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Abstract

We sketch some reasons for thinking that modern formula-
tions of mechanics might shed some light on old questions
about human nature, in particular the malleability of human
nature and the character of limits on cognition and volition.
We illustrate the approach by showing how to regard certain
forces that depend on mental states or the states of artificial
controllers as interaction forces between minds or controllers
and their environments, thus allowing physical measurement
of some mental properties.

Introduction
People have long disagreed about whether human nature is
fixed or flexible, and to what degree and in what ways. The
great monotheisms, for example, regard humans as essen-
tially flawed no matter what, while some ideologies have
regarded humans as perfectible with proper nurture or en-
vironment. These disagreements about perfectability do not
extend to disputing the ability of people to learn and un-
learn things, or to make use of natural or designed artifacts to
change human abilities. Artificial intelligence plays a mixed
role in answering these questions, agreeing with limits on
unaided human abilities (commonly rationality and com-
putability), but offering a possibility for overcoming these
limits by giving humans new tools. The question then be-
comes whether human nature changes as people adopt new
technologies.

It is clear that new technologies can change the things
people do in ways that strengthen or weaken natural and
learned abilities. Postman (1985; 1992), for example,
argued that properties of the information communication
medium offered by television skew content toward passive
entertainment and distraction, and predicted the displace-
ment of reading and degredation in ability for sequential
thought. Gelernter (2013) observes related changes wrought
by the internet on writing and the content of writing. From
an economic point of view, changing technology changes
the utility landscape faced by the human, leading to chang-
ing choices in how humans spend their time and changing
sets of skills learned and unlearned in the new distribution of
activities (compare (Nelson and Winter 1982)). One might
still regard these changing abilities as leaving invariant a
central core of fixed tastes and rational calculation (Stigler

and Becker 1977), but the information needed to character-
ize how properties of the environment satisfy these tastes
plays a role in homo economicus analogous to the role the
input machine description plays in a universal Turing ma-
chine. Indeed, Turing’s (1936) mathematical model of hu-
man calculating behavior and its distillation in the notion of
a universal computer shows that the question of fixity and
flexibility cannot be answered on the basis of overt fixed
structure alone, as universal machines can be so tiny as to
seem essentially trivial, for example Minsky’s (1962) four-
symbol seven-state universal machine and Wolfram’s two-
state three-symbol machine. In this setting, fixity concerns
the form and content of the specified behavior rather than of
the means by which these specifications are followed.

We seek to understand to what extent one can characterize
and measure the ability of people to change by using con-
cepts from mechanics to augment those of computation and
economics. Can one measure the force and work needed to
produce a given deformation in one’s beliefs or desires? Can
one identify mental elasticity, plasticity, and rigidity in per-
sons, and measure the force required to maintain a desired
deformation? Can one measure the forces of habit and dis-
traction generated by deformations that require counteract-
ing force and effort? To what extent do bounds on available
forces explain differences in effort between learning and un-
learing?

To pursue this line of investigation requires treatment of
people as objects in realm of mechanics. This has been a
contentious issue since the time of Descartes, who proposed
that persons are composed of both a mental substance form-
ing the mind and a physical substance forming the body.
Even the nascent natural philosophy of the time proved em-
barrassing for this proposal, and by the time calculus and
laws of mechanics were formalized mathematically, there
seemed to be no way to fit Cartesian mental substances into
what appeared to be a fruitful theory of physical substances.
Today, mechanics is commonly regarded as a theory of phys-
ical substances alone. That view is mistaken.

The development of the modern axioms of continuum me-
chanics by Noll (1973) and Truesdell (1991) in the last cen-
tury undermined this common conception of mechanics as
strictly limited to the physical realm. Developing axioms
that apply to the wide variety of physical substances pro-
duces a formalization in which the physical nature of me-
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chanical objects appears only in embedded assumptions that
space and time form continua, and in which the existence of
specific physical forces appears only in laws of special ma-
terial types. Reformulating the axioms to remove assump-
tions of a continuum nature of space and time, as was ac-
complished in (Doyle 2006), preserves the central character
of mechanics, and allows one to form mechanical systems
as hybrid combinations of mechanical subsystems. This al-
lows, for example, forming mechanical systems that include
both physical bodies existing in continuum space and time
and mental bodies existing in somewhat discrete space and
time, and in which the laws of special physical materials are
complemented by laws of special types of mental materials.

One virtue of this extended formalization of mechanics
is that it permits one to study human nature from a posi-
tion of metaphysical conservatism or openness in which one
avoids dualism, monism, physicalism and other metaphysi-
cal assumptions at the start and distinguishes properties of
human nature that can be characterized in terms of mechani-
cal properties alone from properties that require adoption of
additional metaphysical assumptions.

The development of mechanical characterizations of hu-
man nature, mental flexibility, and the difficulty of men-
tal change is in its infancy (Doyle 2006; 2010; 2013), and
we cannot present a nonspeculative characterization at this
time. We instead illustrate the approach by sketching how
one might use a metaphysically conservative conception of
mechanics to translate the unexplained conception of con-
trol or agency found in some extant notions of hybrid sys-
tems (Branicky 2005; Branicky, Borkar, and Mitter 1998)
and hybrid automata (Alur et al. 1993) into equivalent me-
chanical interactions between controllers and physical bod-
ies. Work in progress builds on the approach of metaphys-
ical conservatism to analyze mental inertia, effort, and the
material properties mentioned previously.

Agency and Interaction
Traditional cognitive approaches to psychology understand
the nature of interactions between persons and their environ-
ments in terms of natural vocabularies of human agency—
belief, desire, intent, deliberation, volition, and actions at
many levels of detail and significance—but say little about
how these cognitive elements are realized in the body or con-
nect to the world in which the agent acts, and so say little
about how embodiment might shape mind (Minsky 1965;
Newell 1982). Other approaches use physical and neu-
rophysiological vocabularies— neurons, connections, en-
ergy states, and dynamical systems at different levels of
granularity—but provide little guidance on how to connect
physiological dynamics to ordinary intentional explanations
of behavior, and few principles for designing rather than
learning or evolving human-level cognition. In between
these approaches lie hybrid automata formalizations (Alur
et al. 1993) in which a discrete automaton interacts with a
continuum dynamical system by stipulated rules of unspeci-
fied physical or computational character.

We believe that mechanical concepts permit one to con-
nect such views of mind and body without requiring lengthy
reductions of one set of terms to the other. The following

shows how to translate some physical effects of the actions
of agents into mechanical interactions between each agent
and the world. This translation allows one to measure and
compare forces exerted by different controllers on the same
body, irrespective of assumptions about the physicality of
the controllers.

We limit attention here to physical effects describable as
changes in the forces that physical bodies exert on each
other, which we call agency forces, and to mechanical inter-
actions consisting of forces between agent and world, which
we call interaction forces. We introduce a notion of me-
diation that yields explicit formulas for translating agency
forces into interaction forces. This translation preserves the
resultant forces acting on each body and thus the ordinary
mechanical behavior. The translation retains the identity of
the agent as a producer of change but does not require as-
sumptions about the physicality of the agent. We further
limit attention to showing how to identify forces exerted
by agents in the case that physical forces depend on agent
states. The structure or nature of agent states will not be
at issue in the present analysis, and we will use the rel-
atively neutral term “controller” rather than “agent,” “per-
son,” “mind,” and “body.” We will use the term “body” as
a general term of mechanics, and do not intend to convey
some of the common connotations of the other terms about
what they include or exclude. For simplicity of exposition,
we treat only instantaneous forces, which suffice to demon-
strate our main construction and which stand independent
of assumptions about the origins, locality, or determinism of
forces.

Plan of the Paper
We first summarize the modern formalization of a system of
forces over a universe of mechanical bodies and extend the
ontology of bodies to include controllers, as well as systems
of forces over these extended universes.

We next formalize the notion of agency seen in variable-
state controllers and state-dependent systems of physical
forces among physical bodies and contrast agency forces
with interaction forces between controllers and physical
bodies. We identify notions of controller independence
and additivity that capture natural structural and behavioral
properties of agency in a multi-controller setting.

Finally, we show how to regard controllers as mediating
changes in forces between physical bodies. We apply me-
diation to construct a state-dependent system of forces over
the enlarged domain of controller and physical bodies, one
that yields the same resultant forces on the original physi-
cal bodies as in the original conditional force system. We
also identify conditions under which the constructed inter-
action forces agree with the original agency forces in purely
physical universes, and briefly discuss the issues involved
in reconstructing the original physical-domain force system
from the hybrid-domain transformation.

Space limitations preclude presentation of most proofs
and subordinate results. None of the proofs are particularly
difficult, but some involve lengthy algebraic manipulations.
The subordinate results provide stronger but more compli-
cated versions of the results presented here.
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Mechanical Ontology
Mechanics extends geometry with nongeometric concepts
including those of body, force, mass, and energy. Mechanics
is based on general and special laws defining these concepts
and governing their interrelations. For example, mass is not
a completely general mechanical concept, but appears as the
generator of the inertial and gravitational force in special
laws. The present treatment follows the approach of (Doyle
2006) but involves only the notions of bodies, forces, and
possibly nonmechanical conceptions of controller states.

We begin with a set Ω of bodies that forms a Boolean
lattice with respect to the subbody or part-of relationv, with
meet u and join t, and null body ⊥ and universal body >.
We write B to denote the environment or exterior of a body
B, and say that bodiesB andC are separate iffB u C = ⊥.

It is common to regard bodies as sets of body points, in-
deed, as subsets of the set of points constituting the universal
body >, so that C v B implies C ⊆ B for each B,C ∈ Ω.
Continuum mechanics considers bodies made up of continua
rather than isolated body points, but none of the treatment
that follows requires making any assumption about whether
bodies form sets or continua; only the Boolean lattice struc-
ture will matter.

An instantaneous system of forces or force system on a
universe Ω is an assignment

f : (Ω× Ω)→ V (1)

to all pairs of bodies of Ω of force values. Mechanics
typically considers force values as elements of real vector
spaces, but we here assume only that V forms a commuta-
tive additive group with null element 0. We read f(B,C) as
the force exerted on B by C in the force system f . We call
f(B,B) the resultant force on B, that is, the force exerted
on B by its exterior. Mechanics requires that force systems
be null-passive, meaning that only a null or zero force is
exerted on or by the null body ⊥, and additive in each argu-
ment on separate bodies, or more generally, for all C1 and
C2,

f(C1 t C2, B) = f(C1, B) + f(C2, B)− f(C1uC2, B)

f(B,C1 t C2) = f(B,C1) + f(B,C2)− f(B,C1uC2).

Finally, the mechanical force systems considered here also
must be pairwise equilibrated on separate bodies, meaning
that all mutual forces are equal and opposite, or formally,
that

f(B,C) = −f(C,B)

for all separate bodies B and C.
We write F(Ω,V) to denote the set of all systems of me-

chanical forces over Ω and V. This set of force systems
forms a commutative additive group by defining addition
and additive inverse of force systems pointwise. In the
present treatment, we will consider only the case in which
V consists of ordinary physical force values, written Vp.

Controller Ontology
Within the universe Ω, we distinguish a physical subuniverse
Ωp with universal body >p, and a controller subuniverse Ωc

with universal body >c. We thus regard controllers as me-
chanical bodies rather than as nonmechanical objects. We
make no assumptions at this time about the extent or overlap
of Ωp and Ωc. That is, writing Ωpc to denote the subuniverse
common to Ωp and Ωc, we allow that Ωpc might be empty
apart from ⊥ (as Descartes might have it) or might be all of
Ω (as Spinoza might have it).

If B ∈ Ωp, we write B
p

to denote the physical exterior
of B within Ωp, and if C ∈ Ωc, we write C

c
to denote the

exterior of C within Ωc, called the controller exterior of C.
Restricting each system of forces in F(Ω,Vp) to physical

bodies yields the set F(Ωp,Vp) of force systems over physi-
cal bodies.

In addition to bodies and forces, the conception of agency
studied here assumes that the forces acting in the physical
system depend on states inhabited by controllers. We write
Ψ(C) to denote the (nonempty) set of possible states of C,
and assume that each universal or global state ψ ∈ Ψ(>c)
of the universal controller body both determines and is de-
termined by the states of all other controller bodies, writing
C(ψ) to denote the state that C inhabits within ψ.

Agency and Interaction Forces
We characterize controller-dependent forces by defining a
conditional force system over Ωp and Vp to be a mapping of
the form

f [·] : Ψ(>c)→ F(Ωp,Vp). (2)
We write f [ψ](A,B) to mean the conditional force of B on
A in state ψ of C.

We call conditional force systems of the form (2) agency
forces because in such a system the controller plays the role
of the agent of change in physical forces between bodies.
This conception of agency, however, requires nothing about
how the controller plays this role or about the nature of the
controller. If we wish to regard controller agency as me-
chanical agency, it is natural to expand the conception of
controllers to hybrid-domain force systems of the form

h[·] : Ψ(>c)→ F(Ω,V). (3)

We call these interaction forces because they involve forces
between controller bodies and physical bodies.

Of course, some controllers might be physical, but the
minimal conception of agency forces captured in (2) makes
no assumptions about the physicality of controllers or the
existence of forces between controllers as such and physical
bodies. We may thus regard controllers for which no phys-
ical realization is specified, such as the automata portion of
hybrid automata, as having a nonphysical or informational
character that allows separate attribution of controller inter-
action forces to controllers as such rather than confounding
them with interaction forces that are naturally attributed to
physical realizations of controllers but that play no signif-
icant role in control activities. For example, the force of
gravity acting on an aircraft flight computer adds load to the
wings, but one does not consider this element of the force
exerted by the controller as an aspect of its control activities.
The notion of interaction forces permits such separation be-
tween forces of control and forces of physical embodiments.

8



The following shows how to recast forces over Ωp as inter-
action forces over Ω for systems in which controllers exhibit
some natural forms of independence. For such systems, we
construct a system h of type (3) that preserves the resultant
forces on physical bodies holding in the system f , so that
for each A ∈ Ωp and ψ ∈ Ψ(>c) we have

h[ψ](A,A) = f [ψ](A,A
p
) (4)

or equivalently, for all A ∈ Ω, as

h[ψ](A u >p, A u >p) = f [ψ](A u >p, A u >p). (5)

In the present treatment, we take preservation of resul-
tant forces to constitute mechanical equivalence of force sys-
tems. This condition reflects the central principle of me-
chanics that forces of all origins contribute in the same way
to the overall force exerted on a body. Such uniformity of
treatment applies as well to the self-forces bodies exert on
themselves, but mechanics typically assumes all self-forces
vanish, in which case the total force on a body reduces to
just the resultant force. As we will see, the construction pre-
sented here in fact preserves self forces as long as they do
not vary with controller states, a condition that applies in
the case of vanishing self forces. We have constructions that
transform systems with nonzero self forces into mechani-
cally equivalent systems with no nonzero self forces, but do
not these present here.

Controller Independence
One element common to conceptions of human and auto-
matic agency is the idea that such agents exert influences
largely independent of others. Some notion of independence
underlies engineering applications, as in aircraft flight con-
trollers that control only one aircraft and do not manipulate
the parts of other aircraft. It also underlies familiar notions
of freedom of action or will of persons, as when one per-
son makes decisions and takes actions independently of the
decisions and actions of others. We do not assume that the
same conceptions of independence are plausible for both en-
gineered controllers and human minds. To simplify presen-
tation of the main results, however, the following assumes
that separate controllers can consist and act completely in-
dependently of each other. Our results also obtain under
weaker assumptions.

We assume first that each controller C is state indepen-
dent in the sense that its state can vary independently of
the states inhabited by separate controllers. Formally, for
each ψ ∈ Ψ(C) and each ψ ∈ Ψ(C

c
) we assume that

there exists in Ψ(>c) a state we write as (ψ,ψ), such that
ψ = C((ψ,ψ)) and ψ = C

c
((ψ,ψ)). We abbreviate

f [(ψ,ψ)] as f [ψ,ψ].
We say that a controller C is force independent (of its ex-

terior) with respect to f to mean that changing the state of C
from ψ to ψ′ produces the same changes in forces regardless
of the unchanged state of C’s complement, or formally,

f [ψ,ψ]− f [ψ′, ψ] = f [ψ,ψ
′
]− f [ψ′, ψ

′
]. (6)

for each ψ,ψ′ ∈ Ψ(C) and ψ,ψ
′ ∈ Ψ(C

c
).

C[0]

A B
−v
v

C[ψ]

A B
−v − δ

v + δ

C[ψ]

A B
−δ

δ

(a) (b) (c)

Figure 1: Variation in forces between A and B as the state
of controller C varies. In (a), the global state is the null state
0, and f [0](A,B) = v. In (b), the global state ψ is one that
agrees with 0 on C

c
and in which f [ψ](A,B) = v + δ. (c)

depicts the same state as (b), but here the force values de-
note the differential force f∗[C,ψ](A,B) = f [ψ](A,B) −
f [0](A,B).

We say that a conditional force system f displays force
independence just in case every controller in Ωc is force in-
dependent with respect to f .

Controller Additivity
To identify the effects or contributions made by controllers
to the overall system of forces, we consider the differences in
forces that result as a controller changes state, holding con-
stant the states of separate controllers. If these controllers
are force independent, these differences in forces will not
depend on which states the other controllers inhabit. Ac-
cordingly, we may regard some state in Ψ(C) as being the
null or base state of controller C ∈ Ωc. We assume there
exists a global null state 0 in which each controller C is
in its null state C(0), and will overload the symbol 0 by
abbreviating C(0) as 0. Nothing in the following depends
on the means by which one identifies null states. For en-
gineered controllers, null states typically will consist of the
“off” state; for minds, null states might be taken to be ones
in which the individual is not acting volitionally.

Let f be a conditional force system of the type (2) and 0 a
null state chosen from Ψ(>c). The overall change of forces
f [ψ] − f [0] due to a change of state from 0 to ψ consti-
tutes the difference attributable to all controllers. Our focus
now is on identifying the difference in forces attributable to
change of state of each individual controller. We define the
differential force system based on f and 0 to be the mapping
f∗ of the form

f∗[·, ·] : Ωc ×Ψ(>c)→ F(Ωp,Vp) (7)

defined by

f∗[C,ψ]
def
= f [C(ψ), 0]− f [0] (8)

= f [C(ψ), C
c
(0)]− f [C(0), C

c
(0)].

We illustrate this notion in Figure 1. In particular, we have

f [ψ] = f [0] + f∗[>c, ψ].

Because f∗[C,ψ] is the difference between two force sys-
tems, it also is a force system.
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One can compare the differential forces of different con-
trollers to obtain a range of measures of strength. For ex-
ample, let C1 and C2 be controllers and B a physical body,
so that f∗[C1, ψ](B,B) and f∗[C2, ψ](B,B) denote corre-
sponding changes in the resultant force on B. In the instan-
taneous setting considered here, one might compare these
effects by their magnitudes or directions, and might say that
C1 is stronger than C2 if the magnitudes of change due to
C1 are at least as great as those due to C2 for all physical
bodies. In a temporal setting, one can compare rates of work
done by the different controllers as well.

Identification of differential force systems allows one to
restate the notion of force independence in terms of additiv-
ity of changes. We call an individual controllerC controller-
additive with respect to f∗ just in case

f∗[>c, ψ] = f∗[C,ψ] + f∗[C
c
, ψ] (9)

holds in every state ψ ∈ Ψ(>c). We say that f∗ is con-
troller additive if every controller is controller additive with
respect to it. We say that f is controller additive if f∗ is
controller additive for every choice of 0. Our independence
assumptions make controller additivity equivalent to force
independence.
Theorem 1. If all controllers are state independent, a con-
ditional force system is force independent if and only if it is
controller additive.

Mediating Interaction Forces
We now show how to construct a hybrid-domain conditional
force system of the form (3) from a physical-domain condi-
tional force system of the form (2) that preserves resultant
forces on physical bodies in the sense of (5).

The simplest hybrid-domain extension of a physical-
domain system f just matches the values of f on physical
bodies and assigns zero forces to purely nonphysical bodies,
which can be expressed by the definition

h̄[ψ](A,B)
def
= f [ψ](A u >p, B u >p). (10)

With this definition, the restriction of h̄ to Ωp is just the
original system f . The system h̄ clearly preserves resul-
tant forces on physical bodies but just paraphrases the lack
of interaction between nonphysical controllers and physical
bodies already present in the original force system f . This
adds no insight, and one might as well rest content with f .

To obtain nontrivial mechanical interactions between con-
trollers and physical bodies, we make use of differential
force systems defined over the full universe of bodies, with

h∗[·, ·] : Ωc ×Ψ(>c)→ F(Ω,V) (11)

satisfying

h∗[C,ψ] = h[C(ψ), 0]− h[0] (12)

and
h[ψ] = h[0] + h∗[>c, ψ]. (13)

Figure 2, which depicts physical bodiesA andB and sep-
arate nonphysical controller C, illustrates the intuition un-
derlying our construction. We regard changes in forces from

C[0]

A B
−v
v

0 0 00

C[ψ]

A B
−v
v

−δ
δ

δ−δ

C[ψ]

A B
0

0

−δ
δ

δ−δ

(a) (b) (c)

Figure 2: Variation in hybrid forces between A and B as the
state of a nonphysical controller C varies, corresponding to
the three cases displayed in Figure 1. In (a), controllers are
in the null state 0, and h[0](A,B) = v. In (b), controllers
are in a state ψ in which h[ψ](A,B) remains v but C adds
the force δ to the force on A via h[ψ](A,C) and subtracts
the force δ from the force on B via h[ψ](B,C). (c) depicts
the same state as (b), but here the force values denote the
differential hybrid forces h∗[C,ψ].

those existing in the null state as forces exerted by the con-
troller on the physical bodies, with forces exerted on one
physical body the opposite of the force exerted on the other
physical body. We call these forces mediating interactions
because each controller mediates changes in forces between
physical bodies, something as if the controller were a rigid
body interposed between the physical bodies so as to trans-
mit contact forces unchanged. Formally, we say that a differ-
ential force system h∗ of type (11) mediates external force
changes for a differential force system f∗, or more briefly,
h∗ mediates f∗, just in case h∗ satisfies the following three
conditions (14), (15), and (16).

The first two conditions require that changes to forces be-
tween bodies due to a controller must go through the con-
troller. Suppose A,B ∈ Ω and C ∈ Ωc, with A and B each
separate from C. The first condition requires that h∗ should
reassign changes in resultant forces on A due to changes in
the state of C to C itself, or formally, that

h∗[C,ψ](A,C) = f∗[C,ψ](A u >p, A u >p). (14)

Because C is in the exterior of A, this reassignment at most
shifts the sources of forces from one body in this exterior to
another body in the exterior, leaving the resultant force act-
ing on A unchanged. The second condition requires that h∗
exert zero differential forces between A and B, or formally,
that

h∗[C,ψ](A,B) = 0. (15)
Put another way, h∗ only remaps forces involving con-
trollers, and makes no changes in base forces between bod-
ies separate from controllers.

The third condition limits controllers to changing forces
on other bodies, not on themselves. That is, any force ex-
erted by a controller on itself does not change as the states
of the controller change, or formally, that

h∗[C,ψ](C,C) = 0. (16)

Invariance of all self forces under state changes implies this
condition, but we do not make that more general assumption
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here. One might regard the third condition as confirming that
a controller cannot mediate changes in its own self force, as
this is already a force between the controller and itself.

We say that hmediates interaction forces if h∗ does so for
every choice of null state. Our main result is the following.

Theorem 2. Suppose all controllers are state independent,
f is a controller additive conditional force system, and f∗
is the differential force system based on f and 0 ∈ Ψ(>c).
Then h is a conditional force system mediating interaction
forces for f if and only if

h[ψ](A,B) = f [0](A u >p, B u >p)

+ f∗[B u >c, ψ](A u >p, A u >p)

+ f∗[A u >c, ψ](B u >p, B u >p). (17)

Proof sketch. The “if” portion of the proof involves only
straightforward verification of the needed properties, and
implies that h∗ is controller additive because f∗ is. To prove
the “only if” portion, use A,B ∈ Ω to divide C ∈ Ωc into
four parts and use controller additivity of h∗ to obtain

h∗[C,ψ] = h∗[A u B u C,ψ] + h∗[A u B u C,ψ]

+ h∗[A u B u C,ψ] + h∗[A u B u C,ψ].

Apply each of the functions in this equation toA andB. The
last term vanishes by (15), yielding

h∗[C,ψ](A,B) = h∗[A u B u C,ψ](A,B)

+ h∗[A u B u C,ψ](A,B)

+ h∗[A u B u C,ψ](A,B). (18)

By (15), the final term of (18) reduces to

h∗[A u B u C,ψ](A,B) =

h∗[A u B u C,ψ](A, (A u B u C)), (19)

the second to last term of (18) reduces to

h∗[A u B u C,ψ](A,B) =

h∗[A u B u C,ψ]((A u B u C), B), (20)

and the first term of (18) reduces to

h∗[A u B u C,ψ](A,B) =

h∗[A u B u C,ψ](A, (A u B u C))

+ h∗[A u B u C,ψ]((A u B u C), B)

− h∗[A u B u C,ψ]((A u B u C), (A u B u C)).
(21)

But by (16), the third term of (21) vanishes, so combining
the remainder of (21) with (20) and (19) yields

h∗[C,ψ](A,B) = h∗[A u B u C,ψ](A, (A u B u C))

+ h∗[A u B u C,ψ]((A u B u C), B)

+ h∗[A u B u C,ψ]((A u B u C), B)

+ h∗[A u B u C,ψ](A, (A u B u C)).

Two of these terms are in a form to which we may apply
(14) directly, and pairwise equilibration puts the other two
into the same form to yield

h∗[C,ψ](A,B) = f∗[A u B u C,ψ](A u >p, A u >p)

− f∗[A u B u C,ψ](B u >p, B u >p)

− f∗[A u B u C,ψ](B u >p, B u >p)

+ f∗[A u B u C,ψ](A u >p, A u >p).

Using controller additivity of f∗, we combine the first and
fourth terms and the second and third terms to obtain

h∗[C,ψ](A,B) = f∗[B u C,ψ](A u >p, A u >p)

− f∗[A u C,ψ](B u >p, B u >p).

Applying pairwise equilibration to the negated term, sub-
stituting >c for C, and combining with (13) then yields
(17).

Clearly, h[0] assigns the same forces to bodies as f [0] as-
signs to their physical parts, that is,

h[0](A,B) = f [0](A u >p, B u >p).

Moreover, mediating interaction forces preserve resultant
forces.

Theorem 3. If h is a force-mediating extension of f , then h
preserves resultant forces in the sense that for each C ∈ Ωc
and A ∈ Ω we have

h[ψ](A u >p, A u >p) = f [ψ](A u >p, A u >p) (22)

In the case in which all controllers are physical bodies,
Theorem 2 suggests a condition under which f and h agree.
For simplicity, assume that Ω = Ωp, so that f and h have the
same domain. In this case, we say f is self mediating just
in case it mediates external force changes for itself. We then
have the following result.

Theorem 4. If all bodies are physical, all controllers are
state independent, and f is a self-mediating conditional
force system, then f = h.

Indeed, if all bodies are physical, self-mediation means
that f = h = h̄. One might regard this result as indicat-
ing the inherent conservatism of the interaction-force con-
struction. Even when all bodies are physical, however, self-
mediation is clearly a special case, for forces between bod-
ies separate from a controller can vary in a conditional force
system but not in a self-mediating one.

Another question of interest is whether we can recover f
from h. Each h determines f [0] = h[0] for physical bodies,
which leaves recovery of f∗[>c, ψ]. This is sometimes pos-
sible in the case of a purely physical universe, for as noted
earlier, if f is self-mediating, then h equals f . Apart from
this case, however, we do not have a unique reconstruction,
but instead have the following result.

Theorem 5. If f1 and f2 are conditional force systems of
the same type that assign the same resultant forces to each
body, then h1 = h2 if and only if f1[0] = f2[0].
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Summary and Discussion
On the assumption that separate controllers exhibit certain
natural independence conditions, formula (17) expresses our
main result, namely a constructive method for converting a
possibly mechanically inhomogeneous conception of con-
troller agency into a mechanically homogeneous form of in-
teraction between agents and the world they inhabit. The
construction reassigns changes in forces between bodies to
controllers involved in the changes in conformity with a nat-
ural notion of mediation. It preserves resultant forces on all
bodies and does not introduce self-forces where none existed
before, and so preserves the basis of mechanical behavior of
the controlled system.

The interaction forces we construct vary parametrically
with the frame of reference as represented by controller
base states. We expect that to engineer intelligent agents,
some would seek to obtain the explanatory and intelligi-
bility benefits of cognitive or computational states by con-
structing or choosing base states that separate cognitive in-
formation from noninformational physical states, that align
with natural distinctions between forces attributable to the
base physical system and forces attributable to cognitive or
information-based actions. Nothing in the formalism pre-
sented here enforces such a separation, as the mediation no-
tion used to construct h reattributes all force changes to con-
trollers, whether these changes in forces represent physical
or nonphysical information state changes. Specifically, un-
der our independence assumptions we may rewrite (17) as

h[ψ] = h[0] + h∗[>c u >p, ψ] + h∗[>c u >p, ψ].

This expression for h explicitly divides changes in forces
due to changes in states of physical controllers, represented
by the term f∗[>c u >p, ψ], from changes in forces due
to changes in states of nonphysical controllers, represented
by the term h∗[>c u >p, ψ]. If one regards purely physi-
cal parts of controllers as inhabiting only controller state 0
and nonphysical parts of controllers as inhabiting nonphys-
ical informational or mental states, the physical-controller
portion of the force vanishes and we have

h[ψ] = h[0] + h∗[>c u >p, ψ].

In this case, one can ascribe all changes in forces to state
changes of nonphysical controllers.

As noted in the introduction, the results presented here
represent only promissory notes on a full mechanical anal-
ysis of the properties of minds and a transfer of results of
modern continuum mechanics to the mental realm. Prelim-
inary discussion of measuring mental effort in mechanical
terms can be found in (Doyle 2013).

Economists tend to regard preferences and expectations
as universal means for combining or summarizing all influ-
ences on mental behavior. Mechanics plays a similar univer-
sal role for physical behavior, but now offers the possibility
of treating minds, meanings, and values as mechanical enti-
ties, thereby increasing the visible uniformity of the world.
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