
Semantic Parameterization:
A Process for Modeling Domain Descriptions

TRAVIS D. BREAUX, ANNIE I. ANTÓN and JON DOYLE

North Carolina State University

1. INTRODUCTION

To validate the correctness, consistency and completeness of software requirements
and designs, software engineers require a precise understanding of the functions to
be performed by the system and the degree to which those functions satisfy soft-
ware requirements. In addition, requirements engineers must also consider the role
of the software system in the broader context of stakeholder goals. Zave and Jack-
son note that descriptions in requirements engineering are essentially descriptions
of the environment in which systems are intended to operate [Zave and Jackson
1997]. They separately distinguish the environment with and without the system,
describing the system as a force that exerts control over actions in the environ-
ment. Developing formal descriptions of both the system and its environment will
reduce stakeholder misconceptions about the role of the system and expose tacit
interactions within the environment that are necessary to validate the correctness
of system requirements. In the discussion that follows, we use the term domain to
refer to the environment and domain description to refer to a stakeholder’s concep-
tualization or transcription of a domain problem in natural language [Jackson and
Zave 1993].

In requirements engineering, goal-based methods such as the Knowledge Acqui-
sition in AutOmated Specification (KAOS) [Dardenne et al. 1993], Tropos [Fux-
man et al. 2004] and the Goal-Based Requirements Acquisition Method (GBRAM)
[Antón 1996] have been used to model interactions between systems and their en-
vironments in the form of stakeholder goals. Goals describe a state to be achieved
or maintained by actors performing actions in the environment. KAOS is unique
because it provides a formal semantics to express knowledge at three levels of ab-
straction: the meta-level that is domain independent; the domain-level that is do-
main dependent; and the instance-level that concerns the real-world operations for
a specific problem [Dardenne et al. 1993]. On the other hand, Tropos provides a
formal semantics to the i* framework which concerns a restricted universe of actors,
goals, tasks and resources [Fuxman et al. 2004]. While KAOS encourages devel-
oping detailed formal models, Tropos and i* simplifies the goal-modeling effort by
focusing on fewer concerns. Unlike KAOS and Tropos, GBRAM provides engineers
with guidelines and heuristics to acquire actors, goals and constraints from domain
descriptions [Antón 1996].

In KAOS, Tropos and GBRAM, goals are represented by an informal natural
language statement that begins with a verb followed by a phrase. In KAOS, the
verb is either achieve, cease, maintain, avoid or optimize [Dardenne et al. 1993], and
in Tropos the verb or “mode” is either achieve or maintain [Fuxman et al. 2004].

NCSU CSC Technical Report, No. TR-2006-35, October 2006, Pages 1–22.

2 RELATED WORK

In GBRAM, the set of verbs is extended for particular domains such as privacy
[Antón and Earp 2004]. There are no specific guidelines in either framework for
structuring the subsequent phrase. For example, in KAOS the goal “Achieve Bor-
rowerRequestSatisfied” implies several tacit activities in the goal phrase, including:
the intent of an actor (the borrower) to borrow; the request of the borrower; and
the perception by some actor of satisfying the borrower’s request. This goal also has
several ambiguities, including: what the borrower is borrowing; what the borrower
is requesting; who perceives the satisfaction (e.g., the borrower or the lender); and
how the satisfaction is measured. Because the phrase is informal and unstructured,
these questions can only be identified and answered by an engineer who recognizes
these ambiguities. Similarly, the goal “GiveExam” in Tropos implies a transaction
between two actors without specifying the recipient of the exam.

Although our analysis has focused on KAOS, Tropos and GBRAM, the fact is
that formal methods often concern the semantics required to express phenomena
in the domain while assuming that the user of the formal method will correctly
align the domain description with the model semantics. In most cases, the do-
main description is either comprised of thoughts in the heads of domain experts or
scripted in natural language documents such as scenarios, interviews and policies.
In this paper, we present a process called Semantic Parameterization that helps
engineers systematically map domain descriptions into first-order logic expressions
for use with other formal methods. The process requires engineers to disambiguate
domain descriptions by mapping the lexicon to unique concepts in a dictionary. In
addition, engineers model domain descriptions as a conjunction of atomic concepts
which forces them to express the tacit relationships between concepts. To increase
consistency and efficiency, we summarize several natural language patterns that
engineers can use to formalize common phrases in domain descriptions. In addition
to presenting empirical evaluation of the process in three studies, we illustrate how
the new precision in formal goal specifications can be used to query goal repositories
and compare goals in conceptual hierarchies.

The remainder of this paper is organized as follows: in Section 2 we present
related work, focusing on methods to map domain descriptions into structured
and semi-structured goals; in Section 3 we present the Semantic Parameterization
process; in Section 4 we present the natural language patterns for modeling goals
and requirements; in Section 5 we present the empirical validation from three case
studies; with our discussion and summary in Section 6, where we show the results
of a few techniques to analyze goals enabled by our approach.

2. RELATED WORK

Several researchers have recognized the need to better align natural language re-
quirements and formal models to: prevent the loss of original context [Potts 1997];
incorporate knowledge about the system environment [Jackson 1997; van Lam-
sweerde 2000; Mylopoulos et al. 1997; Nuseibeh and Easterbrook 2000]; improve
traceability [Ramesh and Jarke 2001]; apply formal analysis to requirements con-
cepts [van Lamsweerde 2000; Nuseibeh and Easterbrook 2000]; and reduce ambigu-
ous terminology [Jackson 1997; Wasson et al. 2003]. In this paper, we focus our
attention on the process to model natural language descriptions of systems and their

2

2 RELATED WORK

environments. Therefore, we first review the role of ontology in modeling domain
knowledge before reviewing two popular methods for acquiring formal specifica-
tions from natural language descriptions: controlled languages [Fuchs et al. 2005;
Konrad and Cheng 2005; Schwitter 2004; Smith et al. 2002] and standard lexicons
[Cysneiros and Leite 2004; Kaindl 1996; Overmyer et al. 2001; Wasson et al. 2003].
At this point in time, we are not concerned with automated approaches to natural
language processing that emphasize automation at the cost of accuracy for two
fundamental reasons: (1) the full scope of natural language is beyond the scope of
software domain descriptions; and (2) inaccuracies in requirements are known to
cause an exponential increase in development time and cost [Boehm 1981].

In knowledge representation, an ontology defines terms in classification hierar-
chies in which conceptually more abstract terms appear higher in the hierarchy. An
upper ontology describes the most abstract terms that are more frequently shared
across multiple domains. In the KAOS framework, the meta-level concepts are
most likely to appear in an upper ontology. The IEEE Standard Upper Ontology
Working Group (IEEE P1600.1) was established to produce a standard upper on-
tology to support computer applications. Example material from different upper
ontologies can be found in Cyc [Matuszek et al. 2006], DOLCE [Gangemi et al.
2002], the Suggested Upper Merged Ontology (SUMO) [Niles and Pease 2001], and
WordNet [Fellbaum 1998]. There is a debate concerning the existence, feasibility
and relevance of an upper ontology to coordinate shared knowledge across multiple
domains and users [Welty 2002]. Applying Semantic Parameterization to a prob-
lem yields an ontology that is limited to the semantics of that problem. In this
approach, the requirements engineer disambiguates terms in domain descriptions
only to the extent minimally necessary, not concerning themselves with interpre-
tations of these terms in other domains. While this postpones the extra effort to
unify these terms with an upper ontology, the engineer may never need to perform
that additional work in a single software project. Rather, we see such debates as
distracting from our original goals and, alternatively, we take the approach that ex-
perienced domain experts must properly align separate ontologies when that need
arises.

Controlled languages, which comprise a subset of natural language, have been
developed in requirements engineering [Breaux and Antón 2005b; 2005a; Konrad
and Cheng 2005; Smith et al. 2002] and artificial intelligence [Chen 1983; Fuchs
et al. 2005; Schwitter 2004] to reduce ambiguity and inconsistency in natural lan-
guage specifications. Smith et al. describe the PROPEL tool that uses disciplined
natural language (DNL) templates to capture requirements [Smith et al. 2002].
The templates permit a limited number of concise, highly-structured phrases that
correspond to formal properties used in finite state automata. Konrad and Cheng
employ a structured English grammar with special operators tailored to the specifi-
cation of real-time properties [Konrad and Cheng 2005]. Templates and structured
grammars require the engineer to focus the domain description in a manner con-
sistent with pre-defined operators in formal method. Similar to templates and
grammars, we provide natural language patterns in Section 5 that help engineers
restate goal descriptions into Description Logic expressions. These expressions are
used to reason about the classification and composition of goal concepts.

3

2 RELATED WORK

In artificial intelligence, there are three approaches to map a subset of the En-
glish language to first-order logic, including Attempo Controlled English (ACE) by
Fuchs et al. [Fuchs et al. 2005] and Computer-Processable ENGlish (PENG) by
Rolf Schwitter [Schwitter 2004], and Entity-Relationship (ER) models [Chen 1983].
PENG provides formal semantics in first-order logic to compose simple sentences
from coordinators (and, or) and subordinators (before, after, if-then) [Schwitter
2004]. ACE presents a case-based analysis of natural language structure that in-
cludes special consideration for anaphoric references [Fuchs et al. 2005]. Words with
an anaphoric function, such as English articles (e.g., this, that, the), refer the reader
to a particular thing or instance in the context of a description. Similar to ACE,
our approach requires engineers to distinguish shared instances based on anaphoric
references. Unlike ACE and PENG, our approach also requires atomicity in map-
ping nouns, verbs and adjectives to individual concepts in an ontology. Atomicity,
combined with support for inferring the relatedness between instances using con-
ceptual hierarchies, enables a richer query environment than ACE or PENG, which
we present in Section 6. Alternatively, Peter Chen proposed eleven rules to manu-
ally extract entities, relations and attributes in ER models from English sentences
[Chen 1983]. ER models require engineers to decide a “thing” is an entity or a
relation between entities, an ambiguity we call the node-edge problem. In addition
to resolving this problem, we describe new rules in addition to those identified by
Chen in Section 4. Furthermore, in Section 5 we present empirical validation of our
approach in three studies.

In requirements engineering, it is common practice to standardize the natural
language vocabulary using a lexicon or dictionary. Antón et al. applied the Goal-
Based Requirements Acquisition Method (GBRAM) [Antón 1996] to policies to
extract goals that begin with a verb followed by a goal phrase [Antón and Earp
2004; Antón et al. 2004]. In GBRAM, these verbs are standardized in a shared
lexicon to avoid redundant goals. Overmyer et al. describe the Linguistic Assistant
for Domain Analysis (LIDA) tool that maintains a list of words acquired from
natural language documents; the words are used to identify classes and attributes
in the UML [Overmyer et al. 2001]. Similarly, Kaindl shows how to identify binary
relationships between nouns in natural language definitions and map them to new
classes [Kaindl 1996]. Wasson et al. employ a domain map to facilitate effective
communication between domain experts and engineers [Wasson et al. 2003]. The
domain map contains technical words classified into hierarchies of super-ordinate
and sub-ordinate terms and is used to identify ambiguous terms based on their
commonality and domain-specific interpretation. Cysneiros and Leite model non-
functional, natural language requirements in the UML using class, sequence and
collaboration diagrams [Cysneiros and Leite 2004]. Their approach uses a Language
Extended Lexicon (LEL) to codify the natural language vocabulary in terms of
denotations and connotations. In our approach, we employ a dictionary that maps
words in a lexicon to their meanings in an ontology expressed in Description Logic.
We approach ambiguity from two perspectives: (1) distinguish between synonymy
(same meaning) and polysemy (multiple meanings) at both the conceptual and
real-world knowledge senses; and (2) identify under-specifications that result from
unspecified individuals that are implied by relations to concepts (e.g., the word

4

3 SEMANTIC PARAMETERIZATION

“patient” implies a relationship to a hospital, doctor, etc.)

3. SEMANTIC PARAMETERIZATION

Semantic Parameterization is a process to support engineers who map natural lan-
guage domain descriptions to models expressed in first-order logic for the purpose
of performing automated reasoning and analysis. The process was developed to
support the following three goals:

(1) Provide a reference system similar to natural language in which stakeholders
can use the conveniences of making ambiguous statements about systems while
affording the luxury of detecting and resolving such ambiguities. These luxuries
are realized in semi-automated procedures that combine tools, knowledge bases
and user feedback. The dictionary that is based on Description Logic and
presented in this section establishes the foundation for achieving this goal.

(2) Provide automated support for placing natural language-like inquiries across
collections of requirements that answer what, how, why, where and when ques-
tions [Potts et al. 1994]. More technically, by enabling the comparison of natural
language semantics, the query becomes the atomic function on which to build
more complex algorithms for analyzing requirements. We validate this design
goal in two case studies in which we use queries to ask open-ended policy ques-
tions [Breaux and Antón 2005a], organize requirements into hierarchies [Breaux
and Antón 2005a; Breaux et al. 2006] and identify ambiguities [Breaux et al.
2006].

(3) Provide a means to formalize and compare different stakeholder viewpoints.
We support this goal in two ways: (1) by formally distinguishing between the
words in a domain description and the engineer’s interpretation of those words
in a conceptual model; and by providing formal semantics to express two types
of stakeholder viewpoints for goals, the purpose for performing actions [Breaux
and Antón 2005b] and the actor’s right or obligation to perform actions [Breaux
et al. 2006].

In the remainder of this section, we present an introduction to DL followed by
the relevant terminology and formal definitions for Semantic Parameterization and
the process to map domain descriptions into formal models.

3.1 Introduction to Description Logic

The Description Logic (DL) is a subset of first-order logic used to express and
reason about knowledge [Baader et al. 2002]. In DL, knowledge is maintained in a
knowledge base KB that is comprised of an intensional component, called the TBox
T , which describes abstract terminology or domain knowledge, and an extensional
component, called the ABox A, which describes assertions about a domain-specific
problem. The TBox contains terminological axioms called descriptions that define
both concepts, used to describe individuals, and roles, used to describe binary rela-
tionships between individuals. Complex descriptions are built from other descrip-
tions using constructors such as union, intersection, negation and full existential
qualifiers over roles. In this paper, we use the DL family ALCI that combines
these constructors from ALC with role inversion (I) [Baader et al. 2002]. The

5

3.1 Introduction to Description Logic 3 SEMANTIC PARAMETERIZATION

ABox contains assertions about individuals in terms of concepts and roles. DL is
an intuitive logic for modeling software engineering problems since the DL notions
of description and individual align with the object-oriented notions of class and
instance, respectively.

For example, in the health care domain we define a TBox that contains de-
scriptions for the concept Hospital and the role hasPatient and an ABox that
contains assertions over two individuals x and y in the form Hospital(x) and
hasPatient(x,y) with the following interpretations: Hospital(x) asserts that x be-
longs to the concept Hospital and hasPatient(x,y) asserts that the individual x
belongs to the role hasPatient for the individual y who fills that role. By sepa-
rating intensional knowledge (e.g., concepts and roles) from extensional knowledge
(e.g, individuals), it is possible to make inferences about individuals using only the
concepts and roles they fill.

Reasoning in DL begins with an interpretation I that consists of a non-empty
set ∆I , called the domain of interpretation, and the interpretation function ·I
that maps concepts and roles to subsets of ∆I as follows: every atomic concept
C is assigned a subset CI ⊆ ∆I and every atomic role R is assigned the subset
RI ⊆ ∆I × ∆I . Description Logic defines two special concepts >, pronounced
“top,” with the interpretation >I = ∆I and ⊥, pronounced “bottom,” with the
interpretation ⊥I = �. In addition to constructors for union, intersection and
negation, DL provides a constructor to constrain role values, written R.C, which
means the filler for the role R belongs to the concept C. The interpretation function
is extended to concept definitions for the DL family ALCI as follows, where C and
D are concepts and R and S are roles in the TBox:

>I = ∆I

⊥I = �
(¬C)I = ∆I\CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I =
{

a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI
}

(∃R.>)I =
{

a ∈ ∆I | ∃b.(a, b) ∈ RI
}

(R−)I =
{

(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI
}

Lastly, reasoning in the ALCI family of DL is known to be PSPACE-complete
[Baader et al. 2002].

Description Logic includes axioms for subsumption, equivalence and disjointness
with respect to a TBox. Subsumption provides a means to describe individuals in
terms of generalities and organize concepts into subsumption hierarchies, similar to
class hierarchies in object-oriented design. We say a concept C is subsumed by a
concept D, written T |= C v D, if CI ⊆ DI for all interpretations I that satisfy
the TBox T . The concept C is equivalent to a concept D, written T |= C ≡ D,
if CI = DI for all interpretations I that satisfy the TBox T . The concept C is
disjoint from D, written T |= C uD → ⊥, if CI ∩DI = � for all interpretations
I that satisfy the TBox T .

6

3 SEMANTIC PARAMETERIZATION 3.2 Formal Definitions

For example, in the health care domain, we might encounter two phrases “to
treat individuals” and “treatment of individuals” intended to have the same inten-
sional meaning. In the first phrase, the word “treat” is an action verb whereas in
the second phrase the word “treatment” is a noun that describes the activity “to
treat someone.” In DL, we formulate a definition using the following equivalence
axiom: Treatment ≡ Activity u hasAction.Treat. The axiom states that the con-
cept Treatment is equivalent to an Activity with the role hasAction whose filler is
constrained to the concept Treat. This axiom ensures that descriptions expressed
as either “to treat individuals” or “treatment of individuals” will be conceptually
equivalent for reasoning purposes, regardless of the object of the treatment (e.g.,
individuals, patients, etc.)

3.2 Formal Definitions

In Semantic Parameterization, the universe of discourse is comprised of the concepts
and roles contained in the TBox T , assertions contained in the ABox A, and the
set of natural language words W, called the lexicon, that consists of all words in
the union of the following disjoint subsets: the set N of nouns, the set J of non-
inflected adjectives and the set V of verbs; therefore, W = N ∪ J ∪ V. Adverbs,
which appear in domain descriptions, are mapped to their adjectival form in J . The
dictionary maps words in the lexicon to the concepts and roles in the TBox with
statements about individuals expressed as assertions in the ABox. The following
definitions precisely define the dictionary as well as polysemy and synonymy that
occur in domain descriptions:

Definition 3.1. The dictionary D is a subset of pairs in W×T , called dictionary
entries, that consist of a word w ∈ W and an axiom A ∈ T . The axiom is one of
two possible DL descriptions: 1) a concept C; or, if w ∈ N , the description can be
2) a role R.C for a some concept C. In the case of roles, the word w is used in
natural language statements to refer to individuals that belong to the domain of the
role description. For example, a dictionary entry (subject, isSubjectOf.Activity)
contains the word subject that is used to refer to an individual x in the domain of
the role isSubjectOf(x,y), as opposed to the range of the role, which refers to an
individual belonging to the concept Activity.

To improve readability, the concept and role names in dictionary entries corre-
spond to their dictionary word as follows: for a word word in the dictionary, if the
word refers to a concept we use the concept name Word, the exact word with capital
initial, or if the word refers to a role we use the role name isWordOf with the inverse
role name hasWord such that isWordOf− ≡ hasWord.

Definition 3.2. Two words in a domain description are synonyms if they are
different words and their uses have the same intensional or extensional meanings.
Two different words w1, w2 are intensional synonyms, if for two dictionary entries
(w1, A1), (w2, A2) ∈ D, it is true that T |= A1 ≡ A2; or they are extensional
synonyms if the words are used to refer to the same set of individuals in the ABox
such that, for all x in this set, KB |= A1(x)∧A2(x), recalling that if A1 and A2 are
roles then the concerned individuals are in the domain of that role.

Definition 3.3. A word in a domain description is a polyseme if it has different
intensional or extensional meanings. The word w is an intensional polyseme, if

7

3.3 Parameterization Process 3 SEMANTIC PARAMETERIZATION

for two dictionary entries (w,A1), (w,A2) ∈ D, it is true that A1 and A2 are not
equivalent or (A1)I 6= (A2)I for some interpretation I that satisfies the TBox T ; or
it is an extensional polyseme, if the word is used to refer to two different individuals
x, y in the ABox such that KB |= A1(x) ∧ A2(y), recalling that if A1 and A2 are
roles then the concerned individuals are in the domain of that role.

3.2.1 The Node-Edge Problem. The node-edge problem is the matter of deciding
whether a word maps to a concept or a role in a conceptual model. For example, we
can map the word patient to a concept Patient or to a role, say isPatientOf1.Doctor

or isPatientOf2.Hospital. The first role describes a patient who has been assigned
to a doctor and second role describes a patient who has been admitted to a hospital.
To resolve this problem, we assert that for a common word w and a set of conceptu-
ally related roles { Ri | (w,Ri) ∈ D for 1 ≤ i ≤ n }, there exists a shared concept C
with dictionary entry (w, C) and the subsumption axiom R1 tR2 t ...tRn v C in
the TBox. For example, the axiom isPatientOf1 t isPatientOf2 v Patient ensures
that individuals who belong to either of the roles isPatientOf1 or isPatientOf2 also
belong to the concept Patient. The advantage of using a role to refer to an individ-
ual is increased specificity (e.g., it implies a relation to another concept in the range
of that role) whereas using a concept to refer to an individual provides the freedom
to generalize among similar individuals irrespective of their specific associations.

3.3 Parameterization Process

The parameterization process extends the ABox with assertions acquired from a
domain description and allows the engineer to acquire re-usable natural language
patterns that generalize across several descriptions. The extension is partitioned
into two sets of DL descriptions: 1) those descriptions that come from words in the
natural language statement, called the grounding; and 2) those descriptions that
come from words inferred by the engineer, called the meta-model. Each new as-
sertion incrementally builds a specification; a notion Zave and Jackson have called
conjunction as composition [Zave and Jackson 1993]. Together, the grounding and
meta-model align with the natural language phrase structure to comprise the natu-
ral language pattern. Engineers who re-use these patterns will improve consistency
in requirements models since the resulting models are structurally similar under
DL subsumption and unification. In addition, these engineers will save time and
effort since the patterns serve as templates that characterize the tacit knowledge in
conceptually similar natural language statements.

We illustrate the parameterization process with the domain description UNLS1.0,
below. We assume the dictionary contains all the necessary words for this exercise
with corresponding concepts and roles contained in the TBox. In practice, however,
the engineer may need to add new words to the dictionary which may further require
adding new DL axioms for subsumption, equivalence and disjointness. The process
proceeds in three phases: (1) apply phrase heuristics to disambiguate pronouns and
identify extensional synonyms; (2) use the dictionary to assign meanings to the
words in the domain description to build the grounding; (3) use the dictionary to
identify the tacit relationships between concepts implied by the domain description
to build the meta-model. We prepared UNLS1.0 by hyphenating nouns in the
statement that describe the same concept. For example, the words “access code”

8

3 SEMANTIC PARAMETERIZATION 3.3 Parameterization Process

are hyphenated because they refer to a single concept.

UNLS1.0: The customer1,1 must not share2,2 the access-code3,3 of the customer1,1

with someone4,4 who is not the provider5,4.

In the first phase, the engineer applies phrase heuristics to disambiguate refer-
ences between different noun phrases that refer to the same person, place or thing
called an anaphoric or cataphoric function. Pronouns (e.g., he, her, it, this, that,
etc.) and nouns that follow articles (e.g., a, the) both refer to a unique person,
place or thing in domain descriptions. Because pronouns are frequent sources of
ambiguity, the engineer must identify and replace pronouns with a definite article
followed by the noun phrase that uniquely identifies the intended individuals (e.g.,
replace it with the system if it refers to the system.). For the same reason, posses-
sive pronouns are replaced as well (e.g., their website is replaced with the company’s
website if the possessive pronoun their refers to the company).

The engineer must then identify and distinguish intensional and extensional syn-
onyms and polysemes. For example, if the same noun is used to refer to two different
individuals (e.g., this network and that network) then the engineer must consistently
distinguish these existential polysemes. We assume all lexically equivalent words
are intensional synonyms (same concept) and extensional polysemes (different indi-
viduals), unless otherwise distinguished using subscripts as follows: for networkx,y,
the subscript x is an intensional index and the subscript y is an extensional index.
Similar indices are synonyms and dissimilar indices are polysemes for the given
word network. For example, the words network1,1 and network1,2 represent two
intensional synonyms and extensional polysemes (e.g., same concept but different
individuals).

For example, in UNLS1.0, the two occurrences of the word customer both have
the same intensional and extensional meaning, whereas the word someone, which
describes any person, and the word provider, which in this context describes a
person who provides services, both have different intensional meanings (different
concepts) but have the same extensional meaning (the same individual).

In the second phase, the engineer then builds an extension A′ to the ABox
A. For each word wx,y in UNLS1.0, find the dictionary entry (w, A) ∈ D and
extend the ABox with assertions C(py) for individual py, if A is a concept, or
R(py, pv) for individual py, pv, if A is a role, noting that the individual pv may
be the same individual from another word wu,v in the prepared statement. For
example, in UNLS1.0, since the phrase “access-code3.3 of the customer1.1” denotes
an association between the customer and the access-code, we add the assertion
isAccessCodeOf(p3,p1) where individual p3 refers to the access-code and p1 refers to
the customer. However, if the phrase were simply “access-code3.3” with no mention
of who possesses the access code, we would have added the assertion AccessCode(p3).
After completing phase one, the extension for UNLS1.0 is as follows:

A′ = A ∪ {Customer(p1) u Share(p2) u isAccessCodeOf(p3,p1) u Someone(p4) u
Provider(p4)}

9

3.3 Parameterization Process 3 SEMANTIC PARAMETERIZATION

Table I. Primitive RNLS Heuristics

Heuristic RNLS and ABox Extension

RNLS: The wordC is a wordD.

For some (wordC , C), (wordD, D) ∈ D, find an individual x such that:

A′′ = A′ ∪ A ∪ {C(x) ∧D(x)}
(i)

RNLS: The wordR of a wordC .

For some (wordC , C), (wordR, R.C) ∈ D, find individuals x, y such that:
A′′ = A′ ∪ A ∪ {R(x, y) ∧ C(y)}

(ii)

RNLS: The wordC has a wordR.

For some (wordC , C), (wordR, R.C) ∈ D find individuals x, y such that:

A′′ = A′ ∪ A ∪ {C(x) ∧R−(x, y)}
(iii)

RNLS: The wordC is a wordR of a wordD.
For some (wordC , C), (wordR, R.D), (wordD, D) ∈ D find individuals x, y

such that: A′′ = A′ ∪ A ∪ {C(x) ∧R(x, y) ∧D(y)}
(iv)

Table II. Results from Applying Phrase Heuristics

Index Heuristic Resulting RNLS

(1a) (ii) The access-code3,3 of the customer1,1.

(1b) (iv) The access-code3,3 is the property6,3 of the customer1,1.

(1c) (iv) The access-code3,3 is a possession7,3 of the customer1,1.

(2) (iv) The customer1,1 is the subject8,1 of an activity9,5.

(3) (iv) Share2,2 is the action10,2 of an activity9,5.

(4) (iv) The access-code3,3 is the object11,3 of an activity9,5.

(5) (iv) Someone4.4 is the target12,4 of an activity9,5.

(6) (iii) The activity9,5 has a subject8,1, action10,2, object11,3 and target12,4.

(7) (iv) The activity9,5 is a refrainment13,5 of the customer1.1.

At this point, all of the words in UNLS1.0 have been formalized using DL; these
words and derived assertions in the above extension are called the grounding. In the
third phase, the engineer elicits from domain experts the implicit or tacit knowledge,
if any, that relates the individuals in the grounding to each other through a sequence
of implied roles. Table I provides a set of heuristics based on primitive restricted
natural language statements (RNLS) that only use the verbs to-be and to-have.
Applying the primitive RNLS heuristics will introduce new words and assertions
that comprise the meta-model.

In Table I, wordC , wordD, and wordR are words in the dictionary D; C, D
are concepts and R is a role in the TBox T ; and x and y are individuals. The
articles the, a, an in the primitive RNLS may be interchanged as necessary, since the
uniqueness expressed by these words map to extensional references in the UNLS and
DL formulas. In addition, the engineer may find that the application of heuristic
(ii) or (iii) can be restated as heuristic (iv) by substituting the wordR used in
heuristic (ii) or (iii) with wordC in heuristic (iv) and finding a new word wordR

that satisfies heuristic (iv). Table II shows the results of applying these primitive
RNLS heuristics in Table I to UNLS1.0. Each row in Table II consists of: an index
to be used in the following discussion; the heuristic applied from Table I; and the
RNLS that results from applying this heuristic. In each result, all of the grounding
words are boldface.

Beginning with the phrase “access-code of the customer,” applying the primitive
RNLS heuristic (ii) yields the RNLS (1a) in Table II. However, using the primitive

10

4 RESTRICTED NATURAL LANGUAGE

RNLS heuristic (iv), the engineer may elicit RNLS (1b) and (1c), exploring the
relationship of the access code to the customer as either the property or more gen-
erally a possession of the customer. The distinction may have legal consequences,
because in certain jurisdictions it may be illegal for a provider to revoke an access
code from their customer when the access code is owned by the customer (e.g., their
property). For this reason, the engineer must ensure the meta-model describes the
viewpoint of the appropriate stakeholder(s) so that the model is consistent with
the intended interpretation of the overall environment. For the purpose of this
illustration, we choose the more general RNLS (1a).

RNLSs (2)-(5) are elicited by recognizing that UNLS1.0 describes an implied
activity, in which the customer must not share their access code. The implied
activity contributes a new individual p5 to the meta-model. Each word (customer,
share, access-code, and someone) relevant to this single activity is assigned a role
(subject, action, object, and target) in the activity.

Activities may be composed differently by different engineers. For example, in
Table II the word “subject” could be substituted for the word “actor” in RNLS (2)
and RNLS (6). Likewise, one might designate the subject and object as roles of
an action, not an activity. Because the dictionary ensures that words in the UNLS
are individually mapped to concepts and roles, such variations can be aligned using
the equivalence and subsumption axioms in the TBox. Finally, the modal phrase
“must not” in UNLS1.0 designates the activity as something the customer should
not do, which we call a refrainment in RNLS (7).

We conclude the parameterization process by adding the new assertions that
comprise the meta-model to the extended ABox as follows:

A′′ = A′ ∪ A ∪ {Activity(p5) u hasSubject(p5,p1) u hasAction(p5,p2) u
hasObject(p5,p3) u hasTarget(p5,p4) u isRefrainmentOf (p5,p1)}

Recall that one goal in the parameterization process is to relate individuals
through as sequence of roles to identify the tacit relationships between individuals.
In this example, that sequence of roles is: isAccessCodeOf(p3,p1), hasSubject(p5,p1),

hasAction(p5,p2), hasObject(p5,p3), hasTarget(p5,p4), isRefrainmentOf(p5,p1). In
this application of the parameterization process, the domain description phrase
structure that describes an actor who performs an action on an object is general-
ized and called the basic activity pattern that appears in Section 4.

Like other forms of conceptual modeling, including object-oriented design, the
parameterization process requires engineers to investigate and abstract the tacit or
implicit relationships within information. Because this process is intensive, engi-
neers should re-use previously identified RNLS patterns, such as those presented
in Section 4, and reserve the process for modeling domain descriptions with new
phraseologies.

4. RESTRICTED NATURAL LANGUAGE

The Semantic Parameterization process yields re-usable natural language patterns
that are realized as simple sentences called Restricted Natural Language Statements
(RNLS). RNLS contain exactly one verb but may contain external references to
other RNLS through coordinating words. Based on our experience working within

11

4.1 Basic and Extended Activities 4 RESTRICTED NATURAL LANGUAGE

Table III. Basic activity pattern with subject, action and object

Natural Language Statements

UNLS2.0: The provider promptly updates erroneous information.
RNLS2.1: The provider promptly updates erroneous information.

Expression Pattern

Activity u Prompt

u hasSubject.Provider

u hasAction.Update

u hasObject.(Information

u Erroneous)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

two different domains, health care and finance, we found that most domain de-
scriptions can be partially mapped into a formal model using at least one of the
following RNLS. In Section 5, we provide empirical evidence to show that these
patterns describe the majority of natural language semantics across three different
case studies.

The RNLS patterns are organized into the following five categories:

(1) Primitive RNLS that the verbs to-be and to-have (presented in Table I)

(2) Basic and extended activities.

(3) References to other activities, including:
(a) verb phrases masquerading as nouns;
(b) transitive verbs followed by verb phrases;
(c) purposes and instruments; and
(d) constraints on subjects and objects.

In the following discussion, we provide three examples for each natural language
pattern: an domain description (UNLS) and the acquired RNLS; the formal model
that maps to the RNLS; and the meta-model for the natural language pattern.
In the meta-model, we change domain-specific concepts to the generalized concept
Noun or Verb to indicate which dictionary entries can be used to map concepts to
these slots. For example, the DL expression hasAction.Verb indicates that only
concepts whose dictionary word is in the set of verbs V may fill the role hasAction.

4.1 Basic and Extended Activities

RNLS with verbs other than the irregular verbs to-be and to-have share a common
pattern called the activity pattern. This pattern consists of four dictionary words:
the word activity which defines a concept with three properties: the subject (a
noun), who performs an action (a verb) on some object (a noun or verb phrase).
Adverbs that modify a verb (the action) are changed to adjectives that describe the
activity (e.g., “to confidentially share” refers to an activity that is “confidential”
with an action “share”).

Table III shows an example of the activity pattern in which the concepts for
the dictionary words provider, update and information constrain the range of the
roles hasSubject, hasAction, and hasObject, respectively. The adverb “promptly”
is changed to the non-inflected adjective prompt that describes the activity in the

12

4 RESTRICTED NATURAL LANGUAGE 4.2 References to other activities

Table IV. Verb phrases masquerading as nouns

Natural Language Statements Expression

UNLS3.0: The provider uses patient informa-
tion for treatment.

Activity

u hasSubject.Provider

u hasAction.Use

u hasObject.PatientInformation

u hasPurpose.(Treatment

u hasSubject.Someone

u hasAction.Treat

u hasObject.Someone

)

RNLS3.1: The provider uses patient-
information for (RNLS3.2).

RNLS3.2: Someone treats someone.

intersection (Activity u Prompt). Likewise, the adjective “erroneous” describes the
noun “information” and appears in (Information u Erroneous).

The basic activity pattern is extended for special classes of verbs. For example,
transactions are activities whose action word implies the role of another actor who
is not the actor performing the action but a participant in the action. Transaction
verbs include disclose, share, send, rent, etc. For example, the phrase “to send
electronic mail” has the action “send” that requires a target to whom the object is
sent. We model this target property of transactions using the role hasTarget.Noun.

4.2 References to other activities

In domain descriptions, a single natural language statement may describe relation-
ships between multiple activities. For example, the phrase “share information for
marketing” refers to two activities in which the second activity “marketing” is the
purpose of performing the first activity “share information.” The engineer applies
RNLS patterns to separate these activities into distinct RNLS that are linked using
nested references to maintain the original semantic relationship. We discuss the
following RNLS patterns in detail: verb phrases masquerading as nouns; transitive
verbs followed by verb phrases; distinguishing nouns by verb phrases; and purposes
and instruments.

4.2.1 Verb phrases masquerading as nouns. Nouns that end in -ing (called gerunds)
and other nouns that end in -ance, -sion, -tion, -ism, -sure, -zure, and -ment often
describe activities that may be expanded into verb phrases and separate RNLS.
These nouns may follow transitive verbs (see Section 4.2.2) or appear as the pur-
pose or instrument (see Section 4.2.4). These nouns often are lexically similar to
the verb in the expanded verb phrase, for example: permission/ permit, restriction/
restrict, requirement/ require, etc. During restatement, the engineer is required to:
1) replace the noun with a cross-reference to a separate RNLS that will become
the expanded verb phrase; 2) set the verb tense in the expanded verb phrase to
present-simple tense; and 3) state the explicit or implicit subject or object of the
verb phrase in the new RNLS.

In UNLS3.0 presented in Table IV, the noun “treatment” is expanded RNLS3.1

to RNLS3.2 with the ambiguous noun “someone” that is conservatively indexed as
an extensional polyseme. In the TBox, we ensure the following axiom is defined
to complement this pattern: T |= Treatment ≡ Activity u hasAction.Treat. We

13

4.2 References to other activities 4 RESTRICTED NATURAL LANGUAGE

Table V. Transitive verbs followed by verb phrases

Natural Language Statements

UNLS4.0: The provider restricts sharing information with third-parties.
RNLS4.1: The provider1.x restricts (RNLS3.2).
RNLS4.2: The provider1.x shares information with a third-party.

Expression Pattern

Activity

u hasSubject.Provider

u hasAction.Restrict

u hasObject.(Activity

u hasSubject.Provider

u hasAction.Share

u hasObject.Information

u hasTarget.ThirdParty

)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.(Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

)

frequently encountered this type of intensional knowledge in the HIPAA case study
[Breaux et al. 2006] discussed later in Section 5.

4.2.2 Transitive verbs followed by verb phrases. Transitive verbs in domain de-
scriptions such as restrict, limit, allow, deny, notify, require and recommend may
be followed by verb phrases. During restatement, the engineer is required to: 1)
replace the verb phrase with a cross-reference to a separate RNLS that will contain
the verb phrase; 2) change the verb in the verb phrase from present-continuous to
present-simple tense; and 3) state the explicit or implicit subject and object of the
verb phrase in the new RNLS, if any. For unstated (implicit) subjects, one may
use the same subject from the unrestricted statement if that assumption is correct
or elicit the subject from the domain expert.

In UNLS4.0 in Table V, the transitive verb “restrict” is followed by the verb
phrase “sharing information with third-parties.” Therefore, we separate the verb
phrase from RNLS4.1 into RNLS4.2 and cross-reference, accordingly. The subject of
the verb phrase is unspecified, so we assume the explicit subject from RNLS4.1 (the
provider) in which RNLS4.2 is nested will suffice; this assumption may not always
be valid and any final decisions should be checked with relevant stakeholders. To
derive the DL formula, we apply the activity pattern to RNLS4.2 and assign the
resulting DL expression to the role hasObject in the formula from RNLS4.1.

4.2.3 Distinguishing nouns by verb phases. Verb phrases also serve as con-
straints that distinguish nouns in domain descriptions. For nouns that signify a
person, place or thing, the words “who,” “where” and “that,” respectively, fre-
quently precede these verb phrases in the domain descriptions. The engineer must
separate the verb phrase(s) into new RNLS, replacing the original verb phrase with
a cross-reference to the new RNLS and changing verb tense to present-simple.

In UNLS5.0 presented in Table VI, the obligation to notify does not apply to all
customers; rather it is limited to those “who receive health services.” The word
customer in RNLS5.1 and RNLS5.2 is an extensional synonym that preserves the
meaning from UNLS5.0 after the separation. In this example, the object of the
notification is missing, thus the engineer must elicit this information from domain

14

4 RESTRICTED NATURAL LANGUAGE 4.2 References to other activities

Table VI. Distinguishing nouns by verb phrases

Natural Language Statements

UNLS5.0: The provider notifies customers who receive health services.
RNLS5.1: The provider notifies the customer1.x who (RNLS5.2).
RNLS5.2: The customer1.x receives health services.

Expression Pattern

Activity

u hasSubject.Provider

u hasAction.Notify

u hasObject.(Customer

u isSubjectOf.(Activity

u hasSource.Provider

u hasAction.Receive

u hasObject.HealthService

)

)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.(Noun

u isSubjectOf.(Activity

u hasAction.Verb

u hasObject.Noun

)

)

experts to disambiguate the statement.
To derive the DL formulas, we apply the activity pattern to both RNLS5.2 and re-

topicalize derived formula for the customer by: inverting the role hasSubject.Customer
to the intersection (Customer u isSubjectOf) with the remaining description of
that activity (Activity u hasAction u hasObject) assigned to the filler of the role
isSubjectOf. In the DL formula derived from RNLS5.1, the role hasTarget is filled
by the re-topicalized DL formula from RNLS5.2, as shown in Table VI.

4.2.4 The why and how: purpose and instruments. The purpose (also called
cause or justification) answers the question “why an action is performed” whereas
the instrument (also called the strategy or method) answers the question “how an
action is performed.” These two properties also appear in goal hierarchies from
requirements engineering [van Lamsweerde 2000], in which higher goals (purposes)
are refined into lower goals (instruments). The purpose and instrument appear in
domain descriptions as either: 1) a verb phrase; or 2) a noun masquerading as a
verb phrase. In the first case, we apply the activity pattern, whereas, in the second
case, we apply the pattern discussed in Section 4.2.1.

In UNLS6.0 in Table V, the purpose “to market services to individuals” is a
verb phrase that answers why the “provider discloses information.” To apply this
pattern, the engineer separates the verb phrase into RNLS6.2, but this time they
make no assumptions about the implicit subject and instead use the ambiguous
noun “someone” as a placeholder. The formula derived from RNLS6.2 is assigned
to be the filler of the role hasPurpose in the formula derived from RNLS6.1.

In Table VI, the UNLS7.0 illustrates the instrumental phrase “by encrypting
them,” that answers how the employee “must protect documents.” To apply this
pattern, the engineer separates the instrumental phrase into a separate RNLS7.2.
The derived DL expression for RNLS7.2 is assigned to the filler of the role hasInstrument
in the expression for RNLS7.2.

In some cases, the instrumental phrase may contain the verb “use”, such as “by
using AES” or “by using encryption” where “AES,” which stands for Advanced

15

5 VALIDATION AND PROCESS EVOLUTION

Table VII. Activities with a purpose (The Why)

Natural Language Statements

UNLS6.0: The provider discloses information to market services to individuals.
RNLS6.1: The provider discloses information to (RNLS6.2).
RNLS6.2: Someone markets services to individuals.

Expression Pattern

Activity

u hasSubject.Provider

u hasAction.Disclose

u hasObject.Information

u hasPurpose.(Activity

u hasAction.Market

u hasObject.Service

u hasTarget.Individual

)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

u hasPurpose.(Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

)

Table VIII. Activities with an instrument (The How)

Natural Language Statements

UNLS7.0: The employee protects documents by encrypting them.
RNLS7.1: The employee1.x protects a document1.y by (RNLS7.2).
RNLS7.2: The employee1.x encrypts the document1.y.

Expression Pattern

Activity

u hasSubject.Employee)

u hasAction.Protect

u hasObject.Document

u hasInstrument.(Activity

u hasSubject.Employee

u hasAction.Encrypt

u hasObject.Document

)

Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

u hasInstrument.(Activity

u hasSubject.Noun

u hasAction.Verb

u hasObject.Noun

)

Encryption Standard, is an encryption algorithm1 and “encryption” is the activity
“to encrypt.” In the first case, if the noun that follows “using” is a thing, not
an activity, then the engineer should apply the activity pattern to the entire verb
phrase. However, in the second case, the engineer should remove the superfluous
verb “using” since it is implied by the role hasInstrument and simply parameterize
the noun using the pattern in Section 4.2.1.

5. VALIDATION AND PROCESS EVOLUTION

Semantic Parameterization has been developed using Grounded Theory [Glaser and
Strauss 1967] and validated in the following three studies. In each study, limitations
in the parameterization process and formal models were identified and addressed
before conducting subsequent studies. Furthermore, every statement in the domain
description was parameterized to avoid overlooking limitations in our process. The
three studies are identified as follows:

1National Institute of Technology, FIPS Pub. 197

16

5 VALIDATION AND PROCESS EVOLUTION

Table IX. Comparative overview of the three studies

Feature Description Goals Facts Rules

Number of words in the domain description 868 1,700 5,900

Number of words in the grounding 708 318 1587

Number of words in the meta-model 905 341 1603

Number of formal models acquired 101 30 94

Number of dictionary entries used 187 140 234

Number of person hours spent during RNLS restatement 1 11 14

Number of person hours spent during parameterization 7 3 10

Percentage Domain Knowledge 45.5% 48.3% 49.7%

(1) Goals: A formative study using the most frequent 100 semi-structured goals
from over 1200 goals acquired by applying GBRAM to over 100 Internet pri-
vacy policies in the finance and healthcare domains [Breaux and Antón 2005b;
2005a].

(2) Facts: A pilot study using the fact sheet text [DHHS 2003a] summarizing the
U.S. HIPAA Privacy Rule for patients in which we extracted 19 business rules
[Breaux and Antón 2005c].

(3) Rules: A case study using the regulatory text of the HIPAA Privacy Rule,
sections §164.520-526 [DHHS 2003b] in which we extracted 46 rights and 80
obligations governing access, consent, notification, and review of privacy prac-
tices [Breaux et al. 2006].

All of the RNLS patterns presented in Section 4 were acquired during the Goals
study, except for the pattern to identify verb phrases masquerading as nouns which
was identified in the Rules study. The Facts and Rules studies served to test
whether Semantic Parameterization and the RNLS patterns would scale from semi-
structured goal descriptions to unstructured natural language documents, in this
case the legal language of government regulations.

In Table IX, we present measures to compare the three studies, including the
number of words that appear in domain descriptions, grounding and meta-models;
the number of formal models and dictionary entries acquired; the number hours
spent applying the process; and the percent of domain-dependent knowledge in
each study. In the Goals study, one goal description was found to describe two
goals, resulting in the 101st model acquired during that study. The separation
of activities into RNLS resulted in this finding. Because the semi-structured goal
descriptions acquired using GBRAM have a phraseology similar to the RNLS pat-
terns, we observe a higher ratio of grounding words to description words at 82%
compared to 19% and 27% in the Facts and Rules studies, respectively, which were
conducted using unstructed natural language descriptions. The similar phraseology
also accounts for the fewer hours spent during RNLS restatement compared to the
Facts and Rules studies. The number of case splits refers to the number of new
models generated from logical disjunctions. Case-splits are a subtle factor that im-
pacts the real number of goals acquired from a domain description. For example,
in the goal description “providers and third-parties must notify patients of their
privacy practices,” the obligation of the providers and third-parties are indepen-
dent. Therefore, the English conjunction “and” is mapped to a logical disjunction
which yields two separate goals, one for providers and the other for third-parties.

17

6 DISCUSSION AND SUMMARY

Table X. Usage for RNLS patterns in three studies

RNLS Pattern Name (Section) Goals Facts Rules

Basic activity pattern (4.1) 280 132 613

Verb phrases masquerading as nouns (4.2.1) 119 54 164

Transitive verbs (4.2.2) 18 14 75

Purposes (4.2.3) 13 23 45

Instruments (4.2.3) 20 3 26

Nouns Distinguished by verb phrases (4.2.4) 20 5 22

For the number of grounding words g and the number of meta-model words m, the
percentage of domain knowledge is d = g / (g + m). The percentage of meta-model
reuse is 1− d, which is above 50% in each of these three studies.

In Table X, we present the total number of occurrences in the three studies of
the RNLS patterns from Section 4. The pattern name and the section from this
paper in which it is discussed appears in the first column; the number of times
each pattern was applied for each of the three studies described above appear in
subsequent columns. The total number of occurrences for the basic activity pattern
include those activities acquired from applying all of the RNLS patterns described
in Section 4.

The validation to-date has addressed the expressiveness of the RNLS patterns to
derive models from unstructured natural language domain descriptions. Additional
validation is needed to ascertain the ease with which engineers can apply these
patterns compared to other conceptual modeling formalisms. We have developed
tool support including a context-free grammar that has a formal semantics in De-
scription Logic and a parser to read the semantic models and perform queries; these
tools were used to obtain the results in Table IX and X. Based on our experience in
using goal-mining methodologies in requirements engineering [Antón 1996; Antón
and Earp 2004; Antón et al. 2004], we believe that Semantic Parameterization is
slightly more complex than goal-mining but provides a richer domain description
with increased precision. We are currently comparing our approach to another
called Ontological Semantics [Nirenburg and Raskin 2004] that requires reconciling
domain descriptions with an upper ontology that spans several domains.

6. DISCUSSION AND SUMMARY

Semantic Parameterization provides new structures to express goals and require-
ments that have been used to analyze goals, including querying goals by asking
open-ended questions [Breaux and Antón 2005a] and organizing goals into abstrac-
tion hierarchies [Breaux et al. 2006]. These techniques rely on the fundamental
ability to compare goal semantics using the manner in which Semantic Parameter-
ization decomposes goal descriptions into atomic predicates.

Table XI shows the results of a query that was applied to the 100 parameterized
goals in the Goals study [Breaux and Antón 2005a]. The following axioms were
first defined in the TBox T |= (TransactionInformation t ExperienceInformation t
PII t Statistics) v Information. The question “What information can be shared
with whom?” was mapped to the DL expression (Activity u hasAction.Share u
hasObject.Information u hasTarget.>) and unified with the knowledge base KB to
obtain the results in Table XI. The first column lists the Goal ID, where duplicate

18

6 DISCUSSION AND SUMMARY

Table XI. Querying what information can be shared and with whom?

Goal ID isObjectOf.Activity isTargetOf.Activity

155 TransactionInformation Subsidiary

155 ExperienceInformation Subsidiary

822 Personally Identifiable Information (PII) Affiliate

822 PII ServiceProvider

954 Information ThirdParty

954 Statistics ThirdParty

156 TransactionInformation Affiliate

156 ExperienceInformation Affiliate

170 PII Subsidiary

Table XII. Organizing Goals into Conceptual Hierarchies

Goal Description Goal Hierarchy

O520.2: The GHP must provide notice to
any person.

O520.4: The GHP is not required to provide

notice to any person.
O520.7: The CE must provide notice to any

person or individual.
O520.8: The HP must provide notice to any

person or individual.

O520.10: The HCP must provide notice to

the individual.
O520.13: The CE must provide electronic no-

tice to the individual.
O520.14: The CE must provide a paper copy

of the notice to the individual.
O520.15: The CE must automatically pro-

vide electronic notice to the indi-

vidual.

IDs indicate a multiple responses due to case splitting from logical disjunctions. The
individuals that belong to the roles isObjectOf.Activity and isTargetOf.Activity

answer the question for “what information” and “with whom,” respectively.
Table XII shows a set of conceptually similar goal descriptions that were param-

eterized in the Rules study [Breaux et al. 2006]. The domain description defines a
stakeholder hierarchy that includes the covered entity (CE), the health plan (HP),
the group health plan (GHP) and the health-care provider (HCP). The stakeholder
hierarchy is realized in the following axioms: T |= GHP v HP and T |= (HP t HCP)
v CE. Using the stakeholder hierarchy, the goals are organized in a separate goal
hierarchy that compares the goals by each role for subject, action and object of the
goal description as well as adverbs and adjectives. In the goal hierarchy in Table
XII, arrows point to goals that are conceptually more abstract. The dotted line
between goals O520.4 and O520.2 indicates a conflict inferred from the conflicting
deontic modalities “must” and “is not required to.”

Description Logic is necessary but not sufficient to define a comparable semantics
for goals. Our analysis of goals in the healthcare and finance domains shows a need
to express deontic and temporal constraints among goals. The domain description
words that indicate deontic constraints such as “may”, “must”, and “must not”

19

REFERENCES REFERENCES

can be mapped to logical constructors in Deontic Logic to reason about “what is
permissible” called rights and “what ought to be” called obligations [Horty 2001].
Similarly, those words and verb tenses that indicate temporal constraints can be
mapped to constructors in Temporal Logic to express the time-order of events,
including which events occur before, during and after other events. Further work
is needed to understand the complexity and necessity of combined reasoning using
each of these logical formalisms to support the software requirements engineering
effort.

To date, we have developed tools to support the above techniques and others
to identify ambiguities [Breaux et al. 2006], infer implied stakeholder rights and
obligations from parameterized goals [Breaux et al. 2006] and generate domain
descriptions from goal models [Breaux and Antón 2005a]. We are currently inte-
grating these techniques and the dictionary into a workbench based on the Eclipse
framework. The framework will support the process of creating formal specifica-
tions from domain descriptions and the integration of third-party tools to generate
partial software specifications from the formal models.

We present the Semantic Parameterization process to support engineers in map-
ping domain descriptions to formal models. The process exposes ambiguities in
domain descriptions by maintaining atomicity among concepts. We provide several
natural language patterns that are intended to assist engineers with consistently
and more efficiently mapping descriptions to models. Finally, we summarize the
empirical results of applying this process to three studies and illustrate example
applications based on the formal specifications.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation ITR Grant:
Encoding Rights, Permissions and Obligations: Privacy Policy Specification and
Compliance (NSF 032-5269); ITR CyberTrust Grant: Policy-Driven Framework
for Online Privacy Protection (NSF 043-0166); and CERIAS at Purdue University.

REFERENCES

Antón, A. 1996. Goal-based requirements analysis. In Proc. IEEE 2nd Int’l Conf. on Require-
ments Engineering. IEEE Computer Society, Washington, D.C., 136–144.

Antón, A. and Earp, J. 2004. A requirements taxonomy for reducing web site privacy vulnera-

bilities. Requirements Engineering 9, 3, 169–185.

Antón, A., Earp, J., Bolchini, D., He, Q., Jensen, C., and Stufflebeam, W. 2004. The lack

of clarity in financial privacy policies and the need for standardization. IEEE Security and

Privacy 2, 2, 36–45.

Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider, P. 2002. The

Description Logic Handbook: Theory, Implementation and Applications. Cambridge University

Press, Cambridge, U.K.

Boehm, B. 1981. Software Engineering Economics. Prentice Hall, Upper Saddle River, NJ.

Breaux, T. and Antón, A. 2005a. Analyzing goal semantics for rights, permissions and obliga-

tions. In Proc. IEEE 13th Int’l Conf. on Requirements Engineering. IEEE Computer Society,
Washington, D.C., 177–186.

Breaux, T. and Antón, A. 2005b. Deriving semantic models from privacy policies. In Proc.
IEEE 6th Int’l Workshop on Policies for Distributed Systems and Networks. IEEE Computer
Society, Washington, D.C., 67–76.

20

REFERENCES REFERENCES

Breaux, T. and Antón, A. 2005c. Mining rule semantics to understand legislative compliance.

In Proc. ACM Workshop on Privacy in Electronic Society. ACM Press, New York, NY, 51–54.

Breaux, T., Vail, M., and Antón, A. 2006. Towards compliance: Extracting rights and obliga-

tions to align requirements with regulations. In Proc. IEEE 14th International Conference on
Requirements Engineering. IEEE Computer Society, Washington, D.C., 46–55.

Chen, P.-S. 1983. English sentence structure and entity-relationship diagrams. Information

Sciences 29, 2-3, 127–149.

Cysneiros, L. and Leite, J. 2004. Nonfunctional requirements: From elicitation to conceptual

models. IEEE Trans. Knowledge and Data Engineering 30, 5, 328–350.

Dardenne, A., van Lamsweerde, A., and Fickas, S. 1993. Goal-directed requirements acqui-

sition. Science of Computer Programming 20, 3–50.

DHHS. 2003a. Fact sheet: Protecting the privacy of patients’ health information. Washington

D.C.

DHHS. 2003b. Standards for privacy of individually identifiable health information. 45 CFR Part
160, Part 164 Subpart E. In Federal Register, vol. 68, no. 34.

Fellbaum, C. 1998. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA.

Fuchs, N., Hofler, S., Kaljurand, K., and Rinaldi, F. 2005. Attempo controlled english: A
knowledge representation language readable by humans and machines. In Lecture Notes on

Computer Science. Vol. 3564. Springer, Berlin, Germany, 213–250.

Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., and Traverso, P. 2004.

Specifying and analyzing early requirements in tropos. Requirements Engineering 9, 2, 132–50.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., and Schneider, L. 2002. Sweetening

ontologies with dolce. In 13th Int’l Conf. Knowledge Engineering and Knowledge Management.
Vol. 2473. Springer, Berlin, Germany, 166–181.

Glaser, B. and Strauss, A. 1967. The Discovery of Grounded Theory. Aldine Publishing Co.,
Chicago, IL.

Horty, J. 2001. Agency and Deontic Logic. Oxford University Press, New York, NY.

Jackson, M. 1997. The meaning of requirements. Annals of Software Engineering 3, 5–21.

Jackson, M. and Zave, P. 1993. Domain descriptions. In Proc. IEEE Int’l Symp. Requirements
Engineering. IEEE Computer Society, Washington, D.C., 56–64.

Kaindl, H. 1996. How to identify binary relationships for domain models. In Proc. IEEE 18th
Int’l Conf. on Software Engineering. IEEE Computer Society, Washington, D.C., 28–36.

Konrad, S. and Cheng, B. 2005. Real-time specification patterns. In Proc. IEEE 27th Int’l
Conf. on Software Engineering. IEEE Computer Society, Washington, D.C., 372–381.

Matuszek, C., Cabral, J., Witbrock, M., and DeOliveira, J. 2006. An introduction to the

syntax and content of cyc. In Proc. AAAI 2006 Spring Symp. Formalizing and Compiling Back-

ground Knowledge and Its Application to Knowledge Representation and Question Answering.
AAAI Press, Menlo Park, California, 44–49.

Mylopoulos, J., Borgida, A., and Yu, E. 1997. Representing software engineering knowledge.

Automated Software Engineering 4, 3, 291–317.

Niles, I. and Pease, A. 2001. Towards a standard upper ontology. In Proc. 2nd Int’l Conf.

Formal Ontology in Information Systems. ACM Press, New York, NY, 2–9.

Nirenburg, S. and Raskin, V. 2004. Ontological Semantics. MIT Press, Cambridge, MA.

Nuseibeh, B. and Easterbrook, S. 2000. Requirements engineering: a roadmap. In Proc. IEEE

Int’l Conf. on Software Engineering. IEEE Computer Society, Washington, D.C., 35–46.

Overmyer, S., Lavoie, B., and Rambow, O. 2001. Conceptual modeling through linguistic

analysis using lida. In Proc. IEEE 23rd Int’l Conf. on Software Engineering. IEEE Computer
Society, Washington, D.C., 401–410.

Potts, C. 1997. Requirements models in context. In Proc. IEEE 3rd Int’l Symp. on Requirements
Engineering. IEEE Computer Society, Washington, D.C., 102–104.

Potts, C., Takahashi, K., and Antón, A. I. 1994. Inquiry-based requirements analysis. IEEE
Software 11, 2, 21–32.

21

REFERENCES REFERENCES

Ramesh, B. and Jarke, M. 2001. Towards reference models for requirements traceability. IEEE

Trans. on Software Engineering 27, 1, 58–93.

Schwitter, R. 2004. Dynamic semantics for a controlled english. In Proc. IEEE 15th Int’l
Workshop on Database and Expert Systems Applications. IEEE Computer Society, Washington,

D.C., 43–47.

Smith, R., Avrunin, G., Clarke, L., and Osterweil, L. 2002. Propel: An approach supporting
property elucidation. In Proc. IEEE 24th Int’l Conf. on Software Engineering. IEEE Computer

Society, Washington, D.C., 11–21.

van Lamsweerde, A. 2000. Requirements engineering in the year 00: A research perspective.

In Proc. IEEE 22nd Int’l Conf. Software Engineering. IEEE Computer Society, Washington,
D.C., 5–19.

Wasson, K., Knight, J., Strunk, E., and Travis, S. 2003. Tools supporting the communication

of critical domain knowledge in high-consequence systems development. In Proc. 22nd Int’l
Conf. Comp. Safety, Reliability and Security. Vol. 2788. Springer, Berlin, Germany, 317–330.

Welty, C. 2002. Are upper-level ontologies worth the effort? In 8th Int’l Conf. Principles of

Knowledge Representation and Reasoning. AAAI Press, Menlo Park, California.

Zave, P. and Jackson, M. 1993. Conjunction as composition. ACM Trans. Software Engineering

Methodologies 2, 4, 379–411.

Zave, P. and Jackson, M. 1997. Four dark corners of requirements engineering. ACM Trans.

Software Engineering Methodologies 6, 1, 1–30.

In Submission to ACM TOSEM, October 2006.

22

