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A new method is presented for performing rapid and accurate numerical estimation. The
method is derived from an area of human cognitive psychology called preattentive process-
ing. Preattentive processing refers to an initial organization of the visual field based on
cognitive operations believed to be rapid, automatic, and spatially parallel. Examples of
visual features that can be detected in this way include hue, intensity, orientation, size, and
motion. We believe that studies from preattentive vision should be used to assist in the de-
sign of visualization tools, especially those for which high speed target detection, boundary
identification, and region detection are important. In our present study, we investigated two
known preattentive features (hue and orientation) in the context of a new task (numerical
estimation) in order to see whether preattentive estimation was possible. Our experiments
tested displays that were designed to visualize data from salmon migration simulations.
The results showed that rapid and accurate estimation was indeed possible using either hue
or orientation. Furthermore, random variation in one of these features resulted in no inter-
ference when subjects estimated the percentage of the other. To test the generality of our
results, we varied two important display parameters, display duration and feature differ-
ence, and found boundary conditions for each. Implications of our results for application
to real-word data and tasks are discussed.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]:
User Interfaces–ergonomics, screen design (graphics, colour); I.3.6 [Computer Graph-
ics]: Methodology and Techniques–ergonomics, interaction techniques

General Terms: Experimentation, Performance

Additional Key Words and Phrases: boundary detection, cognitive psychology, colour, es-
timation, icon, human vision, multidimensional data, Munsell, orientation, preattentive,
scientific visualization, target detection

1. INTRODUCTION

This article describes three experiments investigating the ability of humans to per-
form high-speed visual estimation of proportions or percentages (hereafter referred
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to as numerical estimation). This work is part of an ongoing study of techniques
that allow rapid and accurate visualization of large multidimensional datasets.

Scientific visualization is a relatively new subfield within the larger area of com-
puter graphics. The term “visualization” was first used in this sense by a National
Science Foundation (NSF) panel discussing the application of computer science to
problems of data analysis [McCormick et al., 1987]. The panel defined the “do-
main of visualization” to include the development of general purpose tools and the
study of research problems that arise in the process.

A variety of methods have been used to convert raw data into a more usable
visual format. Both Tufte [Tufte, 1990] and Collins [Collins, 1993] give an inter-
esting review of pre-computer visualization techniques. Many current systems are
now being extended to provide user interaction and real-time visualization of re-
sults [Bell and O’Keefe, 1987; Hurrion, 1980]. Specialized software tools such as
the Application Visualization System, apE, VIS-5D, and the Wavefront Data Visu-
alizer [Hibbard and Santek, 1990; Upson, 1989; Vande Wettering, 1990] have been
developed for computer graphics workstations. Diverse solutions for displaying
high-dimensional datasets in a low-dimensional environment such as the computer
screen have been proposed [Enns, 1990a; Enns, 1990b; Grinstein et al., 1989; Pick-
ett and Grinstein, 1988; Ware and Beatty, 1988].

A recent update on the NSF visualization report described current research be-
ing performed at a number of academic institutions [Rosenblum, 1994]. Although
many visual presentation techniques have been studied (e.g. volume visualization,
fluid flow, and perceptual visualization), much less work has focused on formulat-
ing guidelines for their design. Our work is intended to address this more general
issue.

We began by deliberately trying to take advantage of some of the built-in capabil-
ities of the human visual system. Preattentive vision refers to cognitive operations
that can be performed prior to focusing attention on any particular region of an
image. We hypothesised that results from research on this ability could be used
to assist in the design of visualization tools. Here, we use “visualization tools”
to refer to software programs that display data values on a computer screen using
simple visual features such as colour, shape, and size. Such tools, if properly de-
signed, should allow users to perform certain types of visual analysis very rapidly
and accurately. Tasks of interest include the detection of an element with a unique
characteristic, the grouping of similar data elements, and the estimation of the per-
centage of elements with a given value or range of values. We asked the following
specific questions:

� Can results from the existing literature on preattentive processing be used
to build visualization tools that permit rapid and accurate performance of
simple tasks such as target detection or boundary detection?

� Can these results be extended to include rapid and accurate numerical esti-
mation?

� How do changes in the display duration and the perceived feature difference
influence a user’s ability to perform numerical estimation?
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� Can results from our laboratory experiments be applied to real-world data
and tasks?

Previous work in preattentive processing can be applied directly to visualiza-
tion tools in which high-speed target and boundary detection are important [Healey
et al., 1995]. Results from the present study show that preattentive processing can
be extended to include high-speed visual estimation. They also point to important
boundary conditions on this ability. We used our results to build a tool for visualiz-
ing data from salmon migration simulations being conducted in the Department of
Oceanography. Anecdotal reports from users of this visualization tool are consis-
tent with our experimental findings.

Before describing our experiments and results, we provide a brief introduction
to research on preattentive processing.

2. PREATTENTIVE PROCESSING

One very interesting result of vision research over the past 20 years has been the
discovery of a limited set of visual properties that are processed preattentively (i.e.
without the need for focused attention). Typically, tasks that can be performed on
large multi-element displays in 200 milliseconds or less are considered preattentive.
This is because eye movements take at least 200 milliseconds to initiate. Any
perception that is possible within this time frame involves only the information
available in a single glimpse. Random placement of the elements in the displays
ensures that attention cannot be prefocused on any particular location. Observers
report that these tasks can be completed with very little effort.

A simple example of a preattentive task is the detection of a filled circle in a
group of empty circles (Figure 1a). The target object has the visual feature “filled”
but the empty distractor objects do not (all non-target objects are considered dis-
tractors). A viewer can tell at a glance whether the target is present or absent.

A conjunction target item is one that is made up of two or more features, only
one of which is contained in each of the distractors [Triesman, 1985]. Figure 1b
shows an example of conjunction search. The target is made up of two features,
filled and circular. One of these features is present in each of the distractor objects
(filled squares and empty circles). Numerous studies show that the target cannot
be preattentively detected, forcing subjects to search serially through the display to
find it.

One explicit goal of visualization is to present data to human observers in a way
that is informative and meaningful, on the one hand, yet intuitive and effortless
on the other. Multidimensional data visualization is concerned with the question
“How can we display high-dimensional data elements in a low-dimensional envi-
ronment, such as on a computer screen or the printed page?” This goal is often
pursued by attaching “features” such as hue, intensity, spatial location, and size to
each data element. Features are chosen to reveal properties of data elements as well
as relationships among them. An ad hoc assignment of features to individual data
dimensions may not result in a useful visualization tool. Indeed, too often the tool
itself interferes with the viewer’s ability to extract the desired information due to
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(a) (b)

Figure 1: Examples of two target detection tasks: (a) target can be detected preattentively because
it possess the feature “filled”; (b) target cannot be detected preattentively because it has no visual
feature that is unique from its distractors.

a poor choice of feature assignment. Direct tests of preattentive vision are often
required to determine exactly how different features will interact within a visual-
ization environment.

A good example of this problem is shown in Figure 2. In the first display, hue
is used to divide the elements into two groups (i.e. a red group and a blue group).
Form varies randomly from element to element. Tests show it is easy for subjects
to identify the hue boundary as either vertical or horizontal. In the second display,
the data-feature mapping has been reversed. Form is used to group the elements,
and hue varies randomly across the array. It is much harder for subjects to identify
the form boundary in these displays. Moreover, it would be difficult to guess be-
forehand which data-feature mapping would have provided the best performance.
Previous studies in preattentive processing could have been used to predict the out-
come.

The visual interference shown in Figure 2 was originally described by Callaghan
[Callaghan, 1989]. She found that varying hue within a display region interfered
with boundary detection based on form (Figure 2b). It took subjects significantly
longer to identify a boundary as horizontal or vertical, relative to a control array
where hue was held constant. However, random variation of form did not interfere
with hue segregation (Figure 2a). A hue boundary could be identified preattentively,
regardless of whether form varied or not. Callaghan found a similar asymmetry
in feature interference between intensity and hue [Callaghan, 1984]. Variation of
intensity interfered with hue segregation, but variation of hue did not interfere with
intensity segregation.

Feature interference is one example of a result that should be carefully con-
sidered when designing visualization tools, particularly those which are used to
display data regions or boundaries. Studies are currently being conducted to see
whether this effect extends to other visualization tasks, such as target detection or
numerical estimation.

Figure 3 lists some of the visual features that have been used to perform preat-
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(a) (b)

Figure 2: Region segregation by form and hue: (a) hue boundary is identified preattentively, even
though form varies randomly in the two regions; (b) random hue variations interfere with the identi-
fication of a region boundary based on form.

tentive tasks. Literature on preattentive processing describes in detail the various
properties of the features, and the tasks for which they can be used. These results
can be applied directly to visualization tools that need to perform high-speed target,
boundary, or region detection.

A number of scientists have proposed specific theories to explain how preat-
tentive processing occurs. Among the more influential of these have been Tries-
man’s feature integration theory [Triesman, 1985], Jul´esz’ texton theory [Jul´esz and
Bergen, 1983], Quinlan and Humphreys’ similarity theory [Quinlan and Humphreys,
1987], and Wolfe’s guided search theory [Wolfe, 1994]. Although the differences
in these theories have potentially very important consequences for the actual cogni-
tive operations involved, they need not concern us here, since our interest is in the
use of visual features that all of these theories agree can be processed preattentively.

3. SALMON MIGRATION SIMULATIONS

The experimental displays we tested were motivated by the need to examine data
generated from salmon migration simulations being conducted in the Department
of Oceanography at the University of British Columbia [Thomson et al., 1992;
Thomson et al., 1994]. Salmon are a well-known fish that are found, among other
areas, on the western coast of Canada. The life history of a salmon consists of
four stages: birth, freshwater growth stage, ocean growth stage, and migration and
spawning. Salmon are born as fry in freshwater rivers and streams. After birth,
the fry spend time feeding and maturing before swimming downstream to the open
ocean. Upon reaching the ocean, the salmon moves to its “open ocean habitat”,
where it spends most of its ocean life feeding and growing. For example, sockeye
salmon are thought to feed in the Subarctic Domain, an area of the Pacific Ocean
north of 40Æ latitude stretching from the coast of Alaska to the Bearing Sea. After a
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Feature Author

line (blob) orientation Julész & Bergen [1983]; Wolfe [1992]
length Triesman & Gormican [1988]
width Julész [1985]
size Triesman & Gelade [1980]
curvature Triesman & Gormican [1988]
number Jul´esz [1985]; Trick & Pylyshyn [1994]
terminators Jul´esz & Bergen [1983]
intersection Jul´esz & Bergen [1983]
closure Enns [1986]; Triesman & Souther [1985]
colour [hue] Triesman & Gormican [1988]; Nagy & Sanchez [1990];

D’Zmura [1991]
intensity Beck et al. [1983]; Triesman & Gormican [1988]
flicker Julész [1971]
direction of motion Nakayama & Silverman [1986]; Driver & McLeod [1992]
binocular lustre Wolfe & Franzel [1988]
stereoscopic depth Nakayama & Silverman [1986]
3-D depth cues Enns [1990]
lighting direction Enns [1990]

Figure 3: A list of two-dimensional features that “pop out” during visual search, and a list of authors
who describe preattentive tasks performed using the given feature.

period of one to six years, salmon begin their return migration. This consists of an
open ocean stage where they swim back to the British Columbia coast and a coastal
stage where they swim back to a freshwater stream to spawn. This is almost always
the same stream in which they were born. Scientists now know salmon find their
stream of birth using smell when they reach the coast.

The ocean phase of salmon migration is not as well understood. It is recognized
that it is rapid, well directed, and well timed. Previous work has examined the
climate and ocean conditions during migration to see how they affect the position
where Fraser River salmon arrive at the British Columbia coast (hereafter point of
landfall). The entrance to the Fraser River is located on the southwest coast of B.C.,
near Vancouver (Figure 4). Generally, if the Gulf of Alaska is warm, salmon will
make their point of landfall at the north end of Vancouver Island and approach the
Fraser River primarily via a northern route through the Johnstone Strait. When the
Gulf of Alaska is colder, salmon are distributed further south, making landfall on
the west coast of Vancouver Island and approaching the Fraser River primarily via
a southern route through the Juan De Fuca Strait. Research is being conducted to
determine the factors that drive this interannual variability.

Recent work in plotting ocean currents has provided scientists with a possible
explanation for salmon migration patterns. It has been speculated that the variabil-
ity of ocean currents has impact on where the salmon make their point of landfall.
A multi-institutional investigation has been initiated to examine the influences of
currents on open ocean return migrations of salmon using the Ocean Surface Cir-
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Figure 4: The British Columbia coast. Arrows represent the two possible migration paths for return-
ing salmon.

culation Simulation (OSCURS) model [Ingraham and Miyahara, 1988; Ingraham
and Miyahara, 1989]. OSCURS can recreate accurately ocean currents in the North
Pacific for any day during the years 1945 to 1990.

Possible return migration paths of the fish are plotted by placing 174 simulated
salmon at fixed locations in the open ocean (Figure 5a). The simulated salmon
use a “compass-oriented” rule to find their way back to the British Columbia coast.
Salmon take a single “look” before their migration run to determine the direction to
the coast. They use a biological compass to swim in this fixed direction, regardless
of external forces (i.e. ocean currents) that may shift their migration path. OSCURS
is used to apply daily ocean currents to the fish as they move towards the coast.
Oceanographers record the point of landfall for each salmon (Figure 5b). These
are compared with the actual distribution of fish for the given year (provided by the
Department of Fisheries and Oceans), to test the accuracy of the simulation.

3.1 Task Selection

We consulted with researchers in Oceanography to identify a suitable task for our
psychological experiments. We wanted to choose a task that was common during
visualization, but that still addressed a question of potential interest to the oceanog-
raphers. Part of this involved using results from the salmon migration simulations
during our experiments. Oceanographers hypothesize that a strong northerly cur-
rent flow will drive most salmon to a point of landfall north of Vancouver Island. It
follows that the majority of the fish will pass through the Johnstone Strait to arrive
at the Fraser River. This suggests that salmon migration routes can be predicted in
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(a)

(b)

Figure 5: Examples of output from OSCURS program: (a) dots represent starting positions of 174
simulated salmon; (b) trailer beginning at each salmon’s starting position tracks its path to the British
Columbia coast.
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part by studying prevailing ocean current patterns. We decided to ask subjects to
estimate the percentage of simulated salmon whose point of landfall was north of
some fixed latitude, since this was one of the visualization tasks being performed by
the oceanographers. Subjects were not informed that the data represented salmon
migration results. They were simply asked to estimate the number of elements with
a given visual feature.

Relative point of landfall (either north or south of the fixed latitude) was en-
coded on a two-dimensional map of the open ocean at the spatial position where
the salmon started its migration run. A preattentive feature was used to represent
relative landfall. For example, during one experiment salmon that landed north of
the fixed latitude were coloured blue, while salmon that landed south were coloured
red. Subjects were then asked to estimate the percentage of blue elements.

A second question we wanted to investigate was how preattentive features in-
terfered with one another. Callaghan’s experiments showed an interference effect
during a boundary detection task. We wanted to see if a similar effect existed when
subjects were performing estimation. We decided to use stream function as our
“interference” attribute, in part because the oceanographers are interested in visu-
alizing these values during their analysis. Given the stream function�(x; y), thex
andy components of the ocean current vector can be calculated asVx = @�

@x
and

Vy =
@�
@y

. The stream function is a scalar function whose gradient is the current (i.e.
the stream function is the potential function for the vector-valued current field). In
our experiments, stream function values were divided into two groups (low and
high) and encoded at each spatial location where a salmon started its migration run.
A second preattentive feature was used to represent stream function.

4. EXPERIMENT 1: PREATTENTIVE NUMERICAL ESTIMATION

Target detection, boundary detection, and grouping have been studied extensively
in the preattentive processing literature [Duncan and Humphreys, 1989; Jul´esz,
1981; Julész and Bergen, 1983; M¨uller et al., 1990; Triesman, 1985; Triesman and
Gormican, 1988]. These results can be extended directly to the visualization prob-
lem at hand. Our study sought to go beyond what is known at present by explor-
ing another common task, numerical estimation. We addressed specific instances
of two general questions about preattentive features and their use in visualization
tools:

� Question 1: Is it possible for subjects to rapidly and accurately estimate the
percentage of elements in a display within the constraints of preattentive vi-
sion? Under what conditions is this possible for the well-studied features of
hue and orientation?

� Question 2: Does encoding an independent data dimension with a task-
irrelevant feature interfere with a subject’s estimation ability? If so, which
features interfere with one another and which do not?

Although we modelled our experiment task around a question of interest to the
oceanographers, we believe estimation is very common during the analysis of vi-
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sual displays. If the task is preattentive, visualization tools can be designed which
allow users to perform high-speed visual estimation. The visual features we chose,
hue and orientation, are commonly used in existing visualization software. Both
have been identified as preattentive by Triesman, Jul´esz, and others [Jul´esz and
Bergen, 1983; Triesman, 1985]. Moreover, Callaghan’s research has shown that
hue variation interferes with boundary detection based on form (or orientation).
Understanding how hue and orientation interact in a preattentive visualization envi-
ronment is important. If a visualization tool is being used to display multiple inde-
pendent data values, interference among features should ideally be eliminated. If a
visualization tool is being used to investigate a specific relationship, the “strongest”
feature should be used to encode that relationship. Secondary features used to en-
code additional data values must not interfere with the task-relevant feature.

4.1 Method

We designed experiments that investigated numerical estimation using either hue or
orientation. Two unique orientations were used, 0Æ rotation and 60Æ rotation. Two
different hues which corresponded roughly to red and blue were chosen from the
Munsell colour space. This allowed us to display two-dimensional data elements
as coloured, oriented rectangles (Figure 6).

We restricted our experiments to two dimensions and two unique values per di-
mension for a number of reasons. First, focusing on two-dimensional data elements
allowed us to test for hue interference effects that had been found by Callaghan in
other preattentive tasks. Second, most of the preattentive literature related to our
questions has itself been limited to two unique values per feature. This is due in
part to the fact that each feature space (in our case, hue and orientation) needs to
be divided into values which can be easily distinguished from one another. This is
straightforward when only two values are required. True multidimensional visual-
ization tools need to display more than simple two-dimensional data elements. The
issues involved in extending our results to more complex datasets are considered in
the “Discussion” section of this paper.

For our experiments, we chose a pair of hues that satisfied the following two
properties:

� Property 1: The perceived intensity of the two hues was equal (i.e. the hues
were isoluminant).

� Property 2: The perceptual discriminability between the two hues was equal
to the perceptual discriminability of a rectangle rotated 0Æ and one rotated
60Æ.

The method described in Appendix A1 was used to choose a red hue and a blue
hue that satisfied these requirements. Our design allowed us to display data ele-
ments with two dimensions encoded using hue and orientation. Both dimensions
were two-valued (encoded using red and blue or 0Æ and 60Æ rotation). This is a
very simple example of the general multidimensional visualization problem. In our
experiments, we used the following data variable to visual variable mappings:
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(a) (b)

(c) (d)

Figure 6: Examples of a single data frame from each of the four mapping conditions (in each frame
58% of the rectangles are targets): (a) Landfall-Hue, user estimated the percentage of elements
coloured blue; (b) Landfall-Orientation, user estimated the percentage of elements rotated 60Æ; (c)
Stream Function-Hue, user estimated the percentage of elements coloured blue; (d) Stream Func-
tion-Orientation, user estimated the percentage of elements rotated 60Æ.
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� the longitude on which a salmon started its migration run controlled the X-
position of the icon representing the salmon

� the latitude on which a salmon started its migration run controlled the Y-
position of the icon representing the salmon

� the point of landfall controlled either the hue or the orientation of the icon
representing the salmon (the mapping depended on the mapping condition
being tested)

� the stream function value controlled either the orientation or the hue of the
icon representing the salmon (the mapping depended on the mapping condi-
tion being tested)

The experiment was divided into four different mapping conditions run in sep-
arate blocks of trials. The task-relevant data dimension (i.e. the dimension on
which the percentage estimate was based) varied from mapping condition to map-
ping condition, as did the task-relevant feature (i.e. the feature used to encode the
task-relevant dimension). This gave us the following design:

� Mapping condition Landfall-Hue: The task-relevant data dimension was point
of landfall, represented by hue; the task-irrelevant data dimension was stream
function, represented by orientation (Figure 6a).

� Mapping condition Landfall-Orientation: The task-relevant data dimension
was point of landfall, represented by orientation; the task-irrelevant data di-
mension was stream function, represented by hue (Figure 6b).

� Mapping condition Stream Function-Hue: The task-relevant data dimension
was stream function, represented by hue; the task-irrelevant data dimension
was point of landfall, represented by orientation (Figure 6c).

� Mapping condition Stream Function-Orientation: The task-relevant data di-
mension was stream function, represented by orientation; the task-irrelevant
data dimension was point of landfall, represented by hue (Figure 6d).

Varying the task-relevant data dimension between point of landfall and stream
function allowed us to study the effect of different spatial distributions during esti-
mation. Point of landfall values tended to separate into a small number of tightly
clustered spatial groups. Stream function values were generally divided into two
spatial groups, but with a number of outliers scattered throughout the display. Vary-
ing the task-relevant feature allowed us to study the difference between estimation
using hue and estimation using orientation. Data were taken directly from the
salmon migration simulations. This meant the data values for some trials were
modified slightly to meet statistical requirements for the experiment (see Appendix
A.2).

For each trial in the experiment, subjects were shown a display similar to those
in Figure 6 for 450 milliseconds. The screen was then cleared, and subjects were
asked to estimate the percentage of elements in the display with a specified feature,
to the nearest 10%. For example, in mapping conditions Landfall-Hue and Stream
Function-Hue subjects were asked to estimate the number of rectangles coloured
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blue, to the nearest 10%. In mapping conditions Landfall-Orientation and Stream
Function-Orientation they were asked to estimate the percentage of rectangles ori-
ented 60Æ.

Within a mapping condition, trials were divided equally between Constant trials,
where the task-irrelevant feature was fixed to a constant value (Figure 7), and Vari-
able trials, where the task-irrelevant feature varied from element to element. Better
performance in Constant versus Variable trials would suggest that using a task-
irrelevant feature to encode an independent data dimension interferes with estima-
tion based on the task-relevant feature. We tested both for orientation interfering
with hue estimation and for hue interfering with orientation estimation.

Twelve subjects with normal or corrected acuity and normal colour vision were
tested. The experiments were conducted on a Macintosh II microcomputer equipped
with a 13-inch RGB monitor and video hardware capable of displaying 256 colours.
The software used was designed and written specifically to run vision experiments
[Enns and Rensink, 1991]. Subjects were introduced to each experiment using the
method described in Appendix A.3. Subjects then completed two mapping con-
ditions, either Landfall-Hue and Stream Function-Hue (mapping conditions testing
hue estimation) or Landfall-Orientation and Stream Function-Orientation (mapping
conditions testing orientation estimation). Each mapping condition consisted of 72
Constant trials and 72 Variable trials presented in a random order. Subjects were
provided with an opportunity to rest after every 48 trials. Data from the both the
introduction and the experiment were saved for later analysis.

4.2 Results

The main dependent variable examined was estimation error, defined as the ab-
solute difference between the subject’s interval estimate and the correct interval
containing the percentage of target elements present in the display. Statistical anal-
yses usingt-tests and analysis of variance (ANOVA)F -tests revealed the following
findings:

1. Average estimation error ranged from0:55 to 0:65 (less than one interval)
across the four mapping conditions. Standard deviation of error ranged from
0:26 to 0:36. Subject responses were all clustered close to the correct in-
terval, suggesting that rapid and accurate numerical estimation can be per-
formed under these conditions.

2. Subjects estimated equally well using either hue or orientation, suggesting
that there is no subject preference for either feature in the estimation task.

3. Subjects’ estimates were more accurate when the task-relevant data dimen-
sion was stream function, suggesting that there is evidence of a preference
for the spatial arrangement of elements in the estimation task.

4. Accuracy did not differ between Constant and Variable trials during either
hue or orientation estimation. Thus, there was no evidence of feature inter-
ference in this task.
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(a) (b)

(c) (d)

Figure 7: Examples of Constant trials from two of the four mapping conditions (the same orientations
and hues are used for Constant trials from mapping conditions Stream Function-Hue and Stream
Function-Orientation): (a) Landfall-Hue, stream function represented by constant 0Æ orientation;
(b) Landfall-Hue, stream function represented by constant 60Æ orientation; (c) Landfall-Orientation,
stream function represented by constant red hue; (d) Landfall-Orientation, stream function repre-
sented by constant blue hue.
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Figure 8: Graph of average error (absolute difference between a subject’s interval estimate and
the correct interval) as a function of estimation interval for the Constant trials of mapping condi-
tions Landfall-Hue, Landfall-Orientation, Stream Function-Hue, and Stream Function-Orientation.
ANOVAs comparing mean error across estimation interval were significant in every mapping condi-
tion (allp-values< 0:05); F -values for the Constant trials in Landfall-Hue wereF (8; 423) = 12:48,
MSe = 0:452; in Landfall-Orientation they wereF (8; 423) = 11:95, MSe = 0:372; in Stream
Function-Hue they wereF (8; 423) = 6:84, MSe = 0:334; and in Stream Function-Orientation they
wereF (8; 423) = 8:32, MSe = 0:359.

Figures 8 and 9 graph mean estimation error across nine intervals for the Con-
stant and Variable trials of all four mapping conditions. ANOVAs showed that mean
error was affected by the interval being estimated in each condition. The shape of
the average error graph was symmetric, with a maximum at the middle intervals
and a minimum at either extreme. This phenomenon is often referred to as “end
effect” and is simply thought to reflect the fact that, when subjects have less than
perfect information, there is greater freedom of choice in guessing at the center of
a scale than at either end.

The subjects’ ability to perform estimation did not depend on the visual fea-
ture begin estimated. Trials were combined into two groups: trials where subjects
estimated using orientation (mapping conditions Landfall-Orientation and Stream
Function-Orientation), and trials where subjects estimated using hue (mapping con-
ditions Landfall-Hue and Stream Function-Hue). Individualt-tests comparing Con-
stant and Variable trials yielded no evidence of any differences in mean error (all
p-values> 0:05; t-values for Constant and Variable trials weret(1726) = 1:69 and
t(1726) = 0:59 respectively). There appears to be no feature preference during es-
timation.
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Figure 9: Graph of average error (absolute difference between a subject’s interval estimate and
the correct interval) as a function of estimation interval for the Variable trials of mapping condi-
tions Landfall-Hue, Landfall-Orientation, Stream Function-Hue, and Stream Function-Orientation.
ANOVAs testing mean error across estimation interval were significant in every mapping condition
(all p-values< 0:05); F -value for the Variable trials in Landfall-Hue wasF (8; 423) = 12:05,
MSe = 0:486; in Landfall-Orientation it wasF (8; 423) = 16:52, MSe = 0:367; in Stream
Function-Hue it wasF (8; 423) = 9:45, MSe = 0:348; and in Stream Function-Orientation it was
F (8; 423) = 13:41, MSe = 0:349.

The accuracy of estimation did depend on the spatial distribution of the data
points. Estimation was more accurate for trials where stream function (which had
a less compact spatial distribution) was the task-relevant dimension. Trials were
combined into two groups: trials where point of landfall was the task-relevant
dimension (mapping conditions Landfall-Hue and Landfall-Orientation), and tri-
als where stream function was the task-relevant dimension (mapping conditions
Stream Function-Hue and Stream Function-Orientation). Ourt-tests revealed that
accuracy was significantly higher for stream function (t(1726) = 3:50; p < 0:05

andt(1726) = 1:84; p < 0:10 for Constant and Variable trials respectively). Ad-
ditional experiments that explicitly control the change in spatial distribution are
needed before we can state specifically its effect on the estimation task.

Finally, we found no significant interference effects in any of the four mapping
conditions. Neither feature interfered with the other. To examine this question, we
computedt-values to compare mean error across Constant and Variable trials for
mapping conditions that used hue as the task-relevant feature. The results showed
no evidence of difference in mean error (allp-values> 0:05; t(862) = 0:04

and t(862) = 0:28 for mapping conditions Landfall-Hue and Stream Function-
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Figure 10: Graph of average error (absolute difference between a subject’s interval estimate and the
correct interval) as a function of display duration for combined results from the hue display duration
experiment. ANOVAs comparing mean error across display duration were significant (allp-values
< 0:05) with F (4; 445) = 19:77, MSe = 1:464 andF (4; 446) = 13:13, MSe = 0:979 for Con-
stant and Variable trials. Fisher’s PLSD tests identified the duration pairs (15,45), (15,105), (15,195),
(15,450), (45,105), (45,195) and (45,450) as significant in both the Constant and Variable subsec-
tions. t-values comparing mean error between Constant and Variable trials were significant only at
the 15 millisecond display duration (all otherp-values> 0:05) with t(178) = 2:18, t(178) = 0:76,
t(178) = 0:69, t(178) = 0:40, andt(178) = 1:09 for the display durations 15, 45, 105, 195, and
450 milliseconds.

Hue respectively). Tests for mapping conditions that used orientation as the task-
relevant feature yielded similar results (allp-values> 0:05; t(862) = 0:30 and
t(862) = 1:47 for mapping conditions Landfall-Orientation and Stream Function-
Orientation respectively).

5. EXPERIMENT 2: DISPLAY DURATION

Our conclusions in Experiment 1 apply to data displayed for 450 milliseconds.
This leaves two important questions unanswered. First, at what display duration
are subjects no longer able to perform accurate estimation? Second, do any feature
interference effects begin to appear at shorter display durations?

In Experiment 2 display duration was randomly varied among five possible val-
ues: 15, 45, 105, 195, and 450 milliseconds. Fifteen subjects with normal or cor-
rected acuity and normal colour vision were tested in a manner similar to Experi-
ment 1. Trials were presented to subjects in the following way:

1. A blank screen was displayed for 195 milliseconds.
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Figure 11: Graph of average error (absolute difference between a subject’s interval estimate and the
correct interval) as a function of display duration for combined results from the orientation display
duration experiment. ANOVAs comparing mean error across display duration were significant (all
p-values< 0:05) with F (4; 894) = 3:65, MSe = 1:895, andF (4; 894) = 7:54, MSe = 1:810

for Constant and Variable trials. Fisher’s PLSD tests identified the duration pairs (15,105), (15,195),
(15,450) (45,195) and (45,450) as significant in the Constant subsection, and (15,105), (15,195),
(15,450), (45,105), (45,195) and (45,450) as significant in the Variable subsection.t-values compar-
ing mean error between Constant and Variable trials were not significant (allp-values> 0:05) with
t(358) = 1:64, t(358) = 1:04, t(357) = 0:05, t(357) = 0:69, andt(358) = 0:83 for the display
durations 15, 45, 105, 195, and 450 milliseconds.

2. A focus circle with diameter roughly twice the width of the rectangular ele-
ments was displayed for 105 milliseconds.

3. The trial was shown for its display duration (one of 15, 45, 105, 195, or 450
milliseconds).

4. A “mask” of randomly oriented grey rectangles was displayed for 105 mil-
liseconds.

5. The screen was blanked, and subjects were allowed to enter their estimations.

Five subjects estimated the percentage of elements defined by a blue hue (map-
ping condition Landfall-Hue), and 10 subjects estimated the percentage of elements
defined by a 60Æ rotation (mapping condition Landfall-Orientation). As in Exper-
iment 1, an equal number of trials was used for each interval (10 Constant and 10
Variable). Trials were split evenly among the five possible display durations, and
were presented to the subjects in a random order.

We found that the minimum display duration for robust estimation using either
hue or orientation lay somewhere between 45 and 105 milliseconds. Since Exper-
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iment 1 had shown that estimation was relatively accurate at all percentage levels,
we simplified the dependent measure by averaging error over all nine intervals.
The results are shown in Figure 10 for hue estimation and in Figure 11 for ori-
entation estimation. Inspection of these figures shows that estimation accuracy
was reasonably stable at all durations of 105 milliseconds and higher. Below that
duration, error values increased rapidly. ANOVAs confirmed that accuracy varied
reliably with display duration for estimation using either hue (Figure 10) or orienta-
tion (Figure 11). Fisher’s Protected Least Significant Difference (PLSD) tests were
computed to identify display duration pairs with significant differences in average
error. As we expected, the statistical significance reflects the higher average error
from the 15 and 45 millisecond display duration trials for both hue and orientation
estimation.

There was no evidence of feature interference for either estimation based on hue
or estimation based on orientation. As in Experiment 1, results suggested that ran-
dom variation in orientation did not interfere with numerical estimation based on
hue. Thet-values comparing mean estimation error across Constant and Variable
trials hadp-values greater than 0.05 at every display duration except 15 millisec-
onds (Figure 10). Similar results were found when we checked to see if hue inter-
fered with estimation based on orientation (Figure 11).

6. EXPERIMENT 3: FEATURE DIFFERENCE

Experiment 3 was designed to address two additional questions related to numerical
estimation. First, how much of a feature difference is necessary to allow accurate
estimation? Second, how is this difference affected by display duration? Three
mapping conditions were tested using three different hue-orientation pairs during
estimation:

1. Mapping condition Small: Rectangles were drawn using two hues 5R 7/8 and
5RP 7/8, and two orientations 0Æ and 5Æ

2. Mapping condition Medium: Rectangles were drawn using two hues 5R 7/8
and 10P 7/8, and two orientations 0Æ and 15Æ

3. Mapping condition Large: Rectangles were drawn using two hues 5R 7/8 and
5PB 7/8, and two orientations 0Æ and 60Æ

The perceptual discriminability between the hues and orientations is smallest in
mapping condition Small and largest in mapping condition Large. This latter con-
dition was essentially a replication of the hue and orientation values tested in the
previous experiments. Within each mapping condition the discriminability of the
two hues and two orientations were calibrated to be roughly equal, following the
procedures described in Appendix A.1. Trials within each mapping condition were
randomly displayed at two display durations: 45 milliseconds and 195 millisec-
onds. Otherwise, the details of this experiment were identical to the previous two
experiments.

Six subjects estimated percentages based on hue. The target hue was one of
5RP 7/8, 10P 7/8, or 5PB 7/8, depending on which mapping condition a given trial
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Figure 12: Graph of average error (absolute difference between a subject’s interval estimate and the
correct interval) across target hue type for combined results from hue feature difference experiment.
ANOVAs comparing mean error across hue difference were significant at both exposure durations (all
p-values< 0:05); F -values for Constant and Variable trials wereF (2; 645) = 54:16, MSe = 1:579

andF (2; 639) = 61:26, MSe = 1:719 for 45 millisecond trials; they wereF (2; 642) = 26:63,
MSe = 1:166 andF (2; 641) = 31:36, MSe = 0:964 for 195 millisecond trials.

belonged to. Another six subjects estimated percentages based on orientation (where
target orientation was one of 5Æ, 15Æ, or 60Æ). Trials from the three mapping con-
ditions were intermixed and presented to the subjects in a random order.

Subjects were able to perform accurate hue estimation at 195 milliseconds using
targets 10P 7/8 and 5PB 7/8, and at 45 milliseconds using 5PB 7/8. Similar results
were found for orientation estimation (accurate for targets oriented at 15Æ and 60Æ

at 195 milliseconds and 60Æ at 45 milliseconds). Figure 12 graphs mean estimation
error for hue trials across the three mapping conditions and both display durations.
Figure 13 shows a similar graph for estimation based on orientation. Outside of
the above cases, estimation error increased rapidly. ANOVAs confirmed that mean
error during hue estimation was dependent on feature difference, with allp-values
less than 0.05 (Figure 12). A similar set of ANOVA results was obtained for es-
timation based on orientation (Figure 13). Average estimation error increased as
discriminability between the target and distractors decreased.

Finally, there was no evidence of feature interference during either hue or orien-
tation estimation. Thet-values comparing mean estimation error across Constant
and Variable trials for all six display duration-target hue pairs were not significant
(all p-values were greater than 0.05). Tests for hue interference during orientation
estimation were also negative (for all six display duration-target orientation pairs,
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Figure 13: Graph of average error (absolute difference between a subject’s interval estimate and the
correct interval) across target orientation type for combined results from orientation feature difference
experiment. ANOVAs comparing mean error across hue difference were significant at both exposure
durations (allp-values< 0:05); F -values for Constant and Variable trials wereF (2; 645) = 40:74,
MSe = 2:232 and F (2; 645) = 79:91, MSe = 2:198 for 45 millisecond trials; they were
F (2; 321) = 77:07, MSe = 1:929 andF (2; 645) = 50:45, MSe = 1:955 for 195 millisecond
trials.

p-values> 0:05).

7. DISCUSSION

The results from Experiment 1 confirm that rapid and accurate numerical estima-
tion can be performed on large multi-element displays using either hue or orien-
tation. Experiment 2 showed further that the estimation task could be performed
preattentively, since similar high levels of accuracy were observed down to 105
milliseconds. Both of these results are implicitly assumed in many existing visu-
alization tools, but have not been experimentally verified in the literature. Finally,
Experiment 3 showed that within a preattentive display limit of 200 milliseconds,
target elements could be reasonably similar to distractor elements (15Æ rotation or
one and a half hue steps in Munsell space) while still allowing for accurate esti-
mation. This provides a new, quantitative guideline for choosing display properties
for visualization tools. The absence of any significant interference effects in all of
the experiments suggests that it is indeed possible to develop effective multidimen-
sional visualization tools for numerical estimation based on these features.

Before addressing several implications of our findings it is important to consider
why users of any visualization tool would want to perform visual numerical esti-
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mation at all. The computer could calculate the precise number of values falling
within some range. This would, of course, be the easiest solution to the problem
if the range were known in advance. The difficulty lies in the exploratory nature
of much of the work involving analysis of large datasets. Often the range is not
known in advance. We see high-speed preattentive visualization as a very effec-
tive tool in helping to formulate and constrain a set of questions that could then
be investigated using the power of the computer. To illustrate, consider the prob-
lem faced by oceanographers studying salmon migration. They begin their analysis
by searching for displays (each display corresponds to migration data for a single
year) where more than a fixed percentage of the simulated salmon landed north of
Vancouver Island. Such displays are tagged as potential years of interest. This part
of the analysis could be automated, although the oceanographers often vary their
cutoff percentage while viewing the displays. Years of interest are compared for
the percentage and spatial location of low and high stream function values. This
often involves estimation on various user-chosen subregions of the display. These
subregions could not be pre-chosen for comparison without first identifying and
examining the years of interest. Next, the oceanographers go back to the original
data and search for displays with a stream function pattern similar to those found in
the years of interest. Displays with a similar makeup of stream function values but
a different percentage of point of landfall values must be explained in the context
of their migration hypothesis. Finally, point of landfall values are compared statis-
tically to historical salmon distributions provided by the Department of Fisheries
and Oceans. This provides a computational measure of how well the simulation
(and the hypothesis on which it is based) “fits” actual salmon migration patterns. It
would not be possible to perform this type of exploratory data analysis by simply
pre-programming the computer to search for displays with a user-chosen range of
point of landfall and stream function values.

One important concern is how our techniques generalize to other problem en-
vironments that need to use high-speed estimation. Our results show that subjects
did not use counting to perform numerical estimation, since the most liberal reports
of the time needed to count more than 100 elements are 250 milliseconds per ele-
ment [Trick and Pylyshyn, 1994]. This suggests we should be able to increase the
number of elements being displayed while still maintaining accurate estimation.
Additional experiments are needed to determine a maximum possible display size
under these conditions. This does not necessarily limit our techniques to datasets
of this size, however. An efficient method for displaying very large datasets (e.g.
millions of elements) may not place them all on a single display frame. If the
dataset can be divided into subgroups, each subgroup can be displayed one after
another in a movie-like fashion. Results from our research have shown that target
and boundary detection can be performed on dynamic sequences of 400 element
display frames [Healey et al., 1995]. Moreover, interference effects that existed
in static displays were also present in this dynamic environment. These findings
suggest that other preattentive tasks like estimation might extend to a real-time
visualization setting. This would dramatically increase the potential size of the
datasets being analysed. For example, a one million element dataset split into 400
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element frames and viewed at five frames per second (i.e. 200 milliseconds per
frame) could be displayed in approximately ten minutes. Even given time for addi-
tional inspection of individual frames, the analysis task could be finished in under
an hour. Oceanographers are hoping to use this technique to monitor the effects of
currents, temperature, and salinity on daily movements of salmon as they migrate
back to the B.C. coast. In this problem domain, each data subgroup represents
salmon positions, as well as current, temperature, and salinity information for a
specific day during the migration run.

Our experiments have not addressed two key questions related to multidimen-
sional visualization. First, how can we encode dimensions that are more than
two-valued (i.e. truly multi-valued or continuous dimensions)? Second, how can
we extend our methods beyond two-dimensional data elements? We are currently
studying different techniques to try to address each of these questions.

An obvious method for representing a multi-valued dimension is to divide the
corresponding feature space into more than two unique values. Research in preat-
tentive processing has already studied some aspects of this problem. For example,
it is easy to detect a tilted rectangle in a field of flat or upright rectangles (or vise-
versa). However, in a situation where both the target and distractors are tilted (e.g.
target is tilted 15Æ and distractors are tilted 75Æ), detection is much more difficult.
Wolfe suggests orientation might be divisible into only four categories: steep, flat,
left, and right [Wolfe et al., 1992]. Another example is the division of hue feature
space. Experiments have studied the effect of dividing hue into multiple values.
When a target contained a hue that could be separated from the distractors by a
straight line in colour space, detection was rapid and accurate. However, when the
target contained a hue that was collinear in this space with its distractors, detection
was significantly more difficult [D’Zmura, 1991]. This suggests that hue feature
space can be divided into multiple values, but that the target (or targets) must be
linearly separable from their distractors. We are currently studying both of these
effects in the context of our visualization environment.

Tools that support the visualization of multiple data dimensions must deal with
a potential interaction between some or all of the features being used to represent
the dimensions. Rather than trying to avoid this, we can sometimes control the in-
teraction and use it to our advantage. For example, Pickett and Grinstein have used
texture to represent high-dimensional data; each dimension controls one aspect of
a texture element displayed to the user. Another promising avenue of investigation
involves emergent features. An emergent feature is created by grouping several
simpler features together. The emergent feature cannot be predicted by examining
the simpler features in isolation. A careful choice of simple features will allow
a target element or a region of similar data elements to be detected preattentively
[Pomerantz and Pristach, 1989], thereby signalling a correlation of variables in the
data.

The data values used in our experiments were derived from salmon migration
simulations designed by oceanographers. We are currently applying our techniques
to a number of new problem environments, including the visualization of results
from spatial database queries and output from medical scanners (e.g.CT, MRI, and
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PET). We hope this will provide further support for the exploitation of preattentive
processing in the design of multidimensional visualization tools.

APPENDIX

This section describes in detail the following three procedures:

1. The method used to choose the two hues that were used during our exper-
iments. Both hues were chosen from the Munsell colour space, and were
constrained to meet two experimental properties related to luminance and
perceptual discriminability.

2. The method used to modify Oceanography’s simulation results to meet sta-
tistical requirements for all three experiments.

3. The method used to introduce subjects to each of the three experiments.

A.1 Method for Choosing Hues

For our experiments, we chose a pair of hues from the Munsell colour space that
satisfied the following two properties:

� Property 1: The perceived intensity of the two hues was equal (i.e. the hues
were isoluminant).

� Property 2: The perceptual discriminability between the two hues was equal
to the perceptual discriminability of a rectangle rotated 0Æ and one rotated
60Æ.

The Munsell colour space was originally proposed by Albert H. Munsell in 1898
[Birren, 1969]. It was later revised by the Optical Society of America in 1943 to
more closely approximate Munsell’s desire for a functional and perceptually bal-
anced colour system. A colour from the Munsell colour space is specified using the
three “dimensions” hue, value, and chroma (Figure 14). Hue refers to ten uniquely
identifiable colours such as red, blue, or blue-green. Individual hues are further
subdivided into ten subsections. The number before the hue specifies its subsection
(e.g. 5R, 2B, or 9BG). Value refers to a colour’s lightness or darkness. It ranges
from one (black) to nine (white). Chroma defines a colour’s strength or weakness.
Grays are colours with a chroma of zero. A chroma’s range depends on the hue
and value being used. A Munsell colour is specified by “hue value/chroma”. For
example, 5R 6/6 would be a relatively strong red, while 5BG 9/2 would be a weak
cyan.

One feature of the Munsell colour space is that colours with the same value are
isoluminant. Property 1 was satisfied by picking hues that had the same value
in Munsell space. We chose value 7, because that slice through Munsell space
provided a large number of displayable colours for a variety of different hues.

Property 2 was satisfied by running a set of calibration tests involving a sim-
ple target detection task. Subjects were asked to detect the presence or absence
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Figure 14: Munsell colour space, showing its three dimensions hue, value, and chroma (fromMun-
sell: A Grammar of Color, New York, New York: Van Nostrand Reinhold Company, 1969).

of a rectangle rotated 60Æ in a field of distractor rectangles rotated 0Æ. Both the
target and distractor rectangles were coloured 5R 7/8. Accuracy in this task was
very high (approximately 98%), so the average correct response time (RT = 569

milliseconds) was used as a measure of discriminability.
The test was then modified to make hue the feature that varied between target

and distractor. In the second test, the target was a rectangle coloured 10RP 7/8. The
distractors were rectangles coloured 5R 7/8. This made the target half a “hue step”
from the distractors in Munsell space. Both the target and distractor rectangles were
rotated 0Æ. The average reaction time for detection was computed from the trials
in which subjects responded correctly. The hues used for the target and distractors
during the second test were very similar. Because of this, accuracy was lower
(approximately 74%) and average correct response times were larger (RT = 943

milliseconds) than in the test using orientation.
A stepped series of tests were then run with increasingly large hue differences.

In each successive test, the target was moved another half “hue step” away from
the distractors (i.e. 5RP 7/8, 10P 7/8, and so on). This process continued until
accuracy and average correct response time were equal to or below that measured
for the orientation test. A target coloured Munsell 5PB 7/8 satisfied this criteria
(accuracy was 100%,RT = 560 milliseconds). The result was two isoluminant
hues (Munsell 5R 7/8 and Munsell 5PB 7/8) having a perceptual discriminability
equal to that of a 60Æ rotation counter-clockwise from horizontal.
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A.2 Method for Modifying Simulation Data

The data values used during our experiments were taken directly from the oceanog-
raphers’ salmon migration simulations. The data values for some trials were modi-
fied to meet certain statistical requirements for the experiment. For example, in the
mapping conditions Landfall-Hue and Landfall-Orientation of Experiment 1 point
of landfall values were modified to ensure that the following conditions held:

1. An equal number of trials had a given percentage of data elements with a
point of landfall value of “north” (i.e. 4 trials where 5-15% of the data el-
ements had a value of “north”, 4 trials where 15-25% of the data elements
had a value of “north”, and so on up to 85-95%). This allowed us to compare
estimation ability across a uniform range of percentages.

2. Any dependence that might have existed between point of landfall and stream
function was removed. This ensured subjects could not infer information
about the task-relevant dimension by examining the task-irrelevant dimen-
sion.

The stream function data values were modified in a similar way for the mapping
conditions Stream Function-Hue and Stream Function-Orientation of Experiment
1. The same modified trials were used during Experiments 2 and 3.

A.3 Method for Introducing the Experiment

The procedure and task of each experiment were introduced to the subjects before
they began a testing session. For example, before starting Experiment 1 subjects
were shown a sample display frame. The procedure and task of the experiment
were described. Subjects were then shown how to enter their estimations. This was
done by typing a digit on the keyboard between 1 and 9, which corresponded to
the interval they estimated contained the target feature: interval 1 (5-15%), interval
2 (15-25%), and so on up to interval 9 (85-95%). Subjects were told that no trial
would contain less than 5% or more than 95% of the target rectangles.

The first phase of the introduction consisted of a set of nine practice trials, one
for each of the nine possible intervals. In one trial 10% of the rectangles were
targets, in another 20% were targets, and so on up to 90%. These practice trials
were designed to calibrate the subjects’ responses and to give them an idea of the
experiment procedure and the speed of the trials. If subjects estimated correctly,
they moved immediately to the next trial. If they estimated incorrectly, the trial
was redisplayed, and they were told the correct answer. Next, subjects completed a
second set of 18 practice trials presented in a random order, two for each of the nine
possible intervals. This phase was designed to run more like the real experiment.
Trials in which the subjects estimated incorrectly were not redisplayed; subjects
were simply told whether their estimate was right or wrong.

After completing the introduction, subjects begin the actual experiment. A simi-
lar explanation and introduction session was given to subjects before Experiments
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2 and 3.
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MÜLLER, H. J., HUMPHREYS, G. W., QUINLAN , P. T., AND RIDDOCH, M. J. (1990).
Combined-feature coding in the form domain. InVisual Search, Brogan, D., Ed.,
47–55. Taylor & Francis, New York, New York.

NAGY, A. L., SANCHEZ, R. R.,AND HUGHES, T. C. (1990). Visual search for color dif-
ferences with foveal and peripheral vision.Journal of the Optical Society of America
A 7, 1995–2001.

NAKAYAMA , K. AND SILVERMAN , G. H. (1986). Serial and parallel processing of visual
feature conjunctions.Nature 320, 264–265.

PICKETT, R. AND GRINSTEIN, G. (1988). Iconographic displays for visualizing multidi-
mensional data. InProceedings of the 1988 IEEE Conference on Systems, Man, and
Cybernetics, 514–519, Beijing and Shenyang, China.

POMERANTZ, J. AND PRISTACH, E. A. (1989). Emergent features, attention, and per-
ceptual glue in visual form perception.Journal of Experimental Psychology: Human
Perception & Performance 15, 4, 635–649.

QUINLAN , P. T. AND HUMPHREYS, G. W. (1987). Visual search for targets defined by
combinations of color, shape, and size: An examination of task constraints on feature
and conjunction searches.Perception & Psychophysics 41, 5, 455–472.

ROSENBLUM, L. J. (1994). Research issues in scientific visualization.IEEE Computer
Graphics & Applications 14, 2, 61–85.

THOMSON, K. A., INGRAHAM, W. J., HEALEY, M. C., LEBLOND, P. H., GROOT, C.,
AND HEALEY, C. G. (1992). The influence of ocean currents on the latitude of land-
fall and migration speed of sockeye salmon returning to the Fraser River.Fisheries
Oceanography 1, 2, 163–179.

THOMSON, K. A., INGRAHAM, W. J., HEALEY, M. C., LEBLOND, P. H., GROOT, C.,
AND HEALEY, C. G. (1994). Computer simulations of the influence of ocean cur-
rents on Fraser River sockeye salmon (oncorhynchus nerka) return times.Canadian
Journal of Fisheries and Aquatic Sciences 51, 2, 441–449.

TRICK, L. AND PYLYSHYN , Z. (1994). Why are small and large numbers enumerated
differently? A limited capacity preattentive stage in vision.Psychology Review 101,
80–102.



ACM TOCHI 3, 2, June 1996, 107–135 HEALEY, BOOTH, ENNS

TRIESMAN, A. (1985). Preattentive processing in vision.Computer Vision, Graphics and
Image Processing 31, 156–177.

TRIESMAN, A. AND GELADE, G. (1980). A feature-integration theory of attention.Cog-
nitive Psychology 12, 97–136.

TRIESMAN, A. AND GORMICAN, S. (1988). Feature analysis in early vision: Evidence
from search asymmetries.Psychological Review 95, 1, 15–48.

TRIESMAN, A. AND SOUTHER, J. (1986). Illusory words: The roles of attention and
top-down constraints in conjoining letters to form words.Journal of Experimental
Psychology: Human Perception & Performance 14, 107–141.

TUFTE, E. R. (1990).Envisioning Information. Graphics Press, Cheshire, Connecticut.

UPSON, C. (1989). The application visualization system: A computational environment
for scientific visualization.IEEE Computer Graphics & Applications 9, 4, 30–42.

VANDE WETTERING, M. (1990). apE 2.0.Pixel 1, 4, 30–35.

WARE, C. AND BEATTY, J. C. (1988). Using colour dimensions to display data dimen-
sions.Human Factors 30, 2, 127–142.

WOLFE, J. M. (1994). Guided Search 2.0: A revised model of visual search.Psychonomic
Bulletin & Review 1, 2, 202–238.

WOLFE, J. M. AND FRANZEL, S. L. (1988). Binocularity and visual search.Perception
& Psychophysics 44, 81–93.

WOLFE, J. M., FRIEDMAN-HILL , S. R., STEWART, M. I., AND O’CONNELL, K. M.
(1992). The role of categorization in visual search for orientation.Journal of Experi-
mental Psychology: Human Perception & Performance 18, 1, 34–49.


