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Abstract—This paper describes a new method to explore and discover within a large data set. We apply techniques from preference

elicitation to automatically identify data elements that are of potential interest to the viewer. These “elements of interest (EOI)” are

bundled into spatially local clusters, and connected together to form a graph. The graph is used to build camera paths that allow

viewers to “tour” areas of interest (AOI) within their data. It is also visualized to provide wayfinding cues. Our preference model uses

Bayesian classification to tag elements in a data set as interesting or not interesting to the viewer. The model responds in real time,

updating the elements of interest based on a viewer’s actions. This allows us to track a viewer’s interests as they change during

exploration and analysis. Viewers can also interact directly with interest rules the preference model defines. We demonstrate our

theoretical results by visualizing historical climatology data collected at locations throughout the world.

Index Terms—Bayesian network, classification, navigation, preferences, visualization.
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1 INTRODUCTION

SCIENTIFIC and information visualization convert large
collections of strings and numbers into visual represen-

tations that allow users to discover patterns within their
data. The focus of this paper is the visualization of large
data sets containing n data elements and m data attributes.
The size of these data sets normally exceeds the available
screen resources, forcing much of the data set to lie
offscreen. This leads to an important question for a data
analyst: “How can I locate interesting data when most of the
data is outside my current view?”

Various methods have been proposed to address this

problem. Our particular solution applies an artificial

intelligence technique known as preference elicitation. How

can we order a person’s preferences across a set of items?

Techniques like Bayesian classification can be used to learn

the person’s preferences, both known and hidden [1]. We

apply these theories to build rules that classify a subset of a

data set’s elements as “interesting” to the viewer. The

elements are visualized as multidimensional glyphs, and

presented using animated tours that focus on clusters of

interesting elements within the data set.
Techniques for visualizing multidimensional elements

and presenting them with camera animations have been
discussed in previous work [2], [3]. Our focus in this paper
is on how to construct rules that classify elements as
interesting or not interesting, without requiring the viewer
to explicitly describe these rules. The ability to automati-
cally identify elements of interest offers a number of
important advantages.

. Explicitly defining rules of interest is time consum-
ing, particularly if these rules need to be updated
every time a viewer’s interests change.

. It may be difficult for a viewer to formulate an exact
definition to describe why an element is interesting.

. A viewer may not know a priori what they will find
interesting.

To our knowledge, this is the first attempt to auto-
matically define and update in real-time data properties
that are of interest to a viewer during visualization. Our
contributions in this paper are as follows:

. A description of the area of preference elicitation
and its relevance to data visualization.

. A Bayesian classifier capable of constructing user
models to tag data elements as interesting or not
interesting.

. A description of how a viewer’s actions during
visualization can be used as implicit cues to track
and update the viewer’s interests.

. A demonstration of integrating a preference-driven
interest model into an existing framework for
navigating and visualizing large, multidimensional
data sets.

Although our goal is to automatically classify data
elements for navigation, we believe this research has broad
appeal for visualization environments that can benefit
from understanding a viewer’s interests. Our technique is
applicable to any data set where combinations of attribute
values can be used to determine a viewer’s level of
interest. It is designed to function efficiently in the
presence of large numbers of multidimensional data
elements, and will automatically adjust its user model in
real time to track viewers’ changing interests during their
exploration and analysis.

2 RELATED WORK

Information and scientific visualization algorithms have
been proposed to visualize large, multidimensional infor-
mation spaces. Artificial intelligence, information retrieval,
and user interface approaches have been suggested to
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model a user’s interests. Although these techniques offer
important clues about how to track interests during
visualization, none of the existing techniques fully satisfies
our requirements.

2.1 Visualizing Large Data Sets

Various methods have been proposed to visualize large
information spaces. Two topics that are relevant to our
research are: 1) techniques for visualizing data sets with a
large number of elements n, and 2) techniques for
visualizing data sets with a high dimensionality m.

2.1.1 Overview+Detail and Focus+Context

Card et al. define information visualization as “the general
application of assembling data objects into pictures, reveal-
ing hidden patterns” [4]. Two techniques from this field are
closely related to our goal of visualizing large data sets:
overviewþdetail and focusþcontext. overviewþdetail meth-
ods present a global overview of an information space,
together with ways to request increased levels of detail for
subregions within the space. focusþcontext techniques
display the global context of an information space, together
with ways to interactively focus on a full-detail representa-
tion of specific locations in the space.

Different algorithms use different methods to represent
the global structure and local detail. For example, the
treemap decomposes a data set D into rectangular regions
that are hierarchically partitioned based on properties (or
attributes) of the data within D [5]. The fisheye lens
presents a low level-of-detail display of the entire data
set, together with an interactive lens that “zooms in” about
its center, providing a higher level-of-detail display of
the data directly beneath the lens [6]. The hyperbolic tree
structures information in D as a tree embedded in the
surface of a sphere [7]. A portion of the sphere facing
outward uses hyperbolic geometric to form a lens, zooming
the information being displayed as the sphere is rotated. A
cone tree visualizes a hierarchical information space as a
tree of semitransparent 3D cones, one for each category in
the hierarchy [8]. Elements within a category are located
around the base of the appropriate cone.

2.1.2 Multidimensional Visualization

Multidimensional visualization addresses the need to
visualize data sets that contain multiple data attributes.
One common and long-studied example is a cartographic
map [9]. The basic concept of a map is well understood by
most viewers. Visualization is most directly related to
thematic maps—maps that focus on specific themes or
properties of a geographic area. Examples include isarith-
mic (contour), proportional symbol, dot, or choropleth
(color-coded) maps.

Another approach is the use of multidimensional glyphs
that modify their appearance to represent multiple attribute
values. Guidelines built on properties of low-level visual
perception are used to choose data-to-visual feature map-
pings that are effective and well suited to a user’s analysis
tasks. Original work in this area includes Chernoff faces and
starplots [10], techniques that used facial characteristics and
radial spokes, respectively, to visualize a data element with
multiple attribute values. Laidlaw used painterly glyphs to

visualize diffuse tensor scans of a mouse spinal cord [11].
Follow-on work used a similar approach for flow visualiza-
tion [12]. Healey et al. conducted experiments to measure
the capabilities of and interactions between basic visual
properties of color, texture, and motion. These results are
used to construct multidimensional glyphs, and more
recently to design multidimensional brush strokes for
nonphotorealistic visualizations [3], [13]. More abstract
approaches also exist. Parallel coordinates are a well-known
technique used to visualize the distributions of attribute
values in a multidimensional data set [14]. This allows
viewers to identify common trends, relationships, and
outliers. Shneiderman proposed starfields and spotfire,
techniques that array the data in a 2D scatterplot, then
allow users to interactively filter the display based on ranges
of attribute values [15].

2.2 Identifying User Interests

In the visualization area, a common approach to identifying
a user’s interests is to maintain a history of how previous
users have visualized and analyzed a data set (e.g., as done
in VisTrails [16]). More sophisticated approaches to auto-
matically identify user interests have been presented,
although not in the visualization area. Kelly and Teevan
provide a comprehensive overview of recent work on
inferring user preferences [17]. Much of this research focuses
on document retrieval or web browsing. Kelly and Teevan
use two axes to describe implicit user feedback: a behavior
category—examining a web page, annotating a paper—and
a scope category—for example, sentences, paragraphs, and
pages represent three scopes for a document. They found
that a majority of the existing techniques involve examina-
tion of small or medium-scope objects.

Other techniques have also been documented. Lam et al.
propose a two-level approach to identify shifts in user
interests [18]: a low-level machine learning algorithm for
specific interests, and a higher level Bayesian analyzer for
significant shifts in a general “interest profile.” Kim and
Chan build a user interest hierarchy, a continuum of general
to specific interests based on words and phrases in web
pages bookmarked by a user [19]. Goecks and Shavlik [20]
and Claypool et al. [21] propose tracking a user’s interac-
tions with web pages to construct a user interest profile.

2.3 Navigation Assistant

Although overviewþdetail and focus+context algorithms
offer important advantages, a sufficient increase in n can
produce overviews that sample too sparsely to properly
represent D, or increase the distance between overview and
detail to a point where large distortions occur.

Rather than trying to build an overview, we construct a
model of a user’s preferences to identify interesting
elements throughout D. We use an inset view and
automated camera tours to help users navigate to areas of
interest (AOIs). Data elements in the main view are
visualized as multidimensional glyphs whose visual fea-
tures are selected using guidelines from human perception.

2.3.1 Direct Interaction

Most visualization systems use direct interaction to examine
elements of interest (e.g., picking or brushing). Automatically
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identifying a viewer’s interests complements these capabil-
ities. The navigation assistant initially provided direct
selection and a simple language to define rules that describe
elements of interest. Unfortunately, this was not always
efficient. For example

. It is difficult to locate elements of interest when only
a small subset of the data is visible at any one time.

. It is time consuming to enter more than a few rules,
or to update rules when new interests are found.

. It can be difficult to properly specify interests as a set
of mathematical and Boolean operations on an
attribute’s values.

This motivated us to seek a method that “automatically”
determines rules of interest based simply on what viewers
select or where they look in the visualization.

The navigation assistant provides new interface opera-
tions to support interaction with the preference system.
Users can reject recommendations about an element being
interesting (or uninteresting) using a keyboardþmouse
click. A rule dialog is provided to allow users to enter
known interests, and to modify interest rules the system
builds (see Fig. 7a for an example). These interactions are
fed back into the system, to track a user’s interests and
improve recommendations.

3 PREFERENCE ELICITATION

Preference elicitation is used to construct an accurate user
model u to assist a decision support system, in our case, a
navigation and visualization system [22]. The outcomes O
for a decision problem are defined by the assignment of
values to a set of attribute variables, X ¼ ðX1; . . . ; XmÞ.
Decisions require an ordering of the outcomes oi; oj 2 O to
properly respect user preferences. oi � oj implies the user
prefers outcome oi to oj.

In our system, Xi ¼ ðxi;1; . . . ; xi;mÞ is a specific set of
attribute values and O is the set of all data elements ei 2 D.
We seek a user model u that assigns an estimated interest to
each ei based on its attribute values Xi. We can then order
ei � ej to show that ei is potentially more interesting to a
user than ej.

3.1 Preference Queries

Constructing u requires ways to query a user’s preferences.
Queries can be explicit, where the user is asked to answer
questions or evaluate examples, or implicit, where the
user’s actions are observed to extract information.

3.1.1 Example Queries

The simplest query example is an order query: “Do you
prefer oi or oj?” or a rank query: “What is the rank of oi?”
Unfortunately, these queries may not be feasible when O is
large. Another disadvantage of value queries is that they
force a user to make statements about attribute values out
of context. They also require detailed statements, even
when a user’s preference knowledge may be incomplete or
generalized.

Presenting examples is an alternative way to obtain
preference information. Various exampling mechanisms
exist. One method is tweaking, which allows users to modify

or “tweak” candidate solutions to narrow their search for an
optimal solution [23]. A second approach is candidate
critiquing, where a user describes the merits or flaws in an
example [24], [25]. A third technique asks a user to order a set
of examples, allowing for comparison and relative ranking.

3.1.2 Implicit Queries

Implicit preference identification avoids direct requests to a
user. Instead, the user’s interactions with the system are
studied to infer preferences. Most research on implicit
preferences involves web browsing [17], [21], [26]. A user’s
actions are tracked—reading web pages, bookmarking
pages, following links, and so on—as well as the time spent
for each action.

Implicit queries have a number of drawbacks. Implicit
information is uncertain. Observed behavior may not be an
appropriate source from which to infer preferences [27]
(e.g., if a user views a web page for a sustained period, is he
interested in the page, or is he away from his workstation?)
Interactive behavior may not be consistent between users.
Finally, implicit collection is driven by the user and not by
the system. This means the system has no way to request a
specific piece of information.

3.2 Preference Elicitation and Classification

Although preferences provided a theoretical framework for
our research, the solution we implemented uses a standard
classification approach: a Bayesian network is constructed
from a training set to generate a continuous range of
outcomes representing estimated user interests over each
data element. The outcomes—and by extension the data
elements—are thresholded into two categories: interesting
and not interesting.

Using classification algorithms to generate preferences is
not uncommon. Approaches like Bayesian networks are
appropriate because they can satisfy a preference algor-
ithm’s requirements: support for efficient incremental
training input, useful estimates based on a small initial set
of example classifications, and relative comparisons both
within and between categories. Although other methods
(e.g., support vector machines) were considered, Bayesian
networks best matched the inputs and uncertainties we
need to support.

Preference elicitation does contribute important techni-
ques to query a user’s interests. Thus, our system can be
viewed as a preference-based approach to collect clues
about a user’s interests, a Bayesian classifier that uses those
clues to tag each data element as interesting or not
interesting, and association rule mining to compress the
set of interesting attributes into a manageable collection of
interest rules.

3.3 Navigation Assistant

We seek a user model u that orders elements such that ei �
ej implies the user is more interested in ei than ej.
Information about a user’s preferences is collected in
different ways. Users can define rules to identify known
elements of interest. They can also select elements in the
visualization that they find interesting. Users perform
example ordering to create a starting set of preferences,
and example tweaking to refine interest rules the system
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discovers. Finally, implicit tracking allows us to infer
preferences based on where the user looks in D.

4 USER MODELS

We construct a user model to learn a viewer’s preferences,
then apply that knowledge to identify interesting data
elements. We want a model that provides both qualitative
and quantitative information: whether an element is
interesting, and if it is, the viewer’s level of interest.

Bayesian classifiers are a simple, yet effective tool for
performing classification [28], [29]. Bayesian classifiers are a
form of supervised learning. They take as input a training
set that contains pairings between a collection of attribute
values and a class value. Bayesian classifiers can be quickly
and easily retrained, so they are appropriate for an
interactive environment.

Bayesian classifiers use probabilistic models to equate
preference values to the likelihood that a viewer will select
an item from a set of data. Qualitatively, Bayesian classifiers
assign a class value to a set of attribute values. Quantita-
tively, they provide a probability distribution describing the
confidence of their class assignment.

4.1 Bayesian Probability

Bayesian probability combines some prior probability P for
a hypothesis H with new data D to determine a new
posterior probability for H. The prior probability is often
called the prior, and the posterior probability the posterior.
Specifically, the posterior is the likelihood of H multiplied
by the prior

P ðH j DÞ ¼ P ðD j HÞP ðHÞ
P ðDÞ : ð1Þ

The posterior probability P ðH j DÞ equals the likelihood
of seeing data D given hypothesis H is true, P ðD j HÞ, times
the prior probability P ðHÞ. P ðDÞ is the probability of seeing
data D over all possible hypotheses. Since P ðDÞ is identical
for all H, it is often considered a normalizing constant, and
removed from the formula.

4.2 Bayesian Networks

A Bayesian network is a directed acyclic graph where nodes
represent variables and directed edges represent parent-
child dependencies. Each node Xi maintains a probability
function that takes as input the node’s parent variables, and
produces as output a probability for each of Xi’s possible
values. In other words, each node represents a posterior
probability distribution P ðXi j �ðXiÞÞ, where �ðXiÞ repre-
sents the parents of Xi.

The probability of a particular set of values ðx1; . . . ; xmÞ
for random variables X1; . . . ; Xm is computed as a joint
distribution

P ðx1; . . . ; xmÞ ¼
Ym

i¼1

P ðXi ¼ xi j �ðXiÞÞ: ð2Þ

4.3 Bayesian Classification

Bayesian analysis can be used to convert a training set into
an underlying probability distribution function modeled as
a Bayesian network. Given a data set D with m data

attributes ðA1; . . . ; AmÞ, suppose a subset of the data
elements in D are assigned a classification C (e.g., C ¼
finteresting; not interestingg). We want to use this training
set to tag unclassified data elements e ¼ ða1; . . . ; amÞ with
classification c 2 C. Bayes rule (1) allows us to do this

P ðc j a1; . . . ; amÞ ¼
P ða1; . . . ; am j cÞP ðcÞ

P ða1; . . . ; amÞ
: ð3Þ

The likelihood P ðcÞ comes directly from the training set.
As previously noted, the marginal probability P ða1; . . . ; amÞ
is independent of C, and can therefore be removed. This
leaves only the posterior P ða1; . . . ; am j cÞ to be derived.

We apply the product rule P ðA;BÞ ¼ P ðA j BÞP ðBÞ ¼
P ðB j AÞP ðAÞ

P ða1; . . . ; am; cÞ ¼ P ða1 j a2; . . . ; cÞP ða2; . . . ; am; cÞ ð4Þ

¼ P ða1; . . . ; am j cÞP ðcÞ: ð5Þ

Equating (4) and (5), then using the product rule to
replace P ða2; . . . ; am; cÞ with P ða2; . . . ; am j cÞP ðcÞ gives

P ða1; . . . ; am j cÞ ¼
P ða1 j a2; . . . cÞP ða2; . . . ; am; cÞ

P ðcÞ
¼ P ða1 j a2; . . . ; cÞP ða2; . . . ; am j cÞ:

ð6Þ

By recursively reducing the final term in a similar way,
we can rewrite (6) as

P ða1; . . . ; am j cÞ
¼ P ða1 j a2; . . . ; cÞP ða2; . . . ; am j cÞ
¼ P ða1 j a2; . . . ; cÞ � � �P ðamþ1 j am; cÞP ðam j cÞ:

ð7Þ

If the attribute values are independent of one another,
this reduces to

P ða1; . . . ; am j cÞ ¼
Ym

i¼1

P ðAi ¼ ai j cÞ: ð8Þ

To handle attribute dependencies, the product is
rewritten as

P ða1; . . . ; am j cÞ ¼
Ym

i¼1

P ðAi ¼ ai j �ðAiÞ; cÞ: ð9Þ

This is the same joint distribution shown in (2) for
Bayesian networks.

4.4 Learning Bayesian Structure

Given a training set, we want to “learn” a Bayesian network
that fits the training set. This provides the probabilities
needed to solve the joint distribution in (9).

One possibility is a naive Bayesian classifier that assumes
attribute independence. The computation needed to build a
naive classifier is small, and it often performs as well as
more sophisticated techniques [29].

The classifier’s performance can be further improved by
boosting. Boosting is a form of ensemble learning, where a
collection of learning models are combined to form
conclusions from existing knowledge [30]. Boosting creates
different models by varying the weights assigned to
elements in the training set. For Bayesian classifiers,

HEALEY AND DENNIS: INTEREST DRIVEN NAVIGATION IN VISUALIZATION 1747



increasing the weight of a training element is equivalent to
increasing its frequency in the training set.

Boosted Bayesian classifiers create a new model Mtþ1

based on the accuracy of the previous model Mt. Elements
misclassified in Mt have their weights increased, while
elements correctly classified have their weights decreased.
For example, AdaBoost, a well-known boosting algorithm,
runs as follows [31]:

1. Given a base network G and training set D of size n.
2. Let wti be the weight of ei in the training set at

iteration t. Initialize the weights w1
i ¼ 1

n , i ¼ 1; . . . ; n.
3. For t ¼ 1; . . . ; Tn,

a. Define error �t ¼
Pn

i¼1 w
t
imtðeiÞ, mt ¼ 1 if Mt’s

classification of ei is incorrect, mt ¼ 0 otherwise.
b. Set �t ¼ �t=ð1� �tÞ.
c. Set wtþ1

i ¼ wti�mtðeiÞ.
d. Normalize wtþ1

i .

4. Output ensemble structure M ¼ ðM1; . . . ;MTnÞ.

4.5 Navigation Assistant

We implemented a boosted Bayesian network classifier
(BBNC) to classify data elements as interesting or not
interesting [32]. BBNCs have been shown to be computa-
tionally efficient and accurate [1], [33], [34], [35]. BBNCs can
also be run iteratively, accepting new training examples and
updating the network as a user interacts with a visualization.
Once interesting elements are identified, association rule
mining is used to build rules that distinguish the elements
within the data set. The rules summarize what we believe
are the subset of elements that inspire the viewer’s interest.

5 NAVIGATION FRAMEWORK

We decided to modify and extend an existing navigation
assistant that clusters elements of interest and visualizes
them as multidimensional glyphs. A brief overview of the
system is provided here. Interested readers are directed to
[2] for more detail.

In the current system elements of interest must be
manually identified by the viewer using mathematical
expressions and boolean operators. These elements are
spatially clustered into local regions called areas of interest
(AOIs). A Delaunay triangulation of the elements of interest
in each AOI is reduced to form a local graph cycle that visits
each element exactly once. Next, a complete graph of the
AOI’s centroids is built, with edges weighted by their
Euclidean distance. A minimum spanning tree of the graph
is constructed to produce a minimum-length tree that visits
each AOI. Both local and global graph structures are
displayed as an inset within the visualization, providing
wayfinding cues to direct viewers to offscreen regions of
interesting elements (Fig. 5).

The graph framework also provides a fundamental data
structure for constructing automated animations. Graph
traversal algorithms are used to build camera paths to view
elements of interest within an AOI. Visibility algorithms
position the camera to provide unoccluded views of each
element of interest as the camera moves along the
animation path.

Individual data elements are represented as geometric

“tower” glyphs that can vary their hue, luminance, height,

density, and regularity of placement to represent multiple

attribute values. Previous research in our laboratory has

shown that the low-level human visual system processes

these features very rapidly and accurately. We have

conducted numerous controlled experiments to define the

information-carrying capacity of each feature, both in

isolation, and in combination with other features [3], [36],

[37], [38]. The result is a multidimensional visualization

system that helps viewers to locate and examine data

elements within the data set that are likely to be of interest.
A critical disadvantage of the existing system is that

elements of interest must be defined by the viewer. As

previously noted, this can be time consuming, imprecise,

and is often ineffective at locating all the elements a viewer

may want to study.

5.1 Discretizing Attributes

In order to reduce the size of the outcome space O, we

discretize continuous attributes Ai into a set of ranges. We

believe that most users will not have strong preferences for

a specific attribute value, but instead are interested in

ranges of values. If specific values are important, a user can

identify those by providing explicit interest rules.
There are several approaches for discretizing a contin-

uous space, for example, intervals that have equal width or

equal frequency. Discretization can also be viewed as

clustering the attribute values [39]. We built a hybrid k-

means clustering algorithm to discretize Ai into k bins

Xi ¼ ðxi;1; . . . ; xi;kÞ.

1. Set k ¼ log2ðni), where ni is the number of unique
attribute values in Ai.

2. Run m trials of k-means clustering using random
seeds as starting points and record the cluster
centers C ¼ ðc1;1; . . . ; c1;k; . . . ; cm;1; . . . ; cm;kÞ.

3. Run hierarchical clustering on C to collapse neigh-
boring centers to a common position.

4. Run a final k-means clustering using C as the
starting points. Assign the cluster boundaries to X.

Our algorithm is designed to preserve locally dense

regions, and to assign outliers to their own clusters.

Attribute values ai 2 Ai map to an interval xi;j ¼ ½xi;j;lo;
xi;j;hi�; xi;j;lo � ai � xi;j;hi (Fig. 1). Data elements ei 2 D
replace their attribute values ai;j with the index of the bin

containing ai;j, producing a discretized data set D0.
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Fig. 1. Discretizing continuous attributes, unique colors identify each bin.
(a) Cloud coverage, n ¼ 59 unique values. (b) Temperature, n ¼ 311.
(c) Wind speed, n ¼ 51.



5.2 Bayesian User Model

The navigation assistant uses a boosted Bayesian network
classifier to tag data elements as interesting or not
interesting. As users interact with the visualization, they
generate new training examples ti that are added to the
training set T . The BBNC is then retrained, and the elements
of interest are updated.

To demonstrate our BBNC’s performance, considerT with
15 elements ti 2 D0, D0 ¼ ðA1; A2; A3; A4Þ, Ai ¼ f1; 2; 3g 8i
(Table 1a). The user is interested in two properties: A1 ¼ 1
andA4 ¼ 3. The first four ti in T satisfy the first property, the
next four satisfy the second property, and the last seven
satisfy neither. Table 1b shows the BBNC classification for all
81 elements in D0. Every element of interest is properly
identified with average confidences ranging from 0.94 to 1.0.
Every element that is not interesting is also properly
classified with an average confidence of 0.75.

5.2.1 Boosting

Unfortunately, the standard boosting process cannot be
integrated directly into the navigation assistant. The main
problem is that a general BBNC views all ti 2 T as correct
and equally important to the learning process. There may
be uncertainty about the correctness of the examples we
collect. This is especially true for information that comes
from implicit actions. ti with low certainty need to have a
weaker influence during boosting.

An obvious approach is to set the initial boosting weight
w1
i to ti’s certainty. This will not work, however, since later

boosting iterations may increase w1
i to a much larger value

to compensate for misclassifying ti.
To solve this problem, we assign two weights to each ti:

the boosting weight w1
i and a certainty weight ui. w

1
i is

modified to guide subsequent user models toward a correct
classification of ti, exactly as before. ui remains constant for
each boosting iteration to reflect the influence ti should
have over the entire ensemble learning process.

Consider the sameD0 from the previous example (Table 1)
but with a preference of A1 ¼ 1 and a new training set

containing errors and certainty weights (Table 2a): ð1; 1; 1; 2Þ,
ð1; 2; 1; 2Þ, and ð1; 3; 2; 1Þ should be labeled c ¼ 1, while

ð2; 3; 3; 2Þ, ð2; 3; 1; 1Þ, ð2; 3; 1; 3Þ, ð3; 2; 3; 2Þ, and ð3; 2; 2; 1Þ
should be labeled c ¼ 0.

Table 2 shows the performance of using: no certainty u

(Table 2b); u as the initial boosting weight w1
i (Table 2c), and

u independent of w1
i (Table 2d).

When u is ignored, the BBNC misclassifies a large

number of elements. After Tn ¼ 10 boosts over half of D0 is

classified as interesting, with low average confidence p ¼
0:57 and accuracy a ¼ 0:63. When w1

i ¼ u, there is an

immediate improvement in BBNC accuracy, with almost

every element the user prefers being captured (a ¼ 0:96).

Notice, however, that the confidence in elements classified

as interesting declines significantly in later boost iterations.

Erroneous examples influence the model more during later

iterations as the BBNC tries to “correct” them. Finally, when

u and w1
i are managed independently, the model’s accuracy

is as good as for w1
i ¼ u. This approach also maintains

strong confidence for interesting elements with A1 ¼ 1.
Unfortunately, all three schemes incorrectly classify some

elements with A1 6¼ 1 as interesting. Although this is

undesirable, we believe it is better to have false positives—

suggesting elements that are not interesting—rather than

false negatives—missing interesting elements entirely—as

long as the number of false positives is relatively small.
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TABLE 1
Example BBNC: (a) Training Set to Capture Preferences

A1 ¼ 1 and A4 ¼ 3; (b) BBNC Classification c and
Average Confidence p for Four Sets of ei 2 D0

TABLE 2
Managing Uncertainty u: (a) Training Set to Capture

Preference A1 ¼ 1; (b) Elements of Interest (EOI)
for Tn Boosts, Confidence p for Classes c ¼ 0

and c ¼ 1, Overall Accuracy a, w1
i ¼ 1

n ;
(c) w1

i ¼ u; (d) Both u and w1
i ¼ 1

n



5.3 User Input

Visualization is normally interactive. A user can change

how the data is visualized, he can navigate to new locations

in the data set, he can look at the same data elements from

different locations, and so on. User intervention can also be

used to guide and correct the assistant. Our assistant must

transform existing visualization actions into inputs that are

compatible with our BBNC preference model. Several

explicit and implicit methods are provided to support this.

5.3.1 Updating the Preference Model

The training set T is the bridge that transforms user input

into preference values. T must be updated in a meaningful

way when new user input is received. Preference state-

ments have a subject, a classification, and a certainty. For

example, when a user clicks on a data element ei to mark it

as interesting, the subject is ei, the classification is positive,

and the certainty is high. This action is converted into ti ¼
ðei; ci; uiÞ made up of the discretized form of ei, classifica-

tion ci, and certainty ui.
Next, the assistant must integrate ti into T . A simple

approach is to append ti to T . This means T can contain

multiple ti with the same ei and ci, but possibly different ui.

Since ui defines the frequency of ei in T , we can sum

common ti to produce an overall certainty, for example,

�fðei; 0; 0:5Þ; ðei; 0; 0:75Þ; ðei; 0; 0:4Þg ¼) ðei; 0; 1:65Þ.
Unfortunately, this basic scheme leads to the problem of

overclassification. All of ei’s attribute values have the same

ui, even when the user is only interested in a subset of these

values. Consider ti ¼ ð1; 2; 1; 2Þ in Table 2a. ti was added

because of a user interest in A1 ¼ 1, but A2 ¼ 2, A3 ¼ 1, and

A4 ¼ 3 will also be considered as interesting as A1 ¼ 1.
If an attribute value is of interest—for example, A1 ¼ 1 in

Table 2a—it should occur in many ti. The other attributes

A2, A3, and A4 will have values with relatively uniform

distributions over their domains. Instead of summing to

update certainty ui, we calculate a likelihood that at least

one attribute value in ei is correct.

1. For ti ¼ ðei; ci; uiÞ, search T for an entry tj that
matches ei and ci.

2. If no entry is found, add ti to T .
3. Otherwise update uj ¼ 1:0� ð1:0� ujÞ � ð1:0� uiÞ.

5.4 Explicit Input

Explicit feedback from a user is the most reliable source of

information, but it comes at the cost of forcing the user to

temporarily stop exploring to specify preferences. We try to

keep our explicit input methods simple, both in terms of the

interface for the methods, and in the type of preference

information they request.

5.4.1 Preference Statement Interface

A user can define known preferences by entering them

explicitly using a preference statement interface. The

attributes’ discretized ranges are presented, allowing the

user to select the subset of ranges that match the known

preference.

5.4.2 Broad Critiquing

The navigation assistant highlights elements of interest in
the visualization. A user can critique the model by explicitly
adding or removing interesting elements.

An element ei incorrectly tagged as uninteresting can be
added with a keyboardþmouse selection. ei is added to a
list of elements explicitly labeled as interesting by the user.
Any ej 2 D0; ej ¼ ei is marked as an element of interest, and
T is updated

1. For tj 2 T with ej ¼ ei, cj ¼ 0, remove tj from T .
2. If ti ¼ ðei; 1; uÞ 2 T , set u ¼ 1, otherwise add ðei; 1; 1Þ

to T .

If a user clicks on an interesting ei to tag it as
uninteresting, the same process is applied with the class c
set to 0. The user does not need to explain which properties
of ei make it interesting or uninteresting. The Bayesian user
model analyzes the elements to determine what caused the
user’s actions.

5.4.3 Fine Critiquing

Selecting glyphs is a simple way to indicate preferences, but
it offers no information about which attribute values are
interesting to a user. The navigation assistant provides an
interface to allow the user to enter this information. In order
to avoid an overly complex interface, our fine critiquing
dialog asks only two questions (Fig. 7a).

1. Is data element ei interesting?
2. Which attribute values of ei make it interesting?

For example, suppose a user confirms ei is interesting,
and specifies Y � X as the attributes of interest. In order to
update T with respect to Y , we must allow for incomplete
training examples. These examples influence preferences
toward a subset of attribute values. For example, ð�; �; 1; �Þ
specifies information about the third attribute only. All ei
with ai;3 ¼ 1 will have their preference value influenced by
this example.

The values y for the attributes Y must be added to T .
The obvious solution of using ti ¼ ðy; 1; 1Þ is insufficient.
We want ti to have a stronger influence than normal
examples tj, since ti represents a strong statement by the
user toward yi. It would take multiple fully specified tj to
produce the same influence. To support this, we specify a
certainty u 	 1.

A second issue is whether the user’s preference toward
the values in y are independent of one another, that is,
should the assistant strengthen preferences toward ei
containing at least one attribute value in y, or only toward
ei that contain all the attribute values in y? Since our
interface provides no mechanism to define this, we
generate all possible subsets of y 2 Y and add each of
them as incomplete training examples. The assistant
assigns ti with fewer undefined attribute values a larger
ui. Although there are 2jY j � 1 total subsets, we assume
most fine critiques will involve only a few attributes,
keeping the number of subsets manageable.

Consider ei ¼ ð3; 1; 4; 4; 5Þ, and the user indicates he is
interested in the values of the first three attributes. The
following incomplete ti will be added to T with ci ¼ 1
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ui ¼ 3 : ð3; 1; 4; �; �Þ;
ui ¼ 2 : ð3; 1; �; �; �Þ; ð3; �; 4; �; �Þ; ð�; 1; 4; �; �Þ;
ui ¼ 1 : ð3; �; �; �; �Þ; ð�; 1; �; �; �Þ; ð�; �; 4; �; �Þ:

The same process is applied for values marked as
uninteresting, but with ci ¼ 0. We also derive information
from Z ¼ X � Y , the attribute values the user ignored, by
assuming he is indifferent to these values. Incomplete ti based
on Z are added as both interesting and uninteresting. Since it
is possible that jZj 
 jY j, we only add incomplete ti with one
attribute value set. In the above example, we would add ti ¼
ðð�; �; �; 4; �Þ; f0; 1g; 1Þ and ti ¼ ðð�; �; �; �; 5Þ; f0; 1g; 1Þ to T .

5.5 Implicit Input

Implicit input occurs alongside a user’s normal interaction
with the visualization. This type of input contains a degree
of uncertainty. Because of this, only cumulative implicit
feedback can significantly influence the user model. Noisy
input will have little or no effect.

5.5.1 Broad Focus Events

The navigation assistant tracks which parts of the data
set move through the user’s focus. The intuition is that
an element’s onscreen presence offers an indication of its
importance.

We measure a degree of focus to compute an element’s
wear weight. The degree of focus depends on three viewing
parameters.

1. Camera distance. Elements closer to the camera
present more detail, and are assumed to be of more
interest to a user.

2. Center distance. Elements near the center of the
window are centered in the user’s view, and are
assumed to be more interesting.

3. Viewing time. Elements that are in view for a
sustained, continuous period of time are assumed to
be of more interest to the user. We use continuous
rather than cumulative time to manage common
elements that are frequently in view, but only for
short durations.

OpenGL’s projection operators are used to define a
frustum that contains a subset of the elements in view.
Elements in a circular region V inscribed within the frustum
are selected for consideration. The radius of V is one-half
the length of the shorter edge of the window. For each
element ei 2 V a wear weight wt is computed

wt ¼ tv ðk1 þ k2ð1� zÞ þ k3 ð1� dÞÞ; ð10Þ

where tv is the viewing time, z is the camera distance, and
d is the center distance. Constants k1, k2, and k3 weight
the contributions of z and d to wt. The constants depend
on sampling frequency: higher sampling rates produce
smaller ki.

Fig. 2 shows examples of wt for different camera
positions. Notice how the wear weight increases for a
sustained view over time (Fig. 2b) versus a single snapshot
(Fig. 2a). Once wt for ei exceeds a minimum threshold, the
assistant adds ti ¼ ðei; 1; �Þ to T .
� is a constant used for all implicit input events. It is

small enough so it does not immediately impact the

preference model, but large enough so that multiple
implicit events for ei will direct the model to classify ei
correctly. For example, with � ¼ 0:2, suppose a user views
ei long enough for its wt to exceed the interest threshold. If
this happens three times during a visualization session,
three occurrences of ðei; 1; 0:2Þ are added to T , producing a
certainty u ¼ 0:49 for classification c ¼ 1 (see the formula
for u at the end of Section 5.3.1).

5.5.2 Fine Focus Events

Our multidimensional visualizations use geometric glyphs
that vary their visual properties to represent multiple
attribute values. A user can infer approximate values based
on the perception of a glyph’s appearance. A user can also
select an element ei to show ei’s attribute values in an
information balloon. We assume that when an element is
examined at this level of detail, the user can accurately
determine whether the element is interesting. The naviga-
tion assistant uses this action as an opportunity to update its
user preference model.

The assistant’s response depends on whether ei is
already an element of interest. If it is, and if the user does
not explicitly remove ei from the set of interesting elements
after examination, the assistant reinforces the model’s
classification of ei by adding ti ¼ ðei; 1; �Þ to T . If ei is not
interesting, the assistant requires additional evidence to
decide how to proceed. If some other action within a short
time window suggests ei is interesting, the assistant
strengthens ei’s preference by adding ti ¼ ðei; 1; �Þ to T .
Otherwise the assistant weakens ei’s preference by adding
ti ¼ ðei; 0; �Þ.

5.6 Interest Rules

Interest rules are defined as a nested list of discrete attribute
value ranges. This is a common format for data mining
algorithms. Rules are generated using association rule
mining on the current set of elements of interest [40], [41].
First, collections of attribute values that occur together with
a significant frequency—frequent item sets—are identified.
Normally, there are more frequent item sets than a user
would want to see. We score interest rules based on their
importance and relevance. Rules are presented in descend-
ing sorted order by score, prioritizing the rules the user is
most likely to find interesting.

The support � of a frequent item set � is the number of ei
that contain the item set. We calculate support over the set
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Fig. 2. Wear weight examples, low to high colored dark blue to bright
pink. (a) A straight camera shot. (b) Effects of time as a camera rotates
about a common view position.



of elements of interest, ��;E , and for the entire data set D0,
��;D0 . If ��;E is below a minimum threshold, the interest rule
is discarded. Otherwise, a combination of the support
values is used to score the rule. If ��;E and ��;D0 are both
high, it is unlikely that � is a property of interest. If ��;E is
high and ��;D0 is low, however, then � is useful for
distinguishing elements of interest within D0. Based on this
intuition, the score w� for each � is

w� ¼
ð��;EÞ2

��;D0
: ð11Þ

To further reduce the number of frequent item sets, we
merge item sets together if the following criteria are met.

1. Both item sets have a minimum ��;E .
2. Both item sets contain the same nonempty attribute

ranges.
3. The difference between nonempty attribute ranges is

no more than 1.

5.7 Initial View Selection

When visualization begins, the assistant initializes the user
model with general preference information using a set of
intelligently chosen views. The goal is to quickly eliminate
large numbers of ei as being potentially interesting. To do
this, the assistant needs to determine preferences for
prominent yet distinctive features in D0.

Using k-means, we cluster D0 to form groups of ei with
similar attribute values. Each cluster Ci is mined to collect
its descriptive features fi. Each fi is assigned a weight wi
based on its support in Ci and D0, wi ¼ ð�fi;CiÞ

2=�fi;D0 . fi that
are common in Ci, but uncommon throughout D0 have
higher wi. fi with the largest wi is selected as the
representative feature for Ci.

For each Ci, a view is constructed that contains a large
neighborhood of elements with attribute values fi. The
assistant positions the OpenGL camera to visualize the
neighborhood. A hill-climbing search is used to move the
camera back and forth along a parabolic arc, bringing
elements into view that contain fi, or removing visible
elements that do not contain fi. The view with the highest
support �fi for fi is selected.

The views for each Ci are presented in an array layout
(Fig. 3). The user indicates interest in a view by selecting it
with the mouse. For selected views, incomplete training
examples ti ¼ ðfi; 1; 2:0 � �fiÞ are added to T . For unselected
views, we assume the user is indifferent to its fi. We,
therefore, add ti ¼ ðfi; f0; 1g; 2:0 � �fiÞ to mark the feature as
equally interesting and uninteresting.

6 VISUALIZING CLIMATOLOGY DATA

We investigated the practical abilities of our navigation
assistant using a large climatology data set collected by the
Intergovernmental Panel on Climate Change (IPCC). The
data set records monthly 30-year averages for 11 climate
attributes. Data is sampled in 1

2

�
latitude and longitude steps

at every positive elevation throughout the world. In total, D
contains approximately 750,000 data elements and 8.25
million attribute values. After discretization, D is reduced
to 833 distinct ranges.

Data elements ei are represented with 3D “tower” glyphs
that vary their color and texture properties to visualize ei’s
attribute values. We mapped

. A1 ¼ cloud coverage ! density,

. A2 ¼ temperature ! color,

. A3 ¼ wind speed ! height,

. A4 ¼ wet day frequency ! luminance, and

. A5 ¼ temperature range ! regularity of placement.

Research in our laboratory has shown that these features are
perceptually salient, both in isolation, and in combination
with one another. The mapping order is based on attribute
importance: important attributes are assigned to percep-
tually strong visual features. Interested readers are directed
to [3] for more details.

Fig. 4 displays all data elements for February. This
demonstrates how viewing D0 in its entirety degrades the
effectiveness of the visualization. Although regions with
similar luminances, colors, and densities are visible,
differences in height and regularity are difficult to see.
Moreover, certain values of one feature—for example, low
glyph densities—can mask other features like luminance
and color. A user must zoom in to obtain a reasonable level
of detail, causing large parts of D0 to move offscreen.

Our example scenarios were based on explorations
climatology colleagues described as part of their work.
For example, attribute correlations are used to

1. Locate areas with attributes values that may identify
features of interest.

2. Visually examine the regions to see whether the
features exist.

3. Determine if other attribute values correlate with the
presence of the feature.

4. Modify the attribute value set to improve feature
detection.

Scientists also compare historical conditions to computa-
tional models by checking to see whether the types and
distributions of attribute values from real-world data match
simulated results. We focus here on describing the theoretical
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Fig. 3. Initial views. (a) Climatology data clustered into neighborhoods of
similar elements. (b) Elements colored to identify cluster membership.
(c) Initial views of similar elements. (d) elements colored to identify
cluster membership.



details of our navigation system and demonstrating how it
captures user input to estimate user interests.

6.1 Broad Critiquing and Fine Focus

We provide two example scenarios to demonstrate identify-
ing a viewer’s interests from a small number of interactions.
The Bayesian classifier examines each ei to determine how
well it fits interest rules the classifier has discovered. Spatial
groups of interesting elements are highlighted to allow
users to quickly locate them.

The first example demonstrates how a preference
model is refined with explicit broad critiquing—adding

or removing ti from T—and implicit fine focus events
—observing a user’s actions after viewing ei’s information
balloon. The goal is to examine areas with dense cloud
coverage and moderate temperature, to see if the other
attributes form patterns within these regions.

Step 1. Following an initial view selection, the user
moves to western Canada (Fig. 5a) and explicitly adds
ð4; 3; 5; 5; 1Þ and ð4; 3; 5; 4; 2Þ, and rejects ð4; 4; 5; 5; 1Þ and
ð3; 3; 5; 3; 3Þ. Elements of interest are outlined in blue, and
navigation graph edges are displayed as red lines (Fig. 5b).
Each addition or removal requires an information balloon to
query an element’s values—a fine focus event—followed by
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Fig. 4. A perceptual color and texture-based visualization of February’s historical climate patterns throughout the world.

Fig. 5. Before and after visualizations, with the navigation graph overview inset in the top-left corner. (a) and (b) Step 1. (c) and (d) Step 2. (e) and
(f) Step 3. (g) and (h) Step 4.



an action—an explicit broad critiquing event. This produces

104 training examples. The four highest ranked interest

rules are shown in Table 3.
Step 2. Following the navigation graph, the user shifts to

the Pacific Northwest to view a large cluster of elements of

interest (Figs. 5c and 5d). The user adds ð4; 3; 5; 4; 3Þ and

ð4; 3; 5; 3; 3Þ, and rejects ð4; 4; 5; 4; 3Þ, ð3; 3; 5; 4; 2Þ, and

ð2; 3; 5; 2; 4Þ. At this point the assistant begins to identify

the correct interest rules (Table 3). The number of training

examples is reduced to 60, and each of the four top interest

rules reference dense cloud coverage, A1 ¼ 4.
Step 3. The user again follows the navigation graph to

South America to view a large AOI (Fig. 5e). Here, the user

adds ð4; 3; 5; 5; 1Þ and removes ð4; 6; 5; 5; 2Þ and ð4; 5; 5; 4; 3Þ.
In response, the preference model removes the entire AOI

(Fig. 5f), and reduces the number of training examples to 25.

The top four interest rules now contain the appropriate

attribute values for cloud coverage and temperature, A1 ¼ 4

and A2 ¼ 3 (Table 3).
Step 4. The user moves to Europe to evaluate another

large AOI (Fig. 5g), adding ð4; 3; 5; 3; 1Þ and ð5; 3; 5; 4; 1Þ, and

removing ð3; 3; 5; 3; 1Þ and ð4; 2; 4; 3; 2Þ. The AOI remains

stable since most of its elements are of interest to the user

(Fig. 5h). Only 17 training examples remain.
Step 5. The user concludes by exploring Japan (Fig. 6),

where elements ð4; 1; 5; 3; 3Þ, ð4; 5; 5; 3; 1Þ, and ð1; 3; 5; 1; 3Þ
are rejected. This final tweaking allows the preference

model to identify outliers in South America that were

missed during the user’s initial visit. At this point, more

complex rules are beginning to emerge, for example, a

possible correlation with moderate to high wind speed and
wet day frequency, A3 ¼ f3; 4; 5g and A4 ¼ f3; 4; 5g (Table 3).

6.2 Implicit Focus and Explicit Critiquing

The second example demonstrates the use of implicit focus
events and explicit critiquing to define incomplete training
examples that capture complex preferences. The goals are to
confirm that areas in the Americas exist with both high wet
day frequency and low temperature: A4 ¼ f4; 5g and A5 ¼
f1; 2g, and to see if other attributes form patterns within
these regions.

Step 1. Following an initial view selection, the user
begins exploring in Central America, implicitly rejecting
ð3; 5; 3; 3; 3Þ, ð3; 6; 2; 2; 4Þ, and ð2; 6; 4; 2; 3Þ. The user locates
and adds interesting element ð2; 6; 5; 5; 1Þ. Failing to find
additional interesting elements, the user critiques the
element he just selected, indicating interests in the values
of wet day frequency and temperature range in a fine critiquing
window (Figs. 7a and 7b). The top four interest rules are
shown in Table 4. Although the model already has a good
estimate of the user’s preferences. more input is needed to
expand its interest rules.

Step 2. The user moves to the Great Lakes region (Figs. 7c
and 7d), adding ð4; 3; 5; 5; 2Þ, ð4; 3; 5; 4; 2Þ, ð4; 3; 5; 4; 3Þ,
ð4; 2; 5; 4; 3Þ, and ð4; 3; 5; 4; 2Þ by exploring the local neighbor-
hood. More training examples are implicitly added to T as
the user examines the AOI. The interest rules show how the
new elements change the model (Table 4). The top rules
remain focused on A4 and A5, but do not (yet) identify a
dependency between them.

Step 3. The user shifts to northern Canada to investigate
another AOI (Fig. 7e). Here, the user explicitly removes
ð2; 1; 5; 2; 1Þ. The new global graph shows how this single
rejection produces a significant change in the preference
model (Fig. 7f). The interest in numerous elements
decreased to a point where the model no longer highlights
them (Table 4). The model is again identifying a dependency
between A4 and A5.

Step 4. The user finishes by visiting the Pacific North-
west (Figs. 7g and 7h). He adds ð4; 4; 5; 5; 1Þ; ð4; 4; 4; 4; 1Þ;
ð4; 4; 2; 4; 2Þ; ð4; 4; 3; 4; 2Þ, and ð3; 4; 2; 4; 2Þ, and removes
ð4; 3; 4; 3; 2Þ. After this input, the assistant continues to
report a strong link between high cloud coverage and low
temperature (Table 4). Unlike the previous example, how-
ever, no other attribute patterns are reported, with
fA1; A2; A3g ¼ f�; �; �g in all four interest rules.

6.3 Feedback

Although we did not run formal validation studies, anecdotal
feedback from our colleagues was positive, highlighting the
following strengths of interest-driven visualization:
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TABLE 3
The Top Four Rules After Each Step in the Broad Critiquing and Fine Focus Example

Fig. 6. Visualization after tweaking at Step 5.



. Pattern reporting. Select elements of interest, then
have the system report the attribute patterns that
distinguish the selected elements.

. Interesting regions. Automatically identify clusters
of interesting elements from a few exemplars, then
use the system to locate and analyze the clusters.

. Hypothesis testing. Define a high-level hypothesis
with a few explicit rules, identify elements of interest
based on the rules, use critiquing to remove
elements from this set that are not interesting, then
look at the rules that remain to see how they differ
from the original hypothesis.

7 CONCLUSIONS

The ability to locate and explore interesting offscreen data is a
critical problem for visualizing large data sets. These data sets
can overwhelm a user’s ability to see the data at full detail in a
single view, causing the user to become disoriented and
unsure about where to look next in the visualization.

Previously we described a navigation assistant that
addresses these issues by building graphs of elements of
interest and exploring them with intelligent camera planning
[2]. This paper proposes replacing manual identification of

elements of interest with a preference model that automati-
cally defines rules to locate the elements. A boosted Bayesian
network classifier is built to achieve this goal. The BBNC is
carefully designed to consider uncertainty during classifica-
tion. A simple set of explicit operations allow a user to critique
the preference model. Common actions performed during
visualization implicitly capture additional details about a
user’s preferences. Two example visualization sessions are
described to demonstrate the capabilities of both the BBNC
and the navigation assistant.

7.1 Relevance to Visualization

The ability to capture a user’s interests is applicable to a wide

range of visualization techniques. We believe our BBNC can

be used in numerous situations where understanding a

user’s interests is important. For example, a visualization

algorithm could filter the data it renders based on impor-

tance. Viewer interest could serve as a semantic cue to

determine whether to display or hide elements during

focusþcontext zooming. Elements with strong viewer

interest could act as representative examples, allowing a

data set to be clustered into subsets of interesting elements

with distinguishable patterns in their attribute values.
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TABLE 4
The Top Four Rules After Each Step in the Implicit Focus and Explicit Critiquing Example

Fig. 7. Before and after visualizations, with the navigation graph overview inset in the top-left corner. (a) Fine focus critiquing. (b) After critiquing.
(c) and (d) Step 2. (e) and (f) Step 3. (g) and (h) Step 4.



Our approach is designed to be flexible in the types of data
sets it can analyze. If a viewer’s interests can be defined by
combinations of the attribute values, our preference algo-
rithm will be able to extract rules that identify interesting
elements.
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