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A new method is presented for visualizing data as they are generated from real-time ap-
plications. These techniques allow viewers to perform simple data analysis tasks such as
detection of data groups and boundaries, target detection, and estimation. The goal is to
do this rapidly and accurately on a dynamic sequence of data frames. Our techniques take
advantage of an ability of the human visual system called preattentive processing. Preat-
tentive processing refers to an initial organization of the visual system based on operations
believed to be rapid, automatic, and spatially parallel. Examples of visual features that can
be detected in this way include hue, orientation, intensity, size, curvature, and line length.
We believe that studies from preattentive processing should be used to assist in the design
of visualization tools, especially those for which high speed target, boundary, and region
detection are important. Previous work has shown that results from research in preattentive
processing can be used to build visualization tools which allow rapid and accurate anal-
ysis of individual, static data frames. We extend these techniques to a dynamic real-time
environment. This allows users to perform similar tasks on dynamic sequences of frames,
exactly like those generated by real-time systems such as visual interactive simulation. We
studied two known preattentive features, hue and curvature. The primary question investi-
gated was whether rapid and accurate target and boundary detection in dynamic sequences
is possible using these features. Behavioral experiments were run that simulated displays
from our preattentive visualization tools. Analysis of the results of the experiments showed
that rapid and accurate target and boundary detection is possible with both hue and curva-
ture. A second question, whether interactions occur between the two features in a real-time
environment, was answered positively. This suggests that these and perhaps other visual
features can be used to create visualization tools that allow high-speed multidimensional
data analysis for use in real-time applications. It also shows that care must be taken in
the assignment of data elements to preattentive features to avoid creating certain visual
interference effects.
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1. INTRODUCTION

The field of scientific visualization draws on research from a wide spectrum of
traditional disciplines. These include computer science, psychology, and the visual
arts. The “domain of visualization”, as defined by a National Science Foundation
panel on scientific computing, includes the development of specific applications,
the development of general purpose tools, and the study of research problems that
arise in the process [McCormick et al., 1987; Rosenblum, 1994]. To date, most
research efforts have focused on ad hoc visualization applications. Relatively few
efforts have formulated general guidelines for the design of visualization tools.

In this paper, we report on new work that derives from an area of cognitive psy-
chology known as preattentive processing. This work is part of an on-going in-
vestigation whose goal is a set of guidelines for visualization design. We examine
visualization techniques for dynamic sequences of multidimensional data frames,
like those produced by visual interactive simulation or real-time systems. We first
define a set of visualization requirements that are common to these applications.
We then review research in preattentive processing in order to establish abilities
and limitations of human vision that are relevant to these requirements, after which
we describe a scientific visualization tool we have developed that is based on these
general considerations. Finally, we discuss the implications of our approach, both
for specific applications and for the development of general guidelines in scientific
visualization.

2. VISUALIZATION REQUIREMENTS

Scientific visualization as a discipline within computer graphics is a relatively re-
cent development. The first reference to “scientific visualizatjper’ seoccurred
sometime in the late 1980s, although as [Fournier, 1994] has pointed out, many
aspects of scientific visualization have long been part of computer graphics. Pan-
els and workshops in a variety of different disciplines are now addressing scientific
visualization and its relationship to their work [Becker and Cleveland, 1991; Rosen-
blum, 1994, Treinish et al., 1989; Wolfe and Franzel, 1988]. The area is expanding
into a number of subfields that use computer graphics to solve various types of
problems. Examples include volume visualization, medical imaging, flow visual-
ization, and multivariate data visualization. Current research is concerned with the
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design of intelligent visualization tools. Scientists are turning to computer graphics,
psychology, and visual arts to understand how the human visual system analyses
images. This has led to the use of specific visual properties to make displays more
intuitive. These visual properties take advantage of the fundamental workings of
the visual system itself.

Many applications require techniques for displaying data in real-time. One ex-
ample is air traffic control, where displays are often shared by different operators,
who acquire visual data from different parts of the display at the same time. The
visualization technique must allow a variety of tasks to be performed rapidly and
accurately on dynamically changing subsets of the overall display. Medical imag-
ing systems such as CT, MRI, PET, and ultrasound are another type of application
that could benefit from real-time visualization. A method that allowed rapid and
accurate visual analysis of more than one aspect of the data would decrease the
amount of time needed to complete the diagnostic task. This is important, because
these types of systems often cannot be time-shared by multiple users. Any improve-
ment in visualization would increase total throughput for the system. Moreover,
better displays might reduce errors made during analysis. Even a small increase in
accuracy is important in this type of environment.

2.1 Simulation Visualization Systems

The requirements for real-time applications are similar to another class of problems,
the visualization of output from simulation systems. Disciplines such as physics,
chemistry, oceanography, and management science use simulations to model real-
world phenomena. Discrete event simulation systems have matured far beyond
their original beginnings as languages like GPSS, Simula, and SIMSCRIPT. Ad-
vances in computer processing power and display capabilities have been matched
by simulation systems which offer graphical network builders, user interaction, and
real-time visualization of results as they are generated. These systems are designed
to address a wide range of problem environments. Some languages have been opti-
mized to model specific applications.§.,manufacturing operations). Others target
a more general class of problems, providing the flexibility to build a wide variety
of simulations through the use of graphical model builders and system-specific lan-
guages. Our interest is in the systems used to animate simulation results. Brief
descriptions of Proof, Cinema, Arena, SIMGRAPHICS, and SLAMSYSTEM are
provided below, highlighting the various capabilities of each of these packages.
Proof is a PC-based animation system which displays results from languages like
GPSS and its successors, GPSS/H and SLX [Earle et al., 1990; Henriksen, 1993].
It provides a number of simple graphics and animation primitives. Proof runs as a
post-processor, separating the simulation model from the animation system. This
means the simulation model can be executed in a more powerful computing envi-
ronment €.g.,on a mainframe or a UNIX workstation) if necessary. Results can
then be downloaded to the PC for viewing. Post-processing ensures the speed of the
animation is not limited by the speed of the underlying simulation. Unfortunately,
it also makes it impossible to interactively change values as the simulation runs and
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watch the corresponding impact.

Cinema is a general-purpose animation system built on top of the SIMAN sim-
ulation language [Kalasky, 1991]. Cinema displays data in real-time as the sim-
ulation executes. Users can temporarily halt the simulation and use SIMAN’s
interactive commands to view or change the state of the system being modeled.
Cinema’s creators suggest using animation to enhance four stages of the design
process: model building and verification, model validation, bottleneck analysis,
and communication and presentation.

SIMAN and Cinema have also been combined into a hierarchical modeling and
animation system called Arena [Collins and Watson, 1993]. Arena models are built
using templates and modules. A “SIMAN template” is included as a standard part
of the Arena system. The template contains modules for each of the basic mod-
eling elements in SIMAN€E.g.,Queues, Variables, and Transporters). A different
template contains another set of modules representing basic Cinema animation el-
ements. Users build new modules by combining already-existing ones in various
ways. These “derived modules” usually correspond to entities specific to the appli-
cation being modeled(g.,jobsteps and production schedules in a wafer fabrication
template). Once the modules and templates are designed, Arena’s interface can be
used to build, run, interrupt, inspect, and modify the simulation.

SIMSCRIPT 11.5 is another well known simulation language. Like its competi-
tors, it allows the user to interactively debug and modify models as they run [Garri-
son, 1990]. SIMGRAPHICS is provided to allow the user to display results graph-
ically. Users can choose from a number of standard presentation graphics like pie
charts, bar charts, and level meters. It is also possible to animate icons over a static
background. Graphics are drawn concurrently as the simulation runs.

Finally, SLAM Il is a simulation language designed to support models built us-
ing a combination of the process flow, discrete event, and continuous time concepts
[O’Reilly and Whitford, 1990]. SLAMSYSTEM is the PC-based version of SLAM
Il [Lilegdon and Ehrlich, 1990]. It uses the display capabilities of the PC to provide
a graphical network builder, presentation graphics, and animation. SLAMSYS-
TEM can display results in real-time as the simulation runs, or in a post-processing
fashion. This provides the flexibility of either interactive visualization of results, or
separate computing and animation environments.

2.2 Visual Interactive Simulation

The animation systems discussed above were designed to address a number of
drawbacks inherent in first-generation simulation languages like GPSS, Simula,
and SIMSCRIPT. Descriptions of these systems show many of them share a num-
ber of common goals:

¢ the ability to analyse results graphically, rather than simply receiving a set of
numbers when the simulation system terminates

¢ the ability to see intermediate results while the simulation is running in order
to verify that the system is executing properly, or to understand why and how
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final results are being produced

¢ the ability to interact with the simulation while it runs, guiding it to follow
interesting results or trends as they occur; this also avoids the difficult prob-
lem of trying to recreate a given system state by simply modifying the initial
starting conditions

Visual interactive simulation (VIS) is a technique specifically designed to study
the above problems [Hurrion, 1976]. It consists of two parts: visualization of simu-
lation data and user interaction with a running simulation [Bell and O’Keefe, 1987].
After building a number of models for various simulation software components,
[Hurrion, 1980] offered a set of anecdotal observations supporting the use of VIS.
He suggested that VIS made users more attentive, partly because pictures were
more interesting than text and partly because users felt they had more control over
the simulation system. Visualization of intermediate results sometimes gave rise to
interesting situations the user had never envisioned.

Bell and O’Keefe have recently addressed the argument that VIS is a method
for solving problems with simulation models, rather than a technique for building
the models themselves [Bell and O’Keefe, 1994]. They note that every VIS system
contains two distinct parts, a simulation model and a visualization model. From this
staring point, Bell and O’Keefe divide VIS into two categories: active and passive.

In active VIS, there is a one-to-one mapping between elements in the simulation
model and elements in the visualization model. Users can “see” the entire simula-
tion. This means the user can take an active role in defining and understanding the
simulation model, and in suggesting alternatives. Bell and O’Keefe classify active
VIS tools as a type of decision support system. Passive VIS, on the other hand,
separates the simulation and visualization models. A modeling expert builds the
simulation model, then decides which parts to animate for the user. Control over
problem solving is assigned to the model builder, rather than the user. Passive VIS
is simply traditional simulation with the addition of animation.

There are a number of reports showing practical examples of VIS applications.
[Kaufman and Hanani, 1981] described a method of converting a traditional simu-
lation program into an interactive program that used graphics. Researchers in the
United Kingdom developed a set of library routines that perform VIS on an Ap-
ple microcomputer [O’Keefe and Davies, 1986]. After applying their software to
various practical simulation problems, they concluded that a machine with rela-
tively simple graphics primitives and low computational power offered an accept-
able platform for VIS software. Scientists at AT&T Bell Labs have developed a
general VIS package, the Performance Analysis Workstation [Melamed and Mor-
ris, 1985], that allows design and testing of queueing networks. The simulation can
be started, interrupted, modified, and monitored using commands available through
pop-up menus. The workstation visually displays activity in the network, including
movement and queueing of requests as the simulation executes. Experience using
this workstation mirrors observations of Hurrion, specifically that users enjoy the
workstation and that interesting and unexpected phenomena often arise while the
simulation is running.
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GENETIK and WITNESS are two recent applications designed to perform ac-
tive VIS. Both are loosely based on SEE-WHY [Fiddy et al., 1981], one of the
first commercial VIS packages. GENETIK allows users to build and execute gen-
eral purpose simulation models [Concannon and Becker, 1990]. Its core system
comprises four unitsgraphical unitswhich display and animate resulbgic units
which define the behaviour of the simulation modddta unitswhich represent
local and global variables, andteraction unitswhich allow users to interact with
the simulation model. GENETIK provides a “simulation module” as a basic frame-
work for building discrete-event and continuous simulation models. The prepack-
aged pieces available in the simulation module can be combined with additional
graphic, logic, data, or interaction units as required to build a complete simula-
tion model. GENETIK also provides a “planning board module” to help design
scheduling simulations, essentially through the addition of Gantt charts.

WITNESS is a successor to the SEE-WHY simulation system. It was specifically
designed to analyse manufacturing systems [Murgiano, 1990; Clark, 1991]. The
most obvious addition is an interactive model building environment. Unlike SEE-
WHY, which used FORTRAN or a built-in simulation language, WITNESS models
can be created through the use of menus and input prompts. WITNESS runs in
an interpreted fashion, which means partially completed models can be executed
to validate their design. Since it is a VIS tool, WITNESS has a complete set of
functions to interrupt and modify simulations as they run. Results are displayed as
a combination of static icons and system-driven animations.

2.3 Real-Time Multivariate Data Visualization

This examination of available visualization and simulation animation systems shows
we now have the computing power and display capabilities to represent information
visually in many different ways. Unfortunately, there is no guarantee that an ad hoc
set of displays will help us better understand our data. Researchers are working
to find ways to harness these resources through the use of effective and efficient
visualization techniques.

An intuitive and often used approach is to associate “features” such as hue, spa-
tial location, and size with each data element. These features represent specific at-
tributes embedded in the elemeetd.,colour is often used to represent temperature
at each spatial location on a map). This addresses an explicit goal of visualization,
to present data to the human observer in a way that is informative and meaningful,
on the one hand, and yet intuitive and effortless on the other. Features are chosen to
show properties within and relationships among data elements. Unfortunately, an
arbitrary assignment of features to individual data dimensions may not result in a
useful visualization tool. A poor choice can lead to a tool which actively interferes
with a user’s ability to extract the desired information.

Several researchers have suggested harnessing the human visual system to assist
with this problem. For example, [Enns, 1990] discusses using the human visual sys-
tem to process large datasets efficiently; he describes geometric icons which com-
bine the power of the computer and the human visual system [Enns and Rensink,
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1990]. Ware and Beatty have designed a method that uses colour to represent mul-
tidimensional data elements [Ware, 1988]; subsets of the data with similar values
appear as a spatial “cloud” of similarly coloured squares. Pickett and Grinstein
[1988, 1989] display structure in the data as a set of textures and boundaries, so
that groups of data elements with similar values appear in the display as a spa-
tial group with a unique texture. Previous work in our laboratory has shown that
preattentive features can be used for estimation [Healey et al., 1993; Healey et al.,
1996]; subjects are able to rapidly and accurately estimate the relative percentage
of data elements in the display with a specific preattentive feature. These tech-
niques were all applied to a single data frame in isolation. Aside from Pickett and
Grinstein, none have modified their technique to display multiple data frames one
after another in an animated fashion.

We approached real-time multivariate visualization by defining a set of require-
ments which we feel are inherent to this class of problem:

e multidimensional datathe technique should be able to display multidimen-
sional data in a two-dimensional environment, the computer screen

e shared data:the technique should display independent data values simul-
taneously; a single user could choose to examine various relationships, or
multiple users could simultaneously examine independent data values

¢ real-time data:the technique must function in a real-time environment, where
frames of data are continuously generated and displayed one after another

e speed:he technique should allow users to rapidly obtain useful and nontriv-
ial information; here, “rapidly” means less than 250 milliseconds (msec) per
data frame

e accuracy:information obtained by the users should accurately represent the
relationship being investigated

Using an approach which extends our previous work on static visualization, we
decided to use preattentive processing to assist with real-time (dynamic) multivari-
ate data visualization. We hypothesized that important aspects of preattentive pro-
cessing will extend to a real-time environment. In particular, we believe real-time
visualization techniques based on preattentive processing will satisfy the five re-
quirements listed above. A visualization tool which uses preattentive features will
allow viewers to perform rapid and accurate visual tasks such as grouping of sim-
ilar data elements (boundary detection), detection of elements with a unique char-
acteristic (target detection), and estimation of the number of elements with a given
value or range of values, all in real-time on temporally animated data frames. We
tested this hypothesis using behavioral experiments that simulated our preattentive
visualization tools. Analysis of the experimental results supported our hypothesis
for boundary and target detection. Moreover, interference properties previously
reported for static preattentive visualization were found to apply to a dynamic en-
vironment.
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3. PREATTENTIVE PROCESSING

Researchers in psychology and vision have discovered a number of visual prop-
erties that are “preattentively” processed. They are detected immediately by the
visual system. This means viewers do not have to focus their attention on a spe-
cific region in an image to determine whether elements with the given property are
present or absent.

An example of a preattentive task is detecting a filled circle in a group of empty
circles (Figure 1a). A viewer can quickly glance at the image to determine whether
the target is present or absent. Commonly used preattentive features include hue,
curvature, size, intensity, orientation, length, motion, and depth of field. As men-
tioned above, simply choosing features in an ad hoc manner and matching them to
data attributes will not necessarily result in an intuitive display. A “conjunction”
occurs when the target object is made up of two or more features, each of which
is contained in the distractor objects. Objects that are made up of a conjunction
of unique features cannot be detected preattentively [Triesman, 1985]. Figure 1b
shows an example of a conjunction task. The target is made up of two features,
filled and circular. Both these features occur in the distractor objects (filled squares
and empty circles). Thus, the target cannot be preattentively detected.

Properties that are processed preattentively can be used to highlight important
image characteristics. Experiments in cognitive psychology have used various fea-
tures to assist in performing the following visual tasks:

e target detectionwhere users attempt to rapidly and accurately detect the
presence or absence of a “target” element that uses a unique visual feature
within a field of distractor elements (Figure 1)

e boundary detectignwhere users attempt to rapidly and accurately detect a
texture boundary between two groups of elements, where all the elements in
each group have a common visual feature (Figure 2)

e counting and estimatignwhere users attempt to count or estimate the number
or percentage of elements in a display that have a unique visual feature

For our purposes, we will consider tasks which can be performed in less than 250
msec to be preattentive. Within this time frame an eye movement cannot be made to
a new spatial location. This means preattentive tasks require only a “single glance”
at the image being displayed. Non-preattentive tasks force the user to search seri-
ally through the display, examining each element in twg.(conjunction target
search). This means search time is proportional to the number of elements in the
display, and can be easily made to violate the 250 msec bound if the number of
elements is large enough. Conjunction search is one form of interference which
may occur when we perform visualization.

A second type of interference has been studied by Callaghan and others. The vi-
sual system seems to prioritize features in order of importance. This means that the
presence of visually “important” features can interfere with tasks which use lower
priority features. For example, in Figure 2a, the vertical boundary defined by hue is
detected preattentively, even though the shape of each elementis random. However,
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(@) (b)

Figure 1: Examples of two target detection tasks: (a) target can be detected preattentively because
it has a unique feature “filled”; (b) target cannot be detected preattentively because it has no visual
feature unique from its distractors

(@)

(b)

Figure 2: Region segregation by form and hue: (a) hue boundary is identified preattentively, even
though form varies in the two regions; (b) random hue variations interfere with the identification of a
region boundary based on form

in Figure 2b, it is difficult to detect the horizontal boundary defined by form. This
is because hue varies randomly from element to element. If hue were fixed to a con-
stant value for each element, the form boundary could be detected preattentively.
Callaghan explains this phenomena by suggesting that the visual system assigns a
higher importance to hue than to form [Callaghan, 1989; Callaghan, 1990] during
boundary detection. Thus, a random hue interferes with form boundary detection,
but a random form has no effect on hue boundary detection. A similar asymmetry
exists between hue and intensity. Random hue has no effect on detecting bound-
aries defined by intensity. However, random intensity interferes with hue boundary
detection. Callaghan concluded that intensity is more important than hue to the
low-level visual system [Callaghan, 1984].

A final method of feature detection can be demonstrated through the use of emer-
gent features. An emergent feature can be created by grouping several simpler
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Figure 3: Combination of simple components to form emergent features: (a) closure, a simple closed
figure is seen; (b) 3-dimensionality, the figure appears to have depth; (c) volume, a solid figure is seen

shapes together. The emergent feature cannot be predicted by examining the sim-
pler shapes in isolation (Figure 3). For example, in Figure 4a, the target element
cannot be detected preattentively. However, by simply rotating one of the compo-
nent elements, we create a new target with an emergent feature, non-closure, which
is easily detected (Figure 4b).

Researchers continue to expand preattentive processing in a number of exciting
directions. To date, most of the features used in preattentive tasks have been rel-
atively simply properties€.g., hue, orientation, line length, and size). Enns and
Rensink have identified a class of three-dimensional elements that can be detected
preattentively [Enns and Rensink, 1990; Enns, 1990]. They have shown that the
three-dimensional orientation and direction of lighting is what makes the elements
“pop-out” of the visual scene (Figures 3b and 3c). This is important, because it
suggests that complex high-level concepts may be processed preattentively by the
low-level visual system.

Another class of features being studied includes motion and depth. Initial re-
search on motion and depth in preattentive processing was completed by Nakayama
and Silverman [Nakayama and Silverman, 1986]. Their results showed that motion
was preattentive. Moreover, stereoscopic depth could be used to overcome Tries-
man’s conjunction effect. Like the work done by Enns and Rensink, this suggests
that conceptually high-level information is being processed by the low-level visual
system. Other work has focused on oscillating motion and its effect on conjunction
search. [Driver et al., 1992] describe an experiment where subjects had to search
for an X oscillating vertically among O’s oscillating vertically and X’s oscillating



ACM TOMACS 5, 3, July 1995, 190-221 HEALEY, BOOTH, ENNS

AN

AN N N N N NN
. NN N N NN
\p AN NN NN NN N
L | D\ Distractor ANEANEIN BBBB BBB
ShapeZT N Target BBBQQQBBBB
ISENA AR NENEININ
ANENINAA VAU N NN
BBBB NN AOD N DN
NN NN NN N

(a)

AN
N N N N A R NN N
NN NN
Shape 1

BBBKKKBBB N
h BABRRR RADN DD
L BDiStractor BB BKKK B BBB
Shaper KTarget BBBBBBBBBB
BBBBB BBBBB
DN D DA DN NN
NN NN TN

—_
(=)
N’

Figure 4: A proper choice of initial components will form a target with an emergent feature which
can be detected preattentively: (a) the target contains no unique emergent feature, so detecting the
target group is difficult; (b) the target contains a unique emergent feature, non-closure, so the target
group is easily detected

horizontally. This task was preattentive if elements in the group oscillated coher-
ently (.e., vertically oscillating stimuli moved up and down together, horizontally
oscillating stimuli moved left and right together). When elements oscillated “out of
phase” with one another, subjects reverted to serial search. Finally, Braddick and
Holliday showed that more complicated types of motion, such as divergence and
deformation, required serial searching [Braddick and Holliday, 1987]. This implies
that although motion itself is a preattentive feature, deformation and divergence in-
volve targets with a number of different motions, each of which is shared by the
distractors. Thus, a conjunction occurs and serial search is required to detect the
presence or absence of a target.

In addition to new preattentive features, new tasks which can be performed preat-
tentively have been investigated. For example, some research has been done on
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counting and estimation in preattentive processing. Varey describes experiments
in which subjects were asked to estimate the relative frequency of white or black
dots [Varey et al., 1990]. Her results showed that subjects could estimate in four
different ways: “percentage” of white dots, “percentage” of black dots, “ratio” of
black dots to white dots, and “difference” between the number of black and white
dots. She also found that subjects consistently overestimated small proportions and
underestimated large proportions. Estimation of relative frequency using hue and
orientation was shown to be preattentive in experiments conducted in our laboratory
[Healey et al., 1993; Healey et al., 1996]. Moreover, our results showed that there
was no feature interaction. Random orientation did not interfere with estimation
of targets with a unique hue, and random hue did not interfere with estimation of
targets with a unique orientation. This is important because it suggests that hue and
orientation can be used to encode two independent data values in a single display
without causing interference.

A number of scientists have proposed competing theories to explain how preat-
tentive processing occurs, in particular Triesman’s feature integration theory [Tries-
man, 1985], Jusz’ texton theory [Jelsz and Bergen, 1983], Quinlan and Humphreys’
similarity theory [Quinlan and Humphreys, 1987], and Wolfe’s guided search the-
ory [Wolfe, 1994]. Our interest is in the use of visual features that have already
been shown to be preattentive. We examined two such features, hue and form,
and investigated their use for two common visualization tasks, boundary and target
detection in a dynamic sequence of data frames.

4. EXPERIMENT 1: TEMPORAL BOUNDARY DETECTION

Through experimentation we sought to determine whether or not research in preat-
tentive processing can help design more useful and intuitive scientific visualization
tools. Specifically, we investigated whether preattentive tasks and interference ef-
fects extend to a real-time visualization environment, where frames of data are
displayed one after another. Our first experiment addressed two general questions
about preattentive features and their use in our visualization tools.

¢ Question 1is it possible for subjects to detect a data frame with a horizontal
boundary within a sequence of random frames? If so, what features allow
this and under what conditions?

e Question 2: Do Callaghan’s feature preference effects apply to our real-
time visualization environment? Specifically, does random hue interfere with
form boundary detection within a sequence of frames? Does random form
interfere with hue boundary detection within a sequence of frames?

These questions were designed to address the requirements described in Section
2. Detection of boundaries and groups is one example of a common data analysis
task. If preattentive features can be used to help perform this task, VIS and other
real-time applications could employ this technique for effective real-time visual-
ization. Evidence that boundary detection and corresponding interference effects
occur as expected in a real-time environment would imply that other preattentive
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tasks €.g.,target detection, counting, and estimation) might also extend naturally.
The ability to encode multiple unrelated data values in a single display would allow
users to visualize multidimensional datasets, or to “share” the display, but only in
cases where no interference occurs.

We decided to examine two preattentive features, hue and form. This was done
by running experiments which displaydd x 14 arrays of coloured circles and
squares (Figures 6 and 7). These features are commonly used in existing visual-
ization software. Both hue and form have been shown to be preattentive by Tries-
man, JuEsz, and others [Je$sz and Bergen, 1983; Triesman, 1985]. Moreover,
Callaghan’s research has shown that hue exhibits a strong interference effect over
form during certain preattentive tasks. Understanding how hue and form interact in
a preattentive visualization environment is important.

Two different hues were chosen from the Munsell colour space. The Munsell
colour space was originally proposed by Albert H. Munsell in 1898 [Birren, 1969].

It was later revised by the Optical Society of America in 1943 to more closely ap-
proximate Munsell's desire for a functional and perceptually balanced colour sys-
tem. A colour from the Munsell colour space is specified using the three “dimen-
sions” hue, value, and chroma (Figure 5). Hue refers to ten uniguely identifiable
colours such as red, blue, or blue-green. Individual hues are further subdivided into
ten subsections. The number before the hue specifies its subsectjgbR, 2B,

or 9BG). Value refers to a colour’s lightness or darkness. It ranges from one (black)
to nine (white). Chroma defines a colour’s strength or weakness. Greys are colours
with a chroma of zero. A chroma'’s range depends on the hue and value being used.
A Munsell colour is specified by “hue value/chroma”. For example, 5R 6/6 would
be a relatively strong red, while 5BG 9/2 would be a weak cyan.

Since Munsell is a perceptually balanced colour space, it can be used to choose
hues which are isoluminent. This is necessary, since intensity itself is a preatten-
tive feature, and therefore must be equal for both hues. The exact hues we used
were a red (Munsell 5R 7/8) and a blue (Munsell 5PB 7/8). Previous experiments
ensured that the perceived difference between these two hues was large enough to
be preattentively detected. Healey et al. [1993] describes how this was done.

The experiment was split into two subsectionsd®d B, of 200 trials each. The
first subsection tested a subject’s ability to detect a horizontal boundary defined by
hue {.e.,red and blue). The second subsection tested a subject’s ability to detect a
horizontal boundary defined by formd., circle and square). Each trial was meant
to simulate searching for a horizontal boundary while visualizing real-time data. A
trial consisted of 18 separate data frames displayed to the subject one after another.
Each frame was shown for a fixed amount of time (between 50 and 150 msec)
which was chosen before the trial started. After viewing a trial, users were asked
to indicate whether a frame containing a horizontal boundary had been present
or absent. For “boundary present” trials, one of the 18 data frames was randomly
chosen to contain a horizontal boundary. The remaining frames displayed a random
pattern of features (with no horizontal boundary present). In “boundary absent”
trials, all 18 frames displayed a random pattern of features; no frame contained a
horizontal boundary.
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Figure 5: Munsell colour space, showing its three dimensions hue, value, and chroma

Trials in each subsection were divided equally between control trials, where a
secondary feature was fixed to a specific constant value, and experimental trials,
where a secondary feature varied randomly from element to element. This allowed
us to test for feature interference. Better performance in control trials versus experi-
mental trials would suggest that using a secondary feature to encode an “irrelevant”
data value interfered with a subject’s boundary detection ability. We tested for both
form interfering with hue boundary detection and hue interfering with form bound-
ary detection. This experiment design gave us the following six subsections:

1. hue-circle contral horizontal boundary defined by hue, all elements are cir-
cles (Figures 6a - 6hb).

2. hue-square controlhorizontal boundary defined by hue, all elements are
squares (Figures 6c¢ - 6d).

3. hue-form experimentalhorizontal boundary defined by hue, half the ele-
ments are randomly chosen to be circles, half to be squares (Figures 6e - 6f).

4. form-red contro] horizontal boundary defined by form, all elements are red
(Figures 7a - 7b).

5. form-blue control horizontal boundary defined by form, all elements are blue
(Figures 7c - 7d).

6. form-hue experimentahorizontal boundary defined by form, half the ele-
ments are randomly chosen to be red, half to be blue (Figures 7e - 7f).

Six subjects (five males and one female, aged 21 to 33) with normal or corrected
acuity and normal colour vision volunteered to be tested. The experiments were
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Figure 6: Example data frames from subsectieroBthe boundary detection experiment (hue bound-
ary detection): (a) control trial with all circles, boundary present; (b) control trial with all circles,
boundary absent; (c) control trial with all squares, boundary present; (d) control trial with all squares,
boundary absent; (e) experimental trial with random form, boundary present; (f) experimental trial
with random form, boundary absent
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Figure 7: Example data frames from subsectiondB the boundary detection experiment (form
boundary detection): (a) control trial with all red, boundary present; (b) control trial with all red,
boundary absent; (c) control trial with all blue, boundary present; (d) control trial with all blue,
boundary absent; (e) experimental trial with random hue, boundary present; (f) experimental trial
with random hue, boundary absent
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conducted in the Computer Science Department’s computer graphics laboratory,
using a Silicon Graphics workstation equipped with a 21-inch colour display. The
software used to conduct the experiments was written specifically to investigate
preattentive visualization techniques. It used the display’s vertical refresh to en-
sure accurate millisecond timing. Each subject completed both subsections of the
experiment with three different frame exposure durations: 50 msec, 100 msec, and
150 msec.

At the beginning of the experiment, subjects were shown a sample display frame.
The experiment procedure and task were explained. Subjects were also shown how
to enter their answers (either “present” or “absent”) using the keyboard. Subjects
began both subsections of the experiment with a set of practice trials. This con-
sisted of 40 trials, 20 control trials split evenly between the two types of controls
(i.e., ten trials with all circles and ten trials with all squares for subsectipntéh
trials with all red and ten trials with all blue for subsectiog) And 20 experimental
trials. Ten control trials and ten experimental trials contained a horizontal bound-
ary; the remaining trials did not. Exposure duration for practice trials was 100
msec per frame. The practice trials were designed to give the subjects an idea of
the speed of the trials and the experiment. Trials were displayed one after another,
and subjects were asked whether a horizontal boundary had been present or absent
after each trial. If a subject responded correctly, a plus sign was shown following
the response. If a subject responded incorrectly, a minus sign was shown. Feedback
(plus or minus) was displayed in the center of the screen for 400 msec, at a size of
approximately twice that of a single data element (1.2 cm or subtending a visual
angle of 1.2 at 60 cm).

Next, subjects completed the two experiment subsectigrenBl B,. Each sub-
section consisted of 100 control trials and 100 experimental trials. Fifty control
trials and 50 experimental trials contained a horizontal boundary; the remaining
trials did not. The 200 trials from each subsection were presented to the subjects
in a random order. Subjects were provided with an opportunity to rest after every
50 trials. Feedback (plus or minus) was displayed after every subject response.
Subjects completed both subsections three times using three different exposure du-
rations: 50 msec per frame, 100 msec per frame, and 150 msec per frame. Frames
with a given exposure duration were presented to subjects as a separatesggqup (

a subject completed all the 100 msec frames, followed by the 50 msec frames, then
finished with the 150 msec frames). The ordering of the three exposure duration
groups was random for each subject.

4.1 Results

The primary dependent variable examined was percentage error. Error was zero for
trials where subjects responded correctly, and one for trials where they responded
incorrectly. We began our analysis by dividing trials across the following exper-
imental conditions, averaging response errors for each subject, then computing a
mixed-factors ANOVA on the results:

¢ feature typehueif a difference in hue defined the horizontal bound&oym
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if a difference in form defined the horizontal boundary

e trial type; control if the secondary feature was fixed to a constant vaue,
perimentalif it varied randomly from element to element

¢ block; BK; if a trial came from the first 100 trials the subject complet@id;
if it came from the last 100 trials

e exposure50, 100 or 150msec, depending on a trial’s display duration

¢ location of boundary frame (for experimental trials which contained a bound-
ary frame);front if the boundary frame appeared during the first nine frames
shown the the subjedbackif it appeared during the last nine frames

Main effects with g-value of less than 5% were considered significant. Results
from the ANOVA suggested the following conclusions:

e rapid and accurate boundary detection can be performed using either hue or
form; errors increased when exposure duration fell below 100 msec for both
hue and form boundary detection

e form did not interfere with a subject’s ability to detect a hue boundary at
either 150 or 100 msec

¢ hue interfered with a subject’s ability to detect a form boundary at both 150
and 100 msec

e accuracy was greater for hue than form, with this difference growing as ex-
posure duration decreased

¢ there was no preference for the frame location of the target during either hue
or form boundary detection

Figure 8 shows combined subject data for subsectignghe boundary detec-
tion) and B, (form boundary detection). The results indicate that hue boundary
detection was quite accurate at all three exposure durations, with the most errors
(about 13%) occurring in the experimental trials at 50 msec. Although errors for
form boundary detection were uniformly higher than for hue boundary detection,
subjects were still quite accurate at 100 msec (approximately 9%). Past that point,
error rapidly approaches the chance limit of 50%, with an error rate of 36% at 50
msec.

Errors were generally higher for the form task than for the hue task,m(ith10) =
46.51, p = 0.001. The feature type by exposure duration interactiof’ (i, 20) =
45.54, p = 0.001 was also significant. Additiondf'-values were computed to see
how error varied across feature type( hue and form) during the three exposure
durations. In two of the three individual comparisons, hue accuracy was signifi-
cantly greater than form accuracgy-¥alues ranged from.02 to 0.001). The one
exception concerned 150 msec trials, whBfeé, 5) = 2.04, p = 0.19. Differences
in accuracy increased as exposure duration decreased, suggesting that the perceived
difference between our two hues was larger than the perceived difference between
a circle and a square.

ANOVA results of F(1,10) = 16.34, p = 0.02 showed a significant difference
in errors between control and experimental trials. A feature type by trial type in-
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Figure 8: Graph of proportional error as a function of exposure duration for hue and form boundary
trials; numbers represent exact proportional error values for each data point

teraction ofF'(1,10) = 3.56, p = 0.09 suggested interference was present during
both hue and form boundary detection. Moreover, a trial type by exposure duration
interaction of F'(1,10) = 1.10, p = 0.35 indicated interference at all three ex-
posure durations. Simpletests comparing control and experimental trials across
exposure duration showed weak interference (at a significance level of 10%) dur-
ing form boundary detection for 100 and 150 msec trials. Thus, the hue-on-form
interference effect must be considered small, albeit consistent. Corresponding re-
sults for hue boundary detection found weak interference (at a significance level of
10%) for 50 msec trials. This is similar to Callaghan’s [1989, 1990] static bound-
ary detection experiments, although weak hue interference during form boundary
detection was not reported in her results.

There was a significant exposure duration effétt,, 10) = 197.66, p = 0.001.
Individual F-values for the four conditions shown in Figure 8 (form boundary ex-
perimental, form boundary control, hue boundary experimental, and hue boundary
control) were allp = 0.001. Fisher’s protected least significant difference (PLSD)
values identified significant differences between exposure durations00) and
(50, 150) in all four conditions, but not betweg00, 150). We concluded that the
high F-values were due to relatively higher errors during the 50 msec trials.

Finally, the results showed no boundary frame location preference for either hue
(F(1,5) = 2.37, p = 0.18) or form (F'(1,5) = 0.05, p = 0.83) boundary detec-
tion. Moreover, there was no consistent effect of trial block. Whereas errors actu-
ally increased from BKto BKj in the hue conditionF'(1,5) = 17.44, p = 0.01,
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they decreased (non-significantly) over time in the form conditibil,5) =

5.51, p = 0.07. There were no other significant interactions of the block factor
with other factors of interest. We can draw no conclusions about the effects of
practice or fatigue without performing additional experiments.

5. EXPERIMENT 2: TEMPORAL TARGET DETECTION

We continued our investigation of real-time preattentive visualization by studying
temporal target detection. Our second experiment addressed two additional ques-
tions about preattentive features and their use in our visualization tools.

e Question 1:Is it possible for subjects to detect a data frame containing a
unique target element in a sequence of random frames? If so, what features
allow this and under what conditions?

¢ Question 2:Does any interference occur when viewing a dynamic sequence
of data frames? Specifically, does random hue interfere with form target
detection? Does random form interfere with hue target detection?

As with temporal boundary detection, these questions are specifically designed
to address our visualization requirements. The ability to perform target detection
using preattentive features would provide further justification for their use in VIS
and other real-time applications. Our experiments also searched for any new types
of interference which might occur as a result of viewing a dynamic sequence of
data frames during visualization.

We chose to test the same two visual features (hue and form) used during the
boundary detection experiments. Target detection experiments consisted of frames
containing 125 elements (Figures 9 and 10). The position of the elements was held
constant in every frame. Hue and form were the same as in the boundary detection
experiments, specifically a red (Munsell 5R 7/8) and a blue (Munsell 5PB 7/8) hue,
a circle and a square form.

As in the first experiment, temporal target detection was split into two subsec-
tions T; and T, of 200 trials each. The first subsection tested a subject’s ability
to detect a target element defined by hue. The second subsection tested a subject’s
ability to detect a target element defined by form. Each trial was meant to simulate
searching for a target element while visualizing real-time data. A trial consisted
of 18 separate data frames, which were displayed to the subject one after another.
Each frame was shown for a fixed amount of time (either 50 or 100 msec) which
was chosen before the trial started. After viewing a trial, users were asked to in-
dicate whether a frame containing the target element had been present or absent.
For “target present” trials, one of the 18 data frames was randomly chosen to con-
tain the target element. The remaining frames did not contain a target element. In
“target absent” trials, none of the 18 frames contained a target element.

As with boundary detection, we tested for feature interference by dividing each
subsection into control and experimental trials. In control trials, the secondary fea-
ture was fixed to a specific constant value; in experimental trials, it varied randomly
from element to element. We tested for both form interfering with hue target detec-
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Figure 9: Example data frames from subsectianoT the target detection experiment (hue target
detection): (a) control trial with all circles, target present; (b) control trial with all circles, target
absent; (c) control trial with all squares, target present; (d) control trial with all squares, target absent;
(e) experimental trial with random form, target present; (f) experimental trial with random form,
target absent
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Figure 10: Example data frames from subsectigrofithe target detection experiment (form target
detection): (a) control trial with all red, target present; (b) control trial with all red, target absent; (c)
control trial with all blue, target present; (d) control trial with all blue, target absent; (e) experimental
trial with random hue, target present; (f) experimental trial with random hue, target absent
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tion, and hue interfering with form target detection. This gave us the following six
subsections:

1. hue-circle contraltarget element is ared circle, all distractors are blue circles
(Figures 9a - 9b).

2. hue-square controltarget element is a red square, all distractors are blue
squares (Figures 9c - 9d).

3. hue-form experimentatarget element is a red circle, half the distractors are
randomly chosen to be blue circles, half to be blue squares (Figures 9e - 9f).

4. form-red contro] target element is a red circle, all distractors are red squares
(Figures 10a - 10b).

5. form-blue contral target element is a blue circle, all distractors are blue
squares (Figures 10c - 10d).

6. form-hue experimentatarget element is a red circle, half the distractors are
randomly chosen to be red squares, half to be blue squares (Figures 10e -
10f).

Six subjects (five males and one female, aged 21 to 33) with normal or corrected
acuity and normal colour vision were tested. Five of the six subjects also partici-
pated in Experiment 1. At the beginning of the experiment, subjects were shown
a sample display frame. The experiment procedure and task were explained. Sub-
jects were shown how to enter their answers (either present or absent) using the
keyboard. Subjects began both subsections of the experiment with a set of practice
trials similar to those for the boundary detection experiments. Exposure duration
for practice trials was 100 msec per frame. Trials were displayed one after another.
Subjects were asked whether a target element had been present or absent for each
trial. Correct or incorrect responses were signaled by a plus or a minus sign.

Next, subjects completed the two experiment subsectigrend T,. Each sub-
section consisted of 100 control trials and 100 experimental trials. Fifty control
trials and 50 experimental trials contained a target element; the remaining trials did
not. The 200 trials from each subsection were presented to the subjects in a ran-
dom order. Subjects were provided with an opportunity to rest after every 50 trials.
Feedback (plus or minus) was displayed after every response. Subjects completed
both subsections two times using two different exposure durations: 100 msec per
frame and 50 msec per frame.

5.1 Results

The primary dependent variable was again percentage error. A mixed-factors ANOVA
was computed across the same conditions used for analysing boundary detection.
The only difference was the number of possible values for exposure dur&tion:

or 100msec, depending on the trial's display duration. Results from the ANOVA
can be summarized as follows:

e rapid and accurate target detection could be performed using hue at both 50
and 100 msec exposures
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Figure 11: Graph of proportional error as a function of exposure duration for hue and form target
trials; numbers represent exact proportional error values for each data point

e similar rapid and accurate target detection based on form was possible only
when hue was held constant

e form variations did not interfere with the ability to detect a hue-defined target
¢ hue variations did interfere with the ability to detect a form-defined target

¢ there was no preference for the frame location of the target during either hue
or form target detection

Figure 11 graphs combined subject data for subsectigifsule target detection)
and T, (form target detection). The results show that hue target detection is very
accurate at both exposure durations for control and experimental trials (a maximum
of 1% error). In contrast, form target detection was very accurate for control trials
(3% error), but not for experimental trials (24% error at 100 msec and 27% error at
50 msec). There were no significant effects of exposure duration in any of the four
conditions.

A feature type by trial type interaction &f(1, 10) = 62.52, p = 0.001 suggests
interference during one of the two target detection tasks. The difference in errors
between control and experimental trials was significant in the form fagk,5) =
103.58, p = 0.001, but not in the hue taskf'(1,5) = 1.62, p = 0.26. There was
no feature type by trial type by exposure duration interactidfi, 10) = 0.39, p =
0.55. Thus, as with our boundary detection task and Callaghan’s [1989, 1990]
static displays, random hue interferes with form target detection at both exposure
durations, while random form does not interfere with hue target detection at either
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exposure duration. This provides further evidence for concluding that the perceived
difference which can be obtained by using two hues is larger than the difference
obtained from a circle and a square.

Figure 11 shows that errors were generally higher for the form task than for the
hue task. ANOVA results supported this, wiit{1, 10) = 46.51, p = 0.001. There
was no feature type by exposure duration interactiofi,, 10) = 0.10, p = 0.76.

This means hue target detection was easier than form target detection at both expo-
sure durations. Combined with hue interference during form target detection, this
suggests that hue should be used as a primary feature when searching multidimen-
sional data elements for a specific target.

As with the boundary detection task, there were no frame location effects for
either hue,F'(1,5) = 1.26, p = 0.31, or form, F(1,5) = 1.04, p = 0.35. The
effects of trial block were again mixed. Errors were lower in,BE = 0.06) than
in BK, (T = 0.14), F(1,5) = 56.81, p = 0.001 for form targets, but did not differ
significantly for hue targetd’(1,5) = 0.79, p = 0.41. There were no significant
interactions of trial block with other factors of interest.

6. PRACTICAL APPLICATIONS

As discussed in the introduction, our long-term goal is to provide general guidelines
which can be used for the design of visualization systems. Behavioral experiments
give us an opportunity to investigate the strengths and limitations of different de-
signs in the context of simple datasets and visual tasks. Extending these results to
a practical application is a non-trivial problem. However, even the limited results
reported here can be used to help design real-world visualization applications. We
discuss two such cases below. First, we describe a visualization system designed
to help analyse results from salmon tracking simulations being conducted in the
Department of Oceanography. Next, we discuss how our techniques might be used
to visualize slice data from medical imaging systems like CT, PET, or MRI.

6.1 Salmon Tracking Simulations

Researchers in the Department of Oceanography at UBC are running various simu-
lations to study the movement and migration patterns of sockeye salmon [Thomson
et al., 1992; Thomson et al., 1994]. Salmon live in a number of different areas, in-
cluding the western Canadian coast. A salmon’s life-cycle consists of four stages.
Salmon eggs hatch in freshwater lakes and rivers. The juveniles spend up to a year
feeding and growing, after which they move downstream to the Pacific coast. They
continue to an open ocean habitat, where they feed and grow for two to three years.
Finally, the salmon begin their migration run. This consists of an open ocean stage
back to the British Columbia coast and a coastal stage back to a freshwater stream
to spawn. Salmon almost always spawn in the stream where they were born. Scien-
tists now know that salmon find their stream of birth using smell when they reach
the coast.

Many questions about how salmon move during their life-cycle remain unan-
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swered. For example, scientists know that salmon which were born in a specific
part of a river system feed in the open ocean as a group (or stock, as itis commonly
called). Scientists want to identify the regions used by each stock of salmon, but
these are currently undefined. Another question concerns the methods used to nav-
igate from the open ocean back to the coast during the salmon’s migration run.
Oceanographer’s simulations study the hypothesis that temperature, salinity, and
ocean currents affect migration patterns. Our initial work in this area involved
the design of tools to help analyse results from these simulations [Healey et al.,
1993; Healey et al., 1996].

Another important area of investigation is the effect of ocean temperature on
salmon movement patterns. Scientists know that salmon will not enter water which
is above a certain temperature; in fact, they often sit directly along the “boundary
temperature” gradient. The cutoff temperature changes in a seasonal manner. Ques-
tions the scientists would like to answer include: “What is the boundary tempera-
ture for a given season?”, “How is the boundary temperature affected by changes in
season?”, and perhaps more fundamentally, “How do salmon measure water tem-
perature?”

Datasets and simulation models to study these questions are currently being
designed by the oceanographers. For example, simulated salmon can be “pro-
grammed” with a set of rules which dictate their movement. Movement rules might
include how fast the fish swim, how much time they spend resting, and how en-
vironmental conditions like salinity and ocean current affect their swim patterns.
Daily temperature values for uniform positions in the ocean from 1945 to 1994
are available in a large dataset. If a boundary temperature is chosen, positions in
the ocean can be divided into two possible values, “hot” or “cold”. The simulated
salmon will then “swim” through the ocean, day by day, and oceanographers can
check to see if the fish avoid hot areas as expected. The question we must answer
is “How can we effectively visualize the simulation data, to allow the scientists to
easily track the salmon as they move?”

Tracking groups of salmon involves both target detectian, finding and fol-
lowing a group made up of multiple target elements) and boundary detetcéagn (
identifying the boundary of the target group or groups). One possible visualization
method is to encode salmon location and ocean temperature using hue and form.
At each position in the ocean a fish is either present or absent, and the tempera-
ture is either hot or cold. Our experimental results suggest hue dominates form
during both target and boundary detection. Since we are interested in following
the position of the salmon, this data value should be encoded using hue. Ocean
temperature, which is a secondary value, should be encoded using form.

Figure 12 shows four sample frames from our visualization tool. Ocean locations
which contain salmon are coloured red. Empty locations are coloured blue. The
group of salmon appears as a red “blob” moving through the ocean from frame
to frame. Ocean temperature is encoding using form. Hot regions are drawn as
circles, and cold regions are drawn as squares. It is interesting to note that this
choice of data-feature mapping is somewhat counterintuitive. Normally, hot and
cold are encoding using red and blue. In spite of this, it is very easy to follow the
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Figure 12: Sample frames from oceanography simulations: a group of salmon splits to avoid a high
temperature region; salmon represented by hue (red for present, blue for absent) and temperature
represented by form (circle for hot, square for cold)
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Figure 13: Sample frames from oceanography simulations: a group of salmon splits to avoid a high
temperature region; salmon represented by form (square for present, circle for absent) and tempera-
ture represented by hue (red for hot, blue for cold)



ACM TOMACS 5, 3, July 1995, 190-221 HEALEY, BOOTH, ENNS

movement of the salmon group. For example, it is clear that the group begins to
split in frames two and three. Closer inspection of these frames reveal that the fish
are dividing to avoid a high temperature region.

Figure 13 shows the same four sample frames with the data-feature mapping re-
versed. Temperature is now encoded using hue, with red representing hot areas,
and blue representing cold areas. Salmon position is drawn using form. Squares
represent positions containing fish, and circles represent empty locations. In this
example, the prominent pattern is the ocean temperature, which moves with the
current from frame to frame. It requires significantly more effort to find the salmon
group. If frames were displayed at a reasonable spegd 100 msec per frame)
it would probably be difficult to follow the group as it moved, split, or merged. It
is possible that the addition of motion would remove some or all of the interfer-
ence which occurs in the individual frames, although our results on random hue
interfering with form boundary detection suggest this is unlikely.

In both Figure 12 and Figure 13, we assume the user is searching for frames
which contain events of interest. The user will probably stop at these frames to
examine them in more detail. For example, in Figure 12 the user might be looking
for frames where groups of salmon divide, to investigate whether high temperature
regions are causing the split. The user could also search for salmon which stray
into hot areasif(e., red circles), since their presence or absence could contradict
or support the hypotheses being proposed. The displays might be simplified by
removing one type of element, for example, empty cold temperature regions. This
would leave empty hot regions as blue circles, cold regions containing fish as red
squares, and hot regions containing fish as red circles. Blank space would represent
empty cold regions. Experiments could investigate whether this type of “reduced
display” yielded better user performance during high-speed visual analysis.

6.2 Medical Imaging Systems

Advanced medical imaging systems like CT, MRI, and PET are now becoming
reasonably wide-spread in hospitals and other medical institutions. A key concern
is the effective analysis of output from these machines. Data is gathered by taking
two-dimensional “slices” through the body. Orientation, interslice spacing, and
other characteristics of the slices are controlled by the operator.

Various methods have been proposed to visualize slice data. One technique in-
volves placing individual slices “side-by-side” for examination. Pairs or groups
of slices are sometimes combined to study various hypothesgstite difference
between pairs of PET slices are used to search for high activity regions in the brain).

Other methods attempt to reconstruct and display the original volume from the
individual slices. Yagel et al. developed a method which interpolates slice data into
a set of discretized volume elements (voxels) using a scan-conversion algorithm
[Yagel et al., 1991]. The resulting volumes are rendered and displayed using a
modified ray-tracing technique. Users can then perform a variety of constructive
solid geometry operation®.@.,dissection, clipping, filtering, and thresholding) to
see what is inside the object.
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Figure 14: Example output from a medical imaging system, showing individual slices, the slice axis,
and a region of interest marked on some or all of the individual slices

Another way of looking inside an object is to make the outer layers of the object
semi-transparent. This allows us to see through these layers to whatever lies inside
the model. Drebin et al. used this technique to visualize medical images. The
body’s outer surfaces (tissue and fat) are rendered as though they are transparent.
The inner surfaces (bone) are solid [Drebin et al., 1988]. The resulting image is
a skeleton surrounded by a semi-transparent “skin”. Users can thus obtain visual
information about both the surface and the interior of the body being displayed.
Although Drebin divided his volumes into rectangular voxels, new methods have
been proposed to simplify volume representation, thereby reducing the amount of
time required to render and manipulate the volume [Ranjan and Fournier, 1994].

A simpler method of examining the volume is to move through it along some
user-defined axis. At each step, a two-dimensional “cut” through the volume is dis-
played. If we choose to move along the slice axis, the problem is further simplified,
since the original slices can simply be shown one after another. This is analogous
to our dynamic visualization technique; each slice would be displayed for a fixed
exposure duration, allowing the user to rapidly scan through the volume.

There are potential advantages to using this type of two-dimensional visualiza-
tion method. It is often difficult with side-by-side displays to compare images
which are not adjacent to one another. A dynamic visualization technique allows
the user to detect subtle changes in the area, boundary, or makeup of regions of
interest. Displaying two-dimensional frames requires very little computing power
compared to reconstructing, displaying, and manipulating a three-dimensional vol-
ume. Two-dimensional displays avoid the problem of occlusion. Moreover, some
tasks are easier to perform on two-dimensional images. Estimating area, for exam-
ple, is easier than estimating volume.
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Results from our experiments can be used to help choose a data-feature map-
ping for dynamically displaying the slice data. If users are trying to detect target
elements, or find and track regions of interest, these should be encoded using hue.
Secondary information can be displayed using different foreng.(circles and
squares).

7. CONCLUSIONS AND FUTURE WORK

Results from our work provide a number of guidelines for the use of hue and form
in real-time visualization. Hue can be used to perform rapid and accurate boundary
and target detection. Form can be used to perform boundary detection, but it can-
not be used as readily to perform target detection if a secondary data dimension is
encoded with hue. If a user wants to perform real-time multidimensional visualiza-
tion, hue should be used to encode the primary data dimension being investigated.
Secondary data dimensions can be encoded with form. This will not interfere with
boundary and target detection tasks performed using hue.

Multidimensional data often contains more than two data values to be encoded
at each spatial location. As we have shown, tools which support the visualization
of multiple data dimensions must deal with a potential interaction between some
or all of the features being used to represent the dimensions. Rather than trying to
avoid this, we can sometimes control the interaction and use it to our advantage.
For example, Pickett and Grinstein have used texture to represent high-dimensional
data; each dimension controls one aspect of a texture element displayed to the
user. Another promising avenue of investigation involves emergent features. A
careful choice of simple features will allow a target element or a region of similar
data elements to be detected preattentively [Pomerantz and Pristach, 1989], thereby
signalling a correlation of variables in the data. Figure 15 shows one possible
example of this technique. In the salmon tracking simulations described in section
6.1, scientists search for salmon entering hot ocean regions. This correlation of hot
and present combines to form an an emergent feature, closure. Since background
elements (hot-absent, cold-present, and cold-absent) do not have closure, the target
salmon can be easily detected.

Another important question is how to encode dimensions which are more than
two-valued {.e., truly multi-valued or continuous dimensions). One method for
representing a multi-valued dimension is to divide its visual feature space into more
than two unique values. Research in preattentive processing has already studied
some aspects of this problem. For example, it is easy to detect a tilted rectangle in
a field of flat or upright rectangles (or vise-versa). However, in a situation where
both the target and distractors are tiltedg(,target is tilted 13 and distractors are
tilted 75°), detection is much more difficult. Wolfe suggests orientation might be
divisible into only four categories: steep, flat, left, and right [Wolfe et al., 1992].
Another example is the division of hue feature space. Experiments have studied the
effect of dividing hue into multiple values. When a target used a hue which could
be separated from the distractors by a straight line in colour space, detection was
rapid and accurate. However, when the target used a hue which was collinear in
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Figure 15: Example of output from salmon tracking simulations: salmon in hot ocean regions are
displayed with an emergent feature closure; these can be detected since the three background objects
do not use closure

this space with its distractors, detection was significantly more difficult [D’Zmura,
1991]. This suggests that hue feature space can be divided into multiple values, but
that the target (or targets) must be “linearly separable” from their distractors. We
plan to study both of these effects in the context of our visualization environment.

There are a number of important extensions which we would like to pursue,
related specifically to real-time visualization using preattentive features. Additional
preattentive tasks such as estimation and counting should be investigated to see if
they extend to a temporally animated visualization environment. Other features,
such as intensity and size, could also be tested to see if they can be used for the
boundary and target detection tasks. Experiments using intensity and hue would
confirm whether Callaghan’s intensity-hue interference effects [Callaghan, 1984]
are present in our real-time visualization tools.
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