requirements do
not apply until we consider belief change, when we can require optimality of the revised mental
configuration with respect to the alternative possible revisions.
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Adding the requirement of optimality to the theory of belief does not restrict the generality of the
theory in any way, as one can choose ∼≺ to be the full relation in which φ ∼≺ φ′ for every φ, φ ∈ Φ.
This trivial preference order makes all states equally desirable, and hence makes all states optimal
with respect to any set of states.

Simply assuming that beliefs are optimal with respect to a preference order says nothing about
from whence the preferences issue. This includes silence on whether the preference order constitutes
a fundamental character of the believer that remains the same as beliefs change or instead changes
over time. The idea of optimal belief also is silent on what aspects of the form or content of beliefs
are distinguished by the preferences. We will consider presently a number of familiar grounds for
preferences, and begin with types of preferences that one can regard as expressed within the mental
states themselves.

4.3.1 EPISTEMIC PREFERENCES

One can interpret nonmonotonic reasons as expressing preferences over mental configurations in
a natural way [24]. In particular, we interpret the reason A \\ B ‖− C \\ D as expressing the
preference

ABCD < ABCD < ABCD (20)

for configurations satisfying ABCD to configurations satisfying ABCD, ceteris paribus [23], and
for configurations satisfying either of those conditions to agnostic configurations satisfyingABCD,
ceteris paribus. That is, if x and x′ contain all elements of A, no elements of D, and agree on all
elements not in A ∪ B ∪ C ∪D, but x contains all elements of B and none of C while x′ contains
all elements of C but none of B, then x ∼≺ x

′.
Adding optimality with respect to default preferences need not change the conception of belief

states, however. In particular, adding optimality with respect to reason preferences to the theory
of globally grounded mental configurations described in Section 4.2.3 leaves the sets of extensions
invariant, for one can prove that grounded mental configurations are optimal with respect to reason
preferences [12].

4.3.2 GROUNDS FOR PREFERENCES

We expect that preferences among beliefs stem from differences in the sources, forms, and content
of beliefs, as well as the source and form of the interaction giving rise to the change.

Sources: Preferences based on the sources of information are numerous and familiar. Information
influencing belief might come from oneself, through reasoning or perception, or through different
modalities within reasoning and perception. Information can also come from other individuals, who
stand in various social relationships to the believer, and who act as either authorities in respect to
different questions or as observer or informant media through which different types of information
flows.

Information influencing belief might also come from groups as well as individuals, most com-
monly groups to which the believer has a specified relationship. Within this category of sources,
one can distinguish information coming from group leaders or non-leader group members; from
co-equals, neighbors, friends, family, tribal relations, priests, and religious relations.

Content: Preferences can depend on the type of content or subject matter of the information as
well as the source. Information relating to personal, family, and social matters can be treated differ-
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ently than information related to sacred, ideological, political, legal, economic, scientific, medical,
or fashion. These categories need not exhaust the types of differentiation, either with respect to
range of coverage or with respect to more specific subcategories of importance to preferential dis-
criminations.

The psychological content of information might also serve to shape preferences, in that prefer-
ences might differ depending on whether the new information comes as a direct change to beliefs or
in the form of a change to intentions, desires, or preferences.

Form: Preferences might depend on the form or structure of beliefs as well as the source and
content. For example, preferences might depend on the grounding of a belief, with a belief derived
strictly from fundamental beliefs preferred to a belief derived strictly from ephemeral beliefs, or
derived loosely from a beliefs of mixed character. Within these, preferences might distinguish
between conclusions inherent in the logic of belief consistency and closure from those dependent
on content-dependent inferences. Preferences might distinguish inferences in one subject area from
inferences in another when the abilities of the reasoner differ from one subject to another, perhaps
reflecting different dimensions of intelligence. Here one can distinguish the form and content of the
grounding from the sources of this form and content.

Preferences might also depend on other aspects of the form of beliefs and mental states, such as
whether the belief is an assumption or a derived conclusion, and whether the belief is a component
of some identified subtheory or another.

Governmental role: Some preferences will serve to govern conflicts that arise between other
preferences. The model here is the occasional conflict between the legal principles of lex supe-
rior (follow the higher venue) and lex posterior (follow the later ruling) in precedence-based legal
systems. These two useful principles do not have a definitive outcome when applied to a recent
low court ruling that is now seen to conflict with an older high court ruling, so a conflict-breaking
metapreference is adopted saying that lex superior overrides lex posterior in such cases.

Although one might expect that a well-structured believer might employ a system of prefer-
ences and metapreferences that always yields a determinate conclusion, achieving such a system of
preferences is not at all trivial. It requires substantial manual labor in construction to ensure that no
unresolved conflicts result, or some system of automatic conflict resolution that handles all prob-
lems in some systematic way. Unfortunately, the latter approach seems to be impossible in general,
for the problem of combining multidimensional epistemic preferences of the kind envisioned here
produces a version of the group decision problem shown to be unsolvable by Arrow’s impossibility
theorem [2, 24].

5. The structure of belief change

We divide changes in beliefs into what we will call motivated and accomodative parts, and dif-
ferentiate different kinds of such changes according to various qualities, including internality, of
rationality, and consciousness.

The motivated part of a change of belief consists of specific properties that are required to hold
of the resultant belief state, properties that normally take the form of specific beliefs that are either
required to appear or required to not appear in the resultant belief state. For example, in the theory of
ideal belief change developed by Alchourrón, Gärdenfors, and Makinson (AGM) [1, 29] considers
three types of motivated changes, namely addition of some proposition a to the current set of beliefs

25



DOYLE

even at the cost of making beliefs inconsistent, contraction that removes a from the current set of
beliefs, and revision that adds a while preserving consistency of beliefs, all under the assumption
that mental configurations are closed under entailment x = Cn(x), with these operations related by
the Levi identity.

Addition: x+ a = Cn(x ∪ {a})
Contraction: x .− a removes a from x if possible
Revision: x

.
+ a consistently adds a to x

Levi: x
.
+ a

def
= (x .− ¬a) + a.

In this setting, we regard the proposition a as the motivated change, and identify the accomodative
part of the belief change as those changes not stipulated by the motivated part, but which must be
made in order to transform the result of enforcing the motivated change into an admissible mental
configuration. In the AGM case, beliefs are required to be logically consistent and consequentially
closed, so the accomodative change needed when replacing a current belief b is replaced by its
contrary ¬b consists of removing other beliefs, such as the belief that b ∧ b.

Each of these motivated and accomodative parts of belief change have their own origins and
character. We first consider various forms of accomodative change, which we regard as completely
internal to the individual or determined by the very constitution of the individual, and then turn to
examine the broader forms of motivated change, which we regard as stemming from internal and
external sources.

5.1 Accomodative change

The simplest and least problematic form of accomodation corresponds to the addition opera-
tion mentioned above, in which one augments beliefs with some new belief and all the conse-
quences flowing from it together with the prior beliefs. In a probabilistic conception of belief,
the corresponding operation is Bayesian conditionalization, in which following the stipulation that
Pr(e) = 1, one replaces the prior probability Pr(b) of each belief b with the conditional probability
Pr(b|e).

The applicability of these easy forms of accomodation is limited, however, because, having
thought about matters in the past, individuals are likely to have beliefs inconsistent with the new
belief. In this case, logical addition produces an inconsistent set of beliefs, and Bayesian condition-
alization is undefined, as the required conditionalization by a zero probability proposition would
require division by zero.

If one is to not abandon all belief upon discovering an inconsistency of new information with
old, one needs to retain some, if not most, current beliefs in changing to account for the new infor-
mation, and must settle on some principles or means for deciding what beliefs are retained and what
beliefs are abandoned.

5.1.1 COHERENT ACCOMODATION

Traditionally belief retention has been viewed in terms of a sort of cognitive inertia or persistence
principle in which the grounds for a belief need not be that it follows by some sort of logic or reason,
but only that it was believed before, and no reason has been found to abandon it. Simple inertial
persistence does not imply any resistance to future abandonment or qualification of the belief, and
makes no judgment about which beliefs to abandon when alternative inertial revisions exist. The
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problem of determining what beliefs persist and what beliefs need changing has been called the
“frame” problem in early studies of automated planning [40, 51, 34].

In the simplest conception of accomodation, one retains all beliefs save those that have been
explicitly removed. This is hardly a useful conception of accomodation, as it can leave in place
beliefs that singly or jointly imply the removed belief. One thus looks for revisions that move to
belief configurations that satisfy the relevant logical and connective coherence criteria.

To characterize coherent belief change with respect to a purely logical conception of coherence,
Alchourrón, Gärdenfors, and Makinson (AGM) [1, 29] present the following eight axioms about
the notion of contraction, in which the term “theory” refers to a set of beliefs closed under logical
entailment.

( .−1) A .− a is a theory whenever A is (closure)

( .−2) A .− a ⊆ A (inclusion)

( .−3) If a /∈ Cn(A), then A .− a = A (vacuity)

( .−4) If 6` a, then a /∈ Cn(A .− a) (success)

( .−5) If ` a↔ b, then A .− a = A .− b (equivalence)

( .−6) A ⊆ Cn((A .− a) + a) whenever A is a theory (recovery)

( .−7) (A .− a) ∩ (A .− b) ⊆ A .− (a ∧ b) whenever A is a theory

( .−8) If a /∈ A .− (a ∧ b), then A .− (a ∧ b) ⊆ A .− a whenever A is a theory

These axioms mainly state fairly intuitive conditions, for example, that A .− a is always included
in A ( .−2); that contraction leaves A unchanged if a /∈ Cn(A) ( .−3); that the contraction omits a as
long as 6` a ( .−4); that contractions by equivalent statements yield the same result ( .−5); and that
adding a to the result of contracting by a only yields conclusions present prior to the contraction
( .−6).

Alchourrón, Gärdenfors, and Makinson also present eight axioms paralleling these that charac-
terize the notion of revision, and show that the two sets of axioms are equivalent when connnected
by the Levi identity. They also show that these axioms are satisfied by a number of forms of belief
revision.

Consider, for example, the set

A ↓ a def
= max

⊆
({B ⊆ A | B 6` a}), (21)

consisting of the maximal subsets of beliefs A that do not contradict an unwanted belief a, where

max
⊆

(A)
def
= {x ∈ X | ∀y ∈ X. yRx}. (22)

It is easy to see that if A is a theory, so are the elements of A ↓ a. Alchourrón, Gärdenfors,
and Makinson give the names maxichoice, partial meet, and full meet contractions, respectively, to
contractions that change current beliefs to either one of the sets in A ↓ a, to the intersection of some
sets in A ↓ a, or to the intersection of all sets in A ↓ a. They prove that many of the contraction
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axioms are satisfied by changing beliefs, and that all are under additional assumptions about the
selection of subsets of A ↓ a.

The AGM conception of belief revision treats only definite belief states directly, so one might
ask whether the AGM axioms can be recast to apply to indefinite belief states, or even to distri-
butional belief states. AGM do provide one sort of connection between the different conception
in their notions of partial and full meet contraction, in which the beliefs following a contraction
represent the intersection of all or some or one of the maximal subsets of beliefs consistent with the
stipulated contractor.

The question of indefinite belief state belief revision does raise a further possibility not con-
sidered by AGM, namely the rationality of an operation one might call redoing of prior revisions,
in which one switches from one possible revision to another. For example, if the prior contraction
settled on one maximal subset of the former beliefs, the redoing operation would switch to some
other maximal subset of those same former beliefs. If the prior contraction settled on a partial meet
of some of the maximal subsets, the redoing operation might change to the partial meet of some
selection of the maximal subsets. Moreover, a hesitant believer might perform a sequence of re-
doings, possibly ending up with the same beliefs as after the initial contraction. Outcomes of the
redoing operation, unlike those of addition, contraction, and revision, clearly depend on the his-
tory of changes to beliefs in a nontrivial way. Although one can formalize the redoing operation
in the AGM framework, the motivations for doing so are greater when one considers foundational
approaches to belief revision.

More generally, as one expands the conception of a belief state from a set of beliefs or statements
of the same character to a structure in which some beliefs are base beliefs, some are conclusions,
some are assumptions, some represent contradictions, and some represent reasons, one opens the
door to a wider range of stipulations. One can then distinguish adding a base belief from adding a
conclusion, and distinguish defeating a specific assumption or inference from simply contracting by
some unwanted conclusion.

5.1.2 PREFERENTIAL ACCOMODATION

The AGM characterization of belief revision aims to be more inclusive than Rescher’s [50] notion
preferred maximal alternatives. One can connect the two perspectives by considering again the
notion of preference orders over belief states and the notion of rational choice among available
contractions. To do this, we define the operation −̂ of maximally preferred contraction by

A −̂′ a def
= max

≺
{Cn(B) | B ⊆ A ∧B 6` a} (23)

A −̂ a def
=


{A} if ` a
{A} if A −̂′ a = ∅
A −̂′ a otherwise.

(24)

The result of rational contraction thus represents the maximally preferred subsets of beliefs out of
all consistent subsets that avoid the stipulated contractor. Doyle [17, 16] proves that this de minimis
notion of rational contraction satisfies some but not all of the AGM postulates. The difference arises
in part because the pure theory of rational revision allows smaller sets of beliefs to be preferred to
larger sets. Formally, we say that a preference order ∼≺ is informationally monotone iff A ∼≺ B
whenever Cn(A) ⊆ Cn(B), that is, A ∼≺ B whenever B ` A. One can then prove that rational
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choice contraction with respect to an informationally monotone preference order satisfies all the
AGM axioms [17, 16].

The notion of informational monotonicity of preferences over belief states has at least three nat-
ural interpretations. The first interpretation embodies the epistemological principle that knowledge
is good, and that more knowledge is better. To the extent that belief is a proxy for knowledge, this
principle implies that more beliefs are better than fewer beliefs, ignoring differences of content. The
second interpretation restates the first from a utilitarian or economic point of view, embodying the
economic principle that belief is a valuable resource, and that therefore beliefs that represent the
product of past work should not be discarded needlessly. The third interpretation, which we return
to later, regards beliefs as subject to a principle of inertia, according to which beliefs are main-
tained as long as they were believed earlier and not removed. Although the epistemic and utilitarian
interpretations of informational monotonicity are both based on a notion of the good, the inertial
interpretation clearly represents a principle of a different character that makes no reference to any
conception of the good.

One obtains a somewhat more complicated conception of belief change when one considers
nonlogical connections and the preferences they express. Nonlogical connections violate the mono-
tonicity requirements of the AGM revision principles, as do their associated epistemic preferences.
In this case, and in all cases in which preferences can change with mental configuration, one must
decide which preferences shape preferential revision, whether the preferences held prior to the
change, or the preferences held once the change has been effected. For changes judged by prior
preferability, one chooses B that maximizes prior preferences ∼≺A seen in A, that is, for each
C ∈ A ↓ a, C ∼≺A B. For changes judged by posterior preferability, which Jeffrey [35] terms
“ratified” choices, one chooses B that maximizes posterior preferences ∼≺B seen in B, that is, for
each C ∈ A ↓ a, C ∼≺B B.

5.1.3 CONSERVATIVE ACCOMODATION

One obtains a still more complicated conception of belief change when one considers grounded
mental configurations and looks for changes in the set of grounded extensions of the base beliefs.

Base beliefs appear as unremovable as tautologies when specifying revisions in terms of changes
to conclusions, while revisions mediated via changes to base beliefs underdetermine changes to
conclusions in the sense that removing some base belief in order to remove some conclusion it
supports may fail, leaving the unwanted conclusion still believed through support tracing to some
unremoved base beliefs.

In the setting of changes to base beliefs, one looks to describe changes to conclusions in terms
of smoothest path or minimal change principles.

For definite configuration states, when changing base beliefs to m′ while in one extension x \\
y ∈ α(m), one must change conclusions to some x′ \\ y′ ∈ α(m′). If one allows this choice to
be made without reference to the preceding conclusions, one can make arbitrarily large changes in
beliefs, even if x \\ y ∈ α(m′). The simplest sort of change principle is to minimize set differences
in changes to the In and Out components of the extension, that is, choose x′ \\ y′ ∈ α(m′) such that
for each x′′ \\ y′′ ∈ α(m′), one has x+ x′ ⊆ x+ x′′ → x′ = x′′ and y + y′ ⊆ y + y′′ → y′ = y′′.

For indefinite configuration states, one simply adds together the possible minimal change con-
figurations available from each of the preceding configurations. If we write µ(m, s, x, y) to denote
the set of configurations that constitute minimal changes from (m, s, x, y), then we can extend µ to
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a function on states. For definite configuration states, states are isomorphic to configurations, so

µ(ψ) = µ(β(ψ)). (25)

For indefinite configuration states, the additivity condition just proposed can be expressed formally
as

µ(ψ) =
⋃

φ∈β(ψ)

µ(φ). (26)

Of course, minimality of changes can be viewed in other ways as well, such as maximizing
preferability of the change. There is no necessity to regard minimal change measures as identical to
preferences, however, so one can consider composite belief change approaches in which one seeks
minimal changes among the preferred extensions, or seeks preferred extensions among the minimal
changes.

5.2 Motivated change

Where accomodative change concerns how to update beliefs once it is decided that an update must
be performed, motivated change concerns whether to update beliefs and what sort of update to
perform.

The simplest sorts of motivated changes concern whether or not to accept new information
provided by some source internal or external to the individual. In this case, the response to new
information is not mere conditionalization, but first of all a decision about whether to accept the new
information in full or in part, or whether to reject it entirely. It is secondarily a decision about how
to accommodate the portion to be accepted, about how to change beliefs in light of the acceptance
decision.

Human society provides important examples of external motives for belief change. Social psy-
chologists, for instance, have studied the influence of peer pressure, in which the agreement of one’s
friends on some question or taste influence one to change so as to agree with them. Wicker [60]
has developed a formalization covering a variety of such mechanisms of social influence, in which
multiple external groups and individuals influence an individual through multiple different mecha-
nisms. We will not examine such mechanisms in detail, but instead will examine such influences
by regarding them as forces acting on the individual. In this setting, each different influence mech-
anism generates a different type of motive for change on the individual or group. Other external
motives include information provided by perception.

Internal motives for change include deliberate decisions of the individual to adopt or abandon
some belief, wanton volition to satisfy desires, the action of mental habits, and the results of reflec-
tion and other self-observations.

Individuals of different constitution can generate different internal motivations for change, and
can respond differently to the same external or internal motivations. For example, the “organization
man” might conform his beliefs to those common among his co-workers, and the eccentric might
choose divergent beliefs to escape the suffocation of conformity. As with external motives, internal
motives for change can come through multiple mechanisms, some of which involve inference, some
habits, and some goal-seeking or intention-following.

Both acceptance and accomodation decisions depend on many factors, These decisions depend
on the type of belief to be accepted, on the specific belief in question, on other beliefs, and on
the beliefs of others. Indeed, these decisions can depend on the alternatives available, in that the
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decision to accept can be shaped by whether accomodating the information is even possible for the
individual or group.

For present purposes, we consider only motives for change that can be summarized in terms of
addition or removal of specific beliefs or mental elements to conclusions, base beliefs, or other parts
of mental configurations. Such changes include those due to the individual observing that some fact
b about the world or about sensations being experienced is true (or false), or due to being told by
some other individual or group that b is true, or being told a reason a reason for believing that b is
true, or by observing others act as though b is true or as though they believe b is true.

5.3 Rational change

The notions of motivated and accomodative change do not presume any notion of rationality of
decision or accomodation, although rationality is the focus of many studies of belief change.

Rationality of internally-motivated change is reasonably viewed in classic decision-theoretic
terms as consisting of selection of a (possibly empty) set of beliefs as the target for change in which
the selection is of maximal desirability or expected utility to the individual, either with respect to the
beliefs and preferences holding before the change (prior rationality) or with respect to the beliefs
and preferences holding after the change (posterior or ratified rationality [35]). The question of
rationality of externally-motivated change does not arise except possibly with respect to decisions
made by external individuals that lead to the imposition of the external changes.

Rationality of accomodation can be viewed in the same way as rationality of internally-
motivated change, as choosing the accomodation of maximal desirability from among those avail-
able. This conception, however, undercuts the distinction between motivated and accomodative
changes, for if one can choose both motivated targets and their accompanying accomodations via
the same type of rational decision, why not simply choose an overall change rationally and be done
with it? Indeed, the primary reasons for distinguishing motivated and accomodative changes has to
do with limitations on the self-knowledge and reasoning powers of the individual. For individuals
of realistic mental capability, it is reasonable to regard them as making rational decisions about
what assumptions, subgoals, and subplans to adopt in pursuing desires or carrying out plans, but
it is not reasonable to regard them as being able to forsee all the consequences of these motivated
changes. One thus looks for conceptions of accomodative change that do not involve comparison of
the overall desirability of complete changes of mental state.

The conceptions of rational accomodation examined in the following thus judge rationality by
potentially weaker standards than decision-theoretic rationality with respect to all the beliefs and
preferences of the individual. The most prominent conceptions involve standards reflecting conser-
vation or minimal change principles, variously conceived in informational, economic, and mechan-
ical terms, that is, as minimizing loss of beliefs, loss of cognitive capital, change in mental inertia
or energy, or as maximization of desirability with respect to limited types of preferences.

In the setting of rational motivations and minimal-change accomodations, one can recast the
division of change into motivated and accomodative parts as the division of reasoning into pro-
gressive and conservative reasoning [13, 15], usually but not always representing the distinction
between intended changes and unintended consequential changes.

One might also differentiate motivated and accomodative changes according to degree of con-
sciousness of the change, for example, regarding changes motivated by deliberate decisions as
conscious changes, and regarding loss-minimizing conservative accomodations as unconscious
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changes, but we do not attempt to treat questions of consciousness or unconsciousness of change
here.

5.4 Mechanical change

The notions of motivated and accomodative changes discussed in the preceding concern global
changes from one belief configuration to another, with no discussion of exactly how such changes
take place or of how long they take. To discuss the fine structure of processes of belief change over
time, we employ the concepts of mechanics [21] to recast elements of the preceding discussion.

5.4.1 MASS, POSITION, MECHANICAL CONFIGURATION

We obtain mechanical notions of mass and position from the grounded mental configurations
(m, s, x, y) ∈ D× S× D2 presented earlier.

We interpret the last three components χ = (s, x, y) as the position of the individual. This usage
fortuitously accords well with one sense of the word “position” in ordinary speech, as one’s beliefs
regarding some issue are often called one’s position on the issue.

We interpret the m component of mental configurations as the mass of the individual. Mental
mass constitutes that portion of memory that persists independently of motion. In psychological
terms, belief mass forms part of what we think of as memory, along with some sorts of configura-
tional information. Mass, like configurations of a rigid body, persists through inertial motion, but
mass, unlike configurations, cannot change merely through motion. Just as different individuals can
inhabit different types of belief states, one can consider them as exhibiting mass in different ways,
including masses that fall in discrete or continuous spectra. When considering beliefs represented
in the space D, we regard discrete mass values as represented by the same space, namely D. For
continous mass values, we will normally consider values in R+ = {r ∈ R | r ≥ 0}, or sometimes
values in [0, 1]. The discrete position spaces considered here call for a different dimension of mass
for each dimension of the space of positions, unlike the case in ordinary physics in which a body
has the same mass in all dimensions.

We obtain the notion of mechanical configuration by extending mental configurations with a
third component χ̇ = (ṡ, ẋ, ẏ) ∈ S × D2 that represents a velocity value. Comparing mental
and mechanical configurations, we see that mental configurations are synchronic, while mechanical
configurations are diachronic.

We regard the pair p = (m, χ̇) as a momentum value. Because mass values are not scalars of
the vector space of positions in the discrete position spaces considered here, momentum calls for a
different dimension of mass for each dimension of the space of positions, unlike the case in ordinary
physics in which a body has the same mass in all dimensions.

With this identification, we thus can write a mechanical configuration in two forms, as (m,χ, χ̇)
or as (χ, p). The latter expression corresponds to the familiar notion of dynamical state in Hamilto-
nian mechanics. We will write Φ in the following to denote the set of all mechanical configurations
(m,χ, χ̇) in D× (S× D2)2. We write 0χ to denote the zero vector in S× D2.

Recalling our earlier discussion of non-grounded configurations, we see that m = 0 and s = 0
in pure coherence configurations. For terminology perhaps more in line with common speech, one
might call the combination (m,χ) of mass and position a pure state of mind, and the combination
(m, χ̇, χ) of position and momentum a pure state of reasoning.
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Figure 7: The kinematical relationships among position variables in time. The boxed quantities
denote conventional labels for the quantities of interest at instant t, with a reasoning
agent observing χt and χ̇t and choosing χ̈t.

5.4.2 MECHANICAL MOTION AND STATES

We write T to denote a linearly ordered set of times or temporal indices for use in describing changes
of belief and mental state over time. We write [t, t′] to denote the closed interval of time starting at
t and ending at t′, and write (t, t′) to denote the open interval of times occuring after t and before
t′. When t is an element of a discrete sequence of times, we write t − 1 and t + 1 to denote the
immediately preceding and succeeding instants.

We define a (lineal) history or trajectory of an individual over a temporal interval I to be a
function h : I → Φ, that is, a function h : I → D × (S × D2)2. When each history in a set
H of lineal histories is defined over the same temporal interval, that is, when Ih = IH for each
h ∈ H , we say that H constitutes a nondeterministic history. Each nondeterministic history H over
IH induces, for each discrete sequence of instants ID ⊆ IH , a discrete correspondence (set-valued
function) ∆H : Φi × ID → P(Φ) over configurations and instants defined so that at every instant
t in the sequence ID, we have φ′ ∈ ∆H(φ, t) iff there exists some h ∈ H in which h(t) = φ and
h(t+ 1) = φ′.

As in the relations of definite, indefinite, and distributional states of individuals to mental config-
urations, we regard mechanical states of individuals as taking definite, indefinite, and distributional
forms. Each nondeterministic history, therefore, constitutes a lineal histories of indefinite states.

We write χt to denote the indicated position at discrete instant t, and χ̇t to denote the indicated
trailing velocity at that instant. For χ to constitute a mechanical history, the indicated velocity
value χ̇t must match the actual velocity determined by χ, that is it must be the case that χ̇t =
χt−χt−1. This trailing velocity corresponds to the change signals used in some automated reasoners
in triggering rules [9]. The leading acceleration χ̈t = χ̇t+1 − χ̇t reflects the additions and removals
indicated by steps of reasoning. We depict these kinematical quantities in Figure 7. We write mt

to denote the mass at discrete instant t, and ṁt = mt+1 − mt to denote the leading mass flux or
change of mass. Similarly, we write pt to denote the momentum at t, and ṁt = mt − mt−1 to
denote the momentum flux or change of momentum. By the above identifications, a momentum
flux value ṗ = (ṁ, χ̈) combines a mass flux value with an acceleration value.

We say that an indefinite state has definite mass, position, or velocity, respectively, if all mechan-
ical configurations in the state have the same mass, position, or velocity. We say that a distributional
state has definite mass, position, or velocity, respectively, if it assigns probability 1 to some mass,
position, or velocity. In the following we will restrict attention to states exhibiting a definite mass,
but states without a definite mass might be of interest in understanding the possible foundations for
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an observed position, or in obtaining a mechanical understanding of Dempster-Shafer [54] eviden-
tial mass.

For indefinite configuration states, one simply adds together the possible minimal change con-
figurations available from each of the preceding configurations. If we write µ(m, s, x, y) to denote
the set of configurations that constitute minimal changes from (m, s, x, y), then we can extend µ to
a function on states. For definite configuration states, states are isomorphic to configurations, so

µ(ψ) = µ(β(ψ)). (27)

For indefinite configuration states, the additivity condition just proposed can be expressed formally
as

µ(ψ) =
⋃

φ∈β(ψ)

µ(φ). (28)

Note that the set of velocities exhibited in this superposition state only includes the changes corre-
sponding to indeterministic transitions from definite configurations, and need not include the differ-
ences of all positions exhibited in the state.

5.4.3 FORCE

We denote the force at an instant by ft. In mechanics, force values have the same dimensionality as
momentum values, in order to satisfy the Euler-Newton law

f = ṗ, (29)

so in the present setting, therefore, we identify the set of possible force values to be D × (S × D2)
and have

ft = ṗt = (ṁt, χ̈t). (30)

Of course the dimensionality of forces varies with the conception of the nature of individuals and
their states.

We describe influences of one set of individuals on another in terms interactions or forces that
apply concurrently. Drawing on the formulation by [43], we say that a system of forces f is a
function that maps each pair g, g′ of separate groups (g∩g′ = ∅) to a force value f(g, g′), interpreted
as the force exerted by g′ on g, such that

f(g1 t g2, g) = f(g1, g) + f(g2, g) (31)

f(g, g1 t g2) = f(g, g1) + f(g, g2) (32)

We write f(i, g) as shorthand for the force f({i}, g), meaning the force exerted by group g on
individual i. Similarly, we interpret f(i, i′) as shorthand for f({i}, {i′}). Mechanics typically
assumes additional properties of systems of forces beyond the additivity required in the preceding.
In particular, force systems are normally required to be balanced, in the sense that

f(g, g′) = −f(g′, g) (33)

for all pairs of groups, and the complete system of forces is assumed to be the sum

f = fB + fC (34)
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of systems of body and contact forces fB and fC. For continuum bodies, mechanics extends the
additivity requirements by assuming that forces are integrals of force densities that give rise to the
traction (contact force density) and the stress tensor.

The additivity of force systems lets us divide the total force

ft = fat + f st (35)

on the individual into the applied force fat = ft(i, i
e) of environment on the individual with the

self force f st = ft(i, i) of the individual on itself. The simplest kind of self-generated force is the
inertial force−ṗ generated by mass. The Euler-Newton equation f = ṗ equates the total noninertial
force f on a body with the negative of its inertial force −ṗ, defined as its change of momentum in
an inertial frame of reference. The total force acting on a body is the sum of the applied forces and
the inertial forces, and hence is zero.

Only a force with a mass-flux component can change the mass of an individual, meaning no
mere change of position can remove or augment mass. We thus distinguish two classes of forces,
mass forces f = (ṁ,0) involving only a change of mass, and spatial forces f = (0, χ̈) involving
no change of mass. In considering changes to grounded configurations, mass forces correspond
to stipulating a change in the base beliefs, and spatial forces correspond to stipulating changes in
conclusions.

Different interpretations apply to different components of ṗ = (ṁ, χ̈). The mass flux compo-
nent ṁ, as an element of D, represents both a set mṁ of additions and a set mṁ deletions from
the current mass value m. Starting from sets m+ and m− of beliefs that should and should not be
present in the new mass, one obtains the sets of additions ṁ+ = mm+ and deletions ṁ− = mm−

and adds them together to get the mass flux ṁ = ṁ+ + ṁ−.
The acceleration component χ̈ = (s̈, ẍ, ÿ) provides only one means for specifying changes in

conclusions, for given the current mechanical state (mt, χt, χ̇t) one can derive χ̈t either from a
stipulated value for χt+1 or from a stipulated value for χ̇t+1 using the kinematic relations between
these values. For example, from a stipulated value χt+1, we obtain χ̇t+1 = χt+1 − χt and χ̈t =
χ̇t+1 − χ̇t.

Standard practice in belief revision and in reasoning systems is to specify changes in terms of
belief stipulated to hold in either the base or conclusion sets. We have seen how to translate such
stipulations of base beliefs into mass flux components of forces, but there is no simple transla-
tion of stipulated conclusions into positions (st, xt, yt) and velocities (ṡt, ẋt, ẏt). Stipulating that
the new conclusions xt+1 should contain particular beliefs and that the new non-conclusions yt+1

should contain other particular beliefs does not determine these sets uniquely, much less specify
any changes to st. The purpose of RMS and related revision systems is to compute full changes to
conclusions and supports from the partial specification given by stipulated beliefs and nonbeliefs.
These changes then determine the full acceleration values according to the kinematic definitions.

5.4.4 ELASTIC ACCOMODATION AND REASON FORCES

Although one can motivate the conservative principle underlying coherent accomodation in terms of
inertia, a passive resistance to any change, the role played by logical and psychological connections
between beliefs in coherent and grounded accommodation suggest more active forms of resistance,
in which each belief held is motivated and maintained by present reasoning, and in which these
dependencies resist change, in that effecting some change means overcoming alternate derivations
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Figure 8: Reasoned decomposition of a transition between macroscopic configurations φt and φt+1

into a series of “microtransitions” between microscopic configurations φt,i effected by a
series of reason applications rt,i.

as well as the current support. One can view active resistance of this sort as a form of elasticity of
the mental material.

From the point of view of an external observer, the RMS moves from one complete globally
grounded belief configuration to another. We call these externally visible configurations macro-
scopic configurations, and changes between them macroscopic changes. These external appear-
ances hide the fine structure of an externally invisible unlabeling and relabeling process by which
one coherent grounded configuration is transformed into another by a sequence of microscopic tran-
sitions between incomplete microscopic configurations. In the following, we indicate how one can
think of macroscopic configurations as “relaxed” or equilibrium configurations, with stable belief
ascriptions, and microscopic configurations as nonequilibrium configurationss passed through on a
mechanical path to an equilibrium configuration, as depicted in Figure 8.

In the classical RMS revision model, revision starts with a stipulated change to the base beliefs
and a complete mental configuration in which each possible belief is labeled either In or Out and
a supporting reason is identified for each In belief. If the reason to be removed from the base set
is invalid in the current configuration, it is merely added or removed from the base beliefs and the
revision is done. If the reason is to be added and is valid and supports some conclusion that is
currently Out but which does not appear in the defeaters of the supporting reason for some other
belief, then the conclusion is added to the set of In beliefs and the support assignment is augmented
to indicate the new reason as the support for this new conclusion. If some existing conclusion
had support which did have the new conclusion as a defeater, then an extended relabeling process
is initiated, in which the RMS temporarily unlabels conclusions with supports derived from the
changed belief and reexamines reasons to see if alternative supports can be found. At the end of the
process, the RMS either has a complete globally grounded configuration or indicates that no such
configuration exists.

This original approach of propagative unlabeling and relabeling is not the only means by which
one might effect reasoned revisions. A very different procedure, perhaps more natural in the setting
of mechanics, is one of concurrent relabeling, which also propagates relabeling, but in which any
frontier node can start labeling, yielding a set of overlapping relabeling processes which, like ripples
from several pebbles tossed in a pond, expanding, superimpose, and reflect off barriers.

We do not treat all details of reasoned revision here, in part because different methods for per-
forming such revisions correspond to different types of forces, and in part because the most familiar
methods involve considerable complexity of detail. We instead merely give examples of particular
types of forces generated by reasons at different points of the revision process, expressing these

36



BELIEF CHANGE

forces in terms of a mechanical state (mt, (st, xt, yt), (ṡt, ẋt, ẏt)). We do not describe here how
these forces are generated at the appropriate times.

In the RMS conception, the RMS is a subsystem of a larger reasoning system. In the terms used
here, the RMS is a subbody or member of the larger individual. The larger individual interacts with
the RMS by exerting forces on it to change base reasons and to query the status of different possible
beliefs. We do not treat queries here.

We regard addition or removal of a base reason as mediated through a mass force

fat = (ṁt,0χ) (36)

that changes the set of base reasons from mt to mt+1.
We regard the forces of reasoning and some forms of learning as spatial self forces. For present

purposes, we assume that these self-forces can depend on the mechanical state, that is,

f s(mt, (st, xt, yt), (ṡt, ẋt, ẏt)) = (0, (s̈t, ẍt, ÿt)). (37)

In the following, we regarding f s as a sum f s1 + · · ·+ f sn of several contributing self-forces, namely
ones connected with addition of beliefs and the application of reasons in the course of propagative
labeling and unlabeling.

We regard the forces mediating propagation of unlabeling and relabeling as spatial self forces,
with each reason r generating a force

f sr (mt, (st, xt, yt), (ṡt, ẋt, ẏt)) = (0, (s̈t, ẍt, ÿt)) (38)

with values as follows. To simplify the exposition, we treat only ẍt and ÿt in the following, and do
not give details for s̈t.

If r = A \\ B ‖− C \\ D is invalid in the configuration (mt, st, xt, yt), that is, ifArxt+Bryt 6=
0, then the force of labeling or unlabeling is the null force (0,0χ). If r is valid, we have the
following forces generated by addition and removal, where addition and removal are indicated by
the presence of r in ẍt or ÿt.

If the reason is being added, we have

ẍt = Crxt −Drxt − ẋt (39)

ÿt = Drxt − Cryt − ẏt, (40)

while if the reason is being removed, we have, for s−1
t (r) = {e ∈ D | st(e) = r},

ẍt = s−1
t (r)Crxt − s−1

t (r)Drxt − ẋt (41)

ÿt = s−1
t (r)Drxt − s−1

t (r)Cryt − ẏt. (42)

5.4.5 INERTIAL CHANGE

We can identify another form of belief change beyond motivated and accommodative belief change
with the aid of mechanics, namely the notion of nonstationary inertial belief change. Inertial motion
consists of constant linear motion, constant rotation, or the combination of the two, in which beliefs
change without the application of any force. We will look at nonstationary linear inertial motion in
Section 6.2, in which the net effect of the linear motion is to introduce uncertainty about the most
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recently changed beliefs. More interesting forms of inertial motion involve rotation. As with linear
inertial motion, inertial rotation also introduces uncertainty. A natrual form of this uncertainty is
cycling through alternative assumptions, with the overall rotation the product of smaller rotations
about multiple axes corresponding to different decisions. We will not treat this in detail here. See
[21] for some additional discussion.

6. The difficulty of belief change

With this variety of forms of belief change, we turn to means for assessing the difficulty of chang-
ing beliefs. We first consider qualitative comparisons of degree of difficulty based on the notions of
epistemic entrenchment, and then turn to quantitative comparisons based on the notion of mechani-
cal work.

6.1 Qualitative comparison via entrenchment

Gärdenfors and Makinson [31] translate the AGM structure of belief revision into an ordering of
beliefs according to epistemic entrenchment, which orders beliefs by relative ease of abandonment.
A belief a is less entrenched than b, written a < b, if one gives up a before b when one cannot hold
both, defined formally by

• a ≤ b if a ` b, and

• a ≤ b iff a /∈ A .− (a ∧ b) or ` a ∧ b.

Gärdenfors and Makinson [31] proposed the following axioms for entrenchment and show their
equivalence to the AGM axioms for contraction.

(≤1) If a ≤ b and b ≤ z, then a ≤ z

(≤2) If a ` b, then a ≤ b

(≤3) Either a ≤ a ∧ b or b ≤ a ∧ b

(≤4) If A is consistent, then a ≤ b for all b iff a /∈ A

(≤5) If a ≤ b for all a, then ` b

Although the axioms characterizing ideal epistemic entrenchment yield the same conception of
revision as do the AGM revision axioms, the axioms make no explicit separation between types or
sources of beliefs, but instead only presume differing levels of entrenchment. The entrenchment
order itself is left formally exogenous to beliefs, desires, intentions, and other mental attitudes.
Thus the axioms alone say nothing about the origin of entrenchment, about why one order and not
another, or about whether or how entrenchment changes over time or with beliefs. Because of this
silence, one must look elsewhere for the grounds of entrenchment. We now consider origins for
entrenchment in dependencies among beliefs, motives for belief, and preferences among beliefs.
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6.1.1 ENTRENCHMENT FROM FOUNDATIONS AND PREFERENCES

Gärdenfors [30] proposed that one can interpret coherence theories of belief revision so as to identify
reasons for belief, the simplest connection being to say that b is the (only) reason for c if both are
believed and b ∨ c ≤ b, so that c is removed whenever b is. Doyle [18] took issue with Gärdenfors’
claims, and argued that reasons form the practical expression of entrenchment order.

The structure of globally grounded extensions provides several means for analyzing properties
of the resulting entrenchment order.

The first structural analysis of grounded extensions is to stratify them by inference level [11, 19].
In this stratification, the base beliefs appear in level 0. All beliefs derived by application of a
single reason from level 0 beliefs, such as unconditional assumptions, appear at level 1, and beliefs
supported only by reasons with antecedents appearing first at level n appear at level n+1. In general,
a belief has level n just in case the minimal height of the belief in any grounded configuration is n,
that is, a chain of at least n reasons is needed to derive the belief in any grounded configuration.

Information about the level of a belief provides some information about entrenchment, but not
a complete characterization. Because all base beliefs in m appear at level 0, levels provide no com-
parisons of differences in entrenchment among base beliefs. The same holds true for condition-free
assumptions, which appear (along with other conclusions) at level 1. On the other hand, assumptions
and other beliefs can appear at any level of the hierarchy, with higher-level assumptions conditioned
on lower-level assumptions and beliefs.

Deriving entrenchment from foundations thus helps answer one of the questions left untreated
in the AGM framework, namely where entrenchment comes from and how it changes. Ordinary
reasoning changes the foundations of belief, either by adding new reasons from simple inferential
processes or from chunking and related learning mechanisms. Reason-base restructuring of the
RMS variety also changes foundations and hence entrenchment.

Something like these differences in level are exploited in the RMS dependency-directed back-
tracking procedure, which effects reasoned contraction by recursively tracing the derivations under-
lying the belief targeted for removal. Reasoned contraction regards the first assumptions reached in
this inverse-derivation traversal of the derivations as the least consequential, and chooses to defeat
one of these “uppermost” assumptions as a way of securing a change-minimizing revision. In this
process, the entrenchment level of a belief is inversely related to its height in the assumption graph.
The RMS conception of entrenchment is not the same as the AGM notion, however, in that the
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Figure 9: Indirect contraction
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RMS conception concerns only derivations in a single grounded configuration, so that an assump-
tion that appears at one level in one grounded configuration might appear at a different level in a
different grounded configuration with no change in base beliefs. The full level analysis developed
in [11, 19] corresponds more closely to the AGM conception by assigning levels based on the first
level at which a belief appears in any grounded extension. Even that notion, however, does not fully
match that of AGM entrenchment, in that two beliefs can be both appear at the same level yet be
completely independent of each other.

One might also consider incomplete stratifications. For example, in locally grounded configu-
rations, stratification from base beliefs need never reach beliefs appearing in self-supporting cycles,
so beliefs in these cycles or dependent on them would not be assigned a level. One might extend
these levels to more complete ones by considering relative levels, in which beliefs in one cycle rank
less than beliefs in another cycle if some belief in the other cycle appears in a stratification that adds
beliefs in the first cycle as assumption.

Base beliefs and unconditioned assumptions represent just the two most obvious cases in which
differences in entrenchment require preferences among beliefs. McAllester [39] developed the idea
of a preference ordering of base beliefs or assumptions, but this suffices only if all reasons represent
monotonic logical inferences. Without this restriction, it is useful to employ preferences ordering
assumptions at different levels, such as those expressed in general nonmonotonic reasons.

del Val [8] pursued these questions, and showed the equivalence of coherence and foundations
under the following conditions: that reasons are beliefs, that is, there are no nonmonotonic rules; that
reasons generate conclusions by deductive closure alone, that is, only standard logic applies; that
logically equivalent conclusions have identical bases; and that there is an entrenchment ordering on
foundational beliefs. Put another way, the foundations approach is the same as the AGM conception
if by foundations is meant simple deductive closure of ordered sets of axioms. This simplified
deductive picture is close to the view of revision proposed by McAllester [39] in his TMS, an
approach later called LTMS by Forbus and de Kleer [28].

The del Val result provides justification for the claims of both Gärdenfors and Doyle, but does
so by assuming away most of the important characteristics of realistic forms of belief revision. Re-
alistic belief revision involves finite and nondeductive reasoning in essential ways, corresponding
to finite structure in neuronal embodiments, and to finite representations in computational embod-
iments. The del Val assumptions thus do not fit realistic minds. One finds more realistic relations
between foundations and coherence theories by reconstructing the concept of epistemic entrench-
ment in the setting of finitary and nonmonotonic foundational structures.

The role of preferences in reasoning provides further information for understanding how en-
trenchment arises and changes. Reasoning that involves constructing new nonmonotonic reasons
implicitly changes the preferences of the individual, and hence entrenchment comparisons. More
generally, one can regard problem solving goals as expressing preference information as well [59],
and thus regard the reasoning involved in subgoaling problem decomposition as changing goals and
possibly entrenchment relations. In particular, assumptions related to the tentative solutions being
explored will have a different status than assumptions unrelated to the current focus of problem
solving.

The reframing of theories common in mathematics provides an example of problem-specific
changes in entrenchment. In this process, mathematicians prove theorems about some subject, and
later come to realize that the concepts developed in the theorems actually have broader application
and interest in their own right. The mathematicians then interchange the axioms and theorems.
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Some of these derived concepts are introduced as new foundational concepts, with the theorems
now used as axioms to characterize them, and the former axioms are now proven as consequences
of the new axioms. To take a trivial example, one can base the definition of a triangle either on
axioms about having three angles or on the basis of axioms about having three sides, and prove each
of these definitions as a theorem from the other. A less trivial mathematical example is that after
proving separation properties of sets of real numbers and functions, mathematicians made these
separation properties into the axioms of topology. Or for an example from economics, one can
define rational actions as those maximizing expected utility, based on axioms for preferences and
probabilities, or can turn around and use the facts of decisions of assumed rationality as the axioms
and derive preferences and probabilities. In each of these, the notion of foundation of belief depends
on purpose of reasoning, so in general the notion of entrenchment is relative to how one chooses to
represent the problem at hand.

6.1.2 ENTRENCHMENT MODALITIES

Extending the notion of entrenchment to belief states constructed from base beliefs via limited
logics and nonmonotonic interval conditionals poses problems right from the start in that the result
of contraction need not be a subset of the uncontracted beliefs. This possibility directly contradicts
one of the AGM axioms of contraction.

More fundamentally, the AGM theory recognizes that there might be several different ways of
revising beliefs, such as Rescher’s preferred maximal consistent subsets, but nevertheless insists on
a deterministic rule for producing a single resultant set of beliefs, either by selecting a single one of
the possible revisions or by intersecting some or all of them to obtain the resultant beliefs. In the
setting of practical systems for belief revision, however, it is natural to consider as well other forms
for revision.

We broaden the study of entrenchment to consider the cases of indeterministic and probabilistic
belief states as well as indeterministic selection of single revisions. In the enlarged conception,
entrenchment becomes a modal concept that compares entrenchment in different extensions.

We say that 3[a ≤ b] holds with respect to a set of base reasons m just in case there is some
grounded configuration (m, s, x, y) such that the support of a depends on b. We obtain four possible
states of affairs regarding each entrenchment in different extensions for each pair of beliefs a and b,
as depicted in Figure 10: either (1) 3[a < b] and 3[b 6< a], (2) 3[a < b] and 3[b 6< a]; (3) both
3[a < b] and 3[b < a] hold; or (4) neither 3[a < b] nor 3[b < a] hold.

The AGM postulates for belief revision concern only presence or absence of beliefs following
a contraction or revision, with entrenchment constituting only a poor approximation of the notion
of support. Are there corresponding postulates appropriate to characterizing revision in terms of
grounded configurations? One might consider the intersection of some or all of the grounded con-
figurations in an indefinite belief state as the result of rational revision, but this leaves beliefs without
common support incomparable with respect to entrenchment.

What then are principles for reducing modal entrenchment relations to simple entrenchment?
If the reduction is to be rational, then the preferential nature of reasons and criteria for identifying
possible revisions suggests the Arrow criteria for group decisions, and as pointed out by Doyle [17]
a version of the Arrow impossibility theorem for social choice then applies, showing that there is no
general rational reduction method. This means that one can collapse modal entrenchment relations
to simple ones only if the decision is made dictatorially, by a global comparison lacking in practice
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Figure 10: Fourfold states of possible entrenchment relations of two beliefs in indefinite belief
states.

except on an ad hoc basis. In this case, one expects that different reductions will be characteristic
of different kinds of agents.

6.2 Quantitative comparison via mechanical work

If one seeks a quantitative measure of difficulty of change, it does not help to simply choose a
quantitative representation ρ of the entrenchment order such that ρ(a) ≤ ρ(b) iff a ≤ b, for this
would be a purely ordinal measure indicating nothing about the magnitude of changes. If one has
a reliable measure of cardinal mental utility, one can use that to grade changes according to gain
or loss of utility. But both of these paths assume one has an order or measure in hand, rather than
showing how to measure change difficulty from the start. We now turn to a quantitative measure of
change that does not presume the possession of an equivalent measure, but instead derives a measure
from the notion of mechanical work or power from the magnitudes of external and refractory forces,
of inertia, and of constitutional rigidity or inelasticity.

Measures of the effort of belief change depend on the representation of mechanical states and
motions by which one characterizes beliefs. In the present treatment, we examine only changes
characterized in terms of grounded mechanical configurations as defined previously, and in fact
simplify the treatment by considering mechanical configurations to be of the form (m,x, ẋ) rather
than the full structure (m,χ, χ̇), as the latter follows the same pattern. In this setting of reasoning
mediated by reasons, we can calculate the work and effort expended in reasoning as follows.

The power Pt = ẋt+1 · ft exerted across interval (t, t + 1) is found in the inner product of the
force acting across that interval with the velocity across that same interval. The differing temporal
subscripts of velocity and force in this formula reflect the difference between leading forces and
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trailing velocities. For finite-basis vectors we calculate the instantaneous power Pt to be

Pt = ẋt+1 · ft (43)

= ẋt+1 · (ṁt, ẍt)

= |(ṁt, ẋt+1ẍt)| (44)

= |(ṁt, ẋt+1 − ẋt+1ẋt)|
= |(ṁt, ẋt+1)| − |(0, ẋt+1ẋt)|, (45)

here using the norm that counts the number of 1’s in a vector corresponding to the ordinary inner
product of binary vectors. The work expended across some interval, therefore, is the integral (sum)
of the power over that interval, and we may use this mechanical work as a measure of the mental
effort of reasoning. One needs a different norm or inner product when considering infinite-basis
vectors, for example, when considering an inherent logic that produces infinite sets of conclusions
such as infinitely many logically equivalent restatements {¬¬}∗b of a particular belief b.

We examine this formula in greater detail to understand how this measure of effort works in
the context of reasoning. Different reasoners operate in different ways, and we find that the overall
effort of reasoning varies accordingly.

One can divide reasoning models into two types that differ in the treatment of time. In what one
might call the internal time model, one identifies instants with steps of reasoning, no matter how
long separates these steps in the world at large. In what one might call an external time model, one
regards steps of reasoning as separated by intervals during which the reasoner does nothing. Both
of these models offer useful insights.

We consider the internal time model first. This model corresponds best to a notion of deliberate
reasoning, in which every step of reasoning involves some change to memory or outlook. In (45) we
see that the power expended across a basic unit of time is the change of mass and position minus a
cross term ẋt+1ẋt involving velocity at successive intervals. This cross-term vanishes in deliberate
reasoning because normally one does not immediately retract a conclusion one has just drawn, or
draw a conclusion one has just retracted; there would be no point to it. In this setting, therefore, we
obtain the magnitude of the power expended by the step of reasoning by

Pt = |(ṁt, ẋt+1)| (46)

= |ṁt|+ |ẋt+1|. (47)

In this case, the work of a step of reasoning just adds together the number of changes made in
memory and attitudes, so the effort involved in a chain of reasoning steps consists of the cumulative
number of changes made in memory and attitudes across the span of reasoning.

In the external time model, we regard steps of reasoning as exerting impulse forces on the
reasoner, with the reasoner exhibiting inertial (force-free) motion between steps of reasoning. The
“Simple Impulse” table in Figure 11 illustrates the application of a simple impulse spatial force akin
to the internal-time model just discussed. This impulse expends an effort of |z| in the time step in
which it is applied, according to the preceding calculation. In the subsequent inertial motion, of
course, the force ft vanishes, and so by (43) the power vanishes as well, so the total effort expended
in a chain of reasoning steps again equals the cumulative sum of the number of changes to memory
and attitudes, with the inertial motions doing no work.

Inertial motion takes a cyclic form in the discrete space D due to the algebraic characteristic
that x + x = 0. As Figure 11 indicates, inertial motion with velocity z starting from a position
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Time step Simple Impulse Up and Down

t

0
1
2
3
4

x ẋ ẍ P

0 0 z |z|
z z 0 0
0 z 0 0
z z 0 0
0 z

x ẋ ẍ P

0 0 z |z|
z z z 0
z 0 0 0
z 0 0 0
z 0

Work |z| |z|

Figure 11: Kinematic quantities (x, ẋ, ẍ), power (p), and total effort in two forms of spatial impulse
motion starting from rest at the origin location.

z thus traverses the trajectory z,0, z,0, . . . . It is certainly not commonplace to think of reasoners
as cycling the last set of conclusions in this way. In standard artificial intelligence mechanizations,
one instead regards step of reasoning as changing the set of conclusions from one set to another
and then leaving it there until the next step of reasoning, as in the internal-time picture of motion.
Accommodating this expectation requires one to modify the simplistic picture of reasoning seen in
the internal time model.

One easily obtains a more familiar picture of reasoning by regarding steps of reasoning as ex-
erting two impulses, corresponding to the rising and falling edges of a pulse, as depicted in the “Up
and Down” table of Figure 11. That is, the force of the first half of a step of reasoning changes
the velocity so as to effect the desired change of position, and the force of the second half of the
step of reasoning changes the velocity back to zero by simply reversing (repeating) the thrust of the
first half. This produces a pattern of motion of start-stop steps separated by zero-velocity intervals.
This start-stop pattern of forces is in fact the pattern of reason forces, in which the frictional force
component −ẋ provides the falling impulse. This does not involve twice the mechanical effort of
the internal time and simple external time pictures, however, because the falling impulses, matched
with zero velocities in (44), contribute nothing to the cumulative effort.

Note that mechanical work only measures the effort of making the change itself, and do not
include any effort involved in evaluating the applicability of some reasoning habit, of searching for
the appropriate inference to perform, or of deciding among alternative inferences, if these activities
are not effected by means of reasoning steps themselves. If generating a force z requires effort
|z|, for instance, then the Simple Impulse motion involves an additional effort of |z|, while the Up
and Down motion involves an additional effort of 2|z|. The effort associated with such activities,
however, depends on the organization and realization of the mind. For example, there need be no
effort involved in producing the falling impulse of Up and Down as this value is already available
as the velocity. Or for another example, evaluating the applicability of a set of reasons by a serial
scan of databases of reasons and conclusions likely involves more effort than by parallel evaluations
conducted by reasons wired together like neurons or Boolean circuits.
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7. The likelihood of belief change

We regard the belief change undertaken in response to some motivated change as probabilistically
dependent on a decision about whether to accept the motivated change at all, in part, or in full; on
a decision about how to accomodate the accepted portion of the motivated change; and on effort of
effecting the change. We look for a measure of the likelihood of change in which partial changes
are more likely than more complete ones, and easier changes more likely than more difficult ones.

In the acceptance decision, the individual decides whether beliefs should change given the mo-
tivations presented. We regard susceptibility to different motives to change as reflecting strength of
preferences between content of and grounds for beliefs, as sketched in Section 4.3.2. In this view,
the likelihood of choosing one belief over another depends not only on whether the first is preferred
to the second, but how strongly it is preferred, with likelihood of change increasing with strength of
preference. This view does not presume perfect rationality, in that it allows a nonzero chance that
an individual will retain a less preferred belief to a more preferred belief, but it does not forbid per-
fect rationality either. In fact, one might simply regard these likelihoods as measures of preference
strength. Acceptance decisions might take into account of how difficult a change will be to effect,
but need not.

In the accomodation decision, the individual chooses changes to beliefs in light of the accep-
tance decision. Accomodation decisions are more clearly dependent on the difficulty of different
accomodations, with accommodations that involve less effort to effect being more likely than ones
that require more effort.

7.1 Probability of change

As noted earlier, one can derive complete graded ascriptions from probability distributions over
complete binary ascriptions by defining

β∗grade(b) =

∫
PrΦ({φ ∈ Φ | b ∈ bel(φ)}), (48)

Some natural distributions are those employed by Carnap [6, 38] in his theory of probability as “de-
grees of entailment.” The counting measure m† corresponds to making a Laplacian assumption that
every possible configuration is equally likely to occur. This measure thus gives every configuration
equal weight, i.e., m†(Φ′) = |Φ′|, so that the probability of holding a belief is just the percentage of
configurations over the base beliefs in which it appears. The specificity measure m∗ regards config-
urations as partial descriptions of all the sets of beliefs extending them, and weights states by how
“specific” they are, expressed formally as the proportion m∗({x}) = 2−|x| relative to 2|D| of the
number m∗′({x}) = 2|D|−|x| of possible supersets.

These probabilistic relationships derive simply from the structure of the set of possible belief
ascriptions to configurations, but one also can consider probabilities engendered by other factors,
such as economic content and mechanical properties.

One form for probabilities dependent on economic content uses probabilities to characterize
failures of preferential optimization. Rather than assuming that all changes and configurations are
optimal with respect to preferences over beliefs, this path assigns the largest probabilities to the
optimal changes but assigns nonzero probabilities to other changes that decrease in magnitude as
the level of suboptimality increases. For realistic notions of probability of optimization, however,
presumably the measure assigned would need to reflect the likelihood of actually arriving at config-
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urations of different degrees of optimality. As a fundamental tenet of theories of limited rationality
is that it is sometimes harder to see the true optima than nonoptima that are locally optimal, deriving
such probablities from degree of preferability alone would seem to miss the mark.

A perhaps more fruitful approach would base probabilities of change on the work needed to ef-
fect them, with changes involving less work appearing as more likely than changes involving more
work. For systems conceived of as reflecting notions of potential energy, such transition probabili-
ties would be a function of difference of energy levels, as in methods of simulated annealing [37].
One can use a similar approach in the current development, in which one uses the amount of work
needed to effect each change in place of potential energy differences in assigning probabilities.

We note that development of a reasonable measure of probability of different revisions can be
turned around to define a probabilistic entrenchment relation, or probability of entrenchment.

7.2 Expected difficulty of change

With a measure of the probability of different possible belief changes, no matter how these probabil-
ities arise, one can combine these probabilities with measures of the difficulty of changes to obtain a
measure of the expected difficulty of different changes. We note that a probability distribution over
possible changes induces a distributional belief state even in a definite state individual.

8. The logic of belief change

To accompany this plain mathematical framework of states and branching-time histories, we use
a temporal, dynamic, and multimodal logic for expressing statements about how beliefs and other
properties of mental states change over time. We begin with the modal logic called CTL*, or
Computation Tree Logic* [27], which is a full branching time logic. In this section, we augment
CTL* with predicates germane to describing different types of belief states of individuals. In later
sections, we will extend the CTL* basis with additional modalities akin to the program modalities
of dynamic logic for expressing properties of complicated belief states and of actions that change
beliefs.

The simplest statements in CTL* involve Boolean combinations of the underlying predicates
and functions of states, such as ones indicating that some belief is held or not held. These state-
specific statements then may be used in two types of statements, path formulae which make state-
ments of linear temporal logic about what happens in a particular path of events, and state formulae
which make statements about the futures possible at a particular state.

Path formulae of CTL* involve the modalities F p, meaning that p is true sometime in the future;
G p, meaning that p is always true in the future; X p, meaning that p is true at the next instant of time;
p until q, meaning that p is true until q is true; and p B q, meaning that p is true before q is true.
These linear modalities are related in familiar ways: G p is equivalent to ¬F¬p; F p is equivalent to
true until p; and p B q is equivalent to ¬[¬p until q]. We can similarly define the derived modalities
F∞ p, meaning that p is true infinitely often, and defined by F∞ p ≡ GF p, and G∞ p, meaning that
p is true at almost all times, defined by G∞ p ≡ FG p. Nonmodal statements are path formulae, and
Boolean combinations of path formulae are path formulae.

State formulae of CTL* involve the modalities A p means that the path formula p is true in all
futures, and the statement E p means that the path formula p is true in some future. Nonmodal
statements are state formulae, and Boolean combinations of state formulae are state formulae.
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The semantics of CTL* are based on Kripke semantics in which the possible changes of belief
state are captured in an accessibility relation. We write ψSoψ′ to mean that ψ′ can follow ψ when
the action o is taken. For present purposes, natural case to consider is one in which the accessibility
relation corresponds to the successor relation between mental configurations in a nondeterministic
history, in which case the accessibility relation would relate configurations rather than states, with
φSoφ

′ meaning that φ′ can follow φ when action o is taken. This is the appropriate interpretation
when considering the modal entrenchment relations discussed earlier. Such accessibility relations
would reflect both the notions of changes of grounded extensions and also conservatism or minimal-
change principles.

With no knowledge of any special connection between beliefs and mental states, the only theo-
rems of the logic of belief are theorems of plain CTL* itself.

To treat different individuals and groups, one would add to the language constants naming the
individuals and groups, as well as predicates naming the different individual types, group types, and
group membership relations.

The logic of definite configuration individuals thus augments the base logic CTL* with the new
predicates In and Out.

The logic of indefinite configuration individuals augments the logic of definite belief with the
additional modalities Arguable and its dual Doubtless, and Provable and its dual Conceivable.

The logic of distributional configuration individuals augments the logic of indefinite belief with
arithmetic inequalities about probability values such as Pr(b) > 0.5, possibly augmented with
probabilistic modalities corresponding to commonly used conditions, such as Pr(b) = 1 (certain),
Pr(b) = 0 (certainly not), Pr(b) > 0.5 (probable), or Pr(b) > Pr(¬b) (more likely than not).

For belief revision that takes into account the types of sources, content, form, and governmental
role of beliefs, individuals, and groups, one would add names for these predicates.

It might also be useful to extend the vocabulary with additional predicates to characterize in-
herent beliefs and logical relationships, preferences among beliefs and grounds, and properties of
beliefs and arguments regarding their defeasibility or indefeasibility by known arguments or by
arguments of specific types.

In the modal setting, one can augment the modal entrenchment statements considered earlier
with other modal statements. For example, the notions of arguability and provability take this form.
Following the pattern of dynamic logic, we might write 〈m〉b to mean that b holds in some grounded
extension of the base set m, that is, that b is arguable in m, and write [R]b to mean that b holds in
every grounded extension of m, that is, that b is provable in m.

We can apply the same form of expression to characterize revisions, writing 〈+r〉φ to indicate
that φ holds in some configuration following the addition of r to m, [+r]φ to indicate that φ holds
in all configurations following the addition of r to m, and interpreting 〈−r〉φ and [−r]φ similarly
in terms of removal of r from m.

9. Conclusion

The preceding presents an initial survey of the structure of belief revision and some candidates for
quantitative measures of effort. Some of these measures are based on the connective dependencies
relating different beliefs, and some are based on notions of mechanical force and work.

There are many directions for future work to extend the structures identified here. One direction
is to use these measures in comparing the difficulty of learning and unlearning. Humans exhibit ob-
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vious asymmetries in finding some things (e.g., bad habits) easy to learn and much harder to unlearn.
We belief that further analysis along the lines begun here might shed light on these asymmetries of
difficulty. Another direction for investigation is the development of revision methods based directly
on mechanical concepts rather than procedural or logical ones.
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