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On the Limits of Resolution and Visual Angle
in Visualization
CHRISTOPHER G. HEALEY and AMIT P. SAWANT, North Carolina State University

This article describes a perceptual level-of-detail approach for visualizing data. Properties of a dataset that cannot be resolved in
the current display environment need not be shown, for example, when too few pixels are used to render a data element, or when
the element’s subtended visual angle falls below the acuity limits of our visual system. To identify these situations, we asked:
(1) What type of information can a human user perceive in a particular display environment? (2) Can we design visualizations
that control what they represent relative to these limits? and (3) Is it possible to dynamically update a visualization as the
display environment changes, to continue to effectively utilize our perceptual abilities? To answer these questions, we conducted
controlled experiments that identified the pixel resolution and subtended visual angle needed to distinguish different values
of luminance, hue, size, and orientation. This information is summarized in a perceptual display hierarchy, a formalization
describing how many pixels—resolution—and how much physical area on a viewer’s retina—visual angle—is required for an
element’s visual properties to be readily seen. We demonstrate our theoretical results by visualizing historical climatology data
from the International Panel for Climate Change.
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1. INTRODUCTION

Scientific and information visualization convert large collections of strings and numbers into visual
representations that allow viewers to discover patterns within their data. The focus of this article
is the visualization of a multidimensional dataset containing m data elements and n data attributes,
n > 1. As the size mand the dimensionality n of the dataset increase, so too does the challenge of finding
techniques to display even some of the data in a way that is easy to comprehend [Johnson et al. 2006].
One promising approach to this problem is to apply rules of perception to generate visualizations that
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build on the strengths of human vision. Defining perceptual guidelines to “take full advantage of the
bandwidth of the human visual system” has been cited as an important area of current and future
research in visualization [Johnson et al. 2006; McCormick et al. 1987; Smith and Van Rosendale 1998;
Thomas and Cook 2005].

Unfortunately, defining visual bandwidth is almost certainly not as simple as computing a fixed
bits-per-second result. Based on previous work in human perception, we hypothesize that the abilities
of our visual system, properties of the display environment, and the particular visualization strategy
being employed combine to define limits on a visualization’s information carrying capacity. A minimum
number of pixels—resolution—and subtended physical area on the retina—visual angle—are required
to perceive different values of a visual feature. More importantly, these limits can easily be exceeded
in a typical visualization. Because the specific resolution and visual angle limits we seek have not
yet been reported, we conducted a series of psychophysical experiments to identify the boundaries
for properties of color and texture. Our initial studies focus on foveal vision, the area of acute vision
centered about the current gaze direction. By formalizing and integrating our results with existing
perceptual knowledge, we can design multidimensional visualizations that harness the strengths and
respect the limitations of human visual processing within a given display environment.

Issues critical to designing effective visualizations include the following.

(1) Resolution, the total number of pixels allocated to an on-screen object or element needed to produce
just noticeable differences in its visual appearance.

(2) Visual angle, the physical size, measured in degrees of subtended visual angle, that an object or
element forms on the viewer’s retina to produce just noticeable differences in its visual appearance.

(3) Viewing parameters, the amount of data being displayed, its on-screen format, and the speed at
which it is shown to the viewer.

(4) Visualization technique, the type and number of visual features being displayed, and the methods
used to map data values to their corresponding visual representations.

(5) Data properties of the dataset being visualized and analysis tasks being performed by the viewer.

To date, significant effort has been dedicated to items four and five, that is, how properties of the data
and the viewer’s analysis needs affect different visualization designs. Less effort has been devoted to
studying the first three items. Many visualization techniques simply assume that sufficient resolution,
visual angle, and time will be available for viewers to comprehend the images being produced. We
study the first three items in the context of multidimensional visualization. Understanding how each
property affects image comprehension would allow us to perform a number of important tasks during
visualization design:

(1) provide the fundamental knowledge needed to construct perceptually effective multidimensional
visualizations;

(2) verify whether the display device and the human visual system meet the requirements of a given
visualization algorithm;

(3) characterize to what extent a visualization technique saturates “visual bandwidth;” this can be
done in ways that are more sophisticated than simply calculating how many data elements or data
attributes the technique tries to display.

This leads to a second major goal of our investigations: understanding how to visualize information
across a range of display devices, for example, large, collaborative displays like a multi-projector pow-
erwall, or small, portable displays like a smartphone. These nontraditional display environments are
becoming more and more popular. Differences in a display’s properties can have a significant effect
ACM Transactions on Applied Perception, Vol. 9, No. 4, Article 20, Publication date: October 2012.
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Fig. 1. Weather visualizations, wet day frequency → luminance, temperature → hue, precipitation → regularity, wind speed →
size, cloud coverage → orientation: (a) near Hudson’s Bay, all elements distinguishable; (b) North America with low resolution
and visual angle, size and orientation interfere with luminance, hue, and regularity; (c) size and orientation removed.

on what it can visualize, however. Results from our studies can be used to determine how a display’s
physical size, pixel count, and standard viewing distance affect its visualization capabilities. This in
turn will define which fraction of a dataset a display can visualize effectively.

Figure 1 shows a simple example of the effects of limited resolution and visual angle. Figure 1(a)
visualizes historical weather conditions for January around Hudson Bay and the Great Lakes. Here,
sufficient resolution and visual angle are available to distinguish the luminance, hue, size, orientation,
and regularity of each element. Bright regions (higher wet day frequency) are visible on the west coast
of Newfoundland, tilted elements (moderate cloud coverage) occur throughout the map, and irregu-
larly placed elements (higher precipitation) are seen in Pennsylvania (in the lower-center of the map).
Figure 1(b) zooms out to display all of North America. Now, limited resolution and visual angle hide
certain visual properties. Differences in orientation are difficult to identify. More importantly, small
elements hide other features that might be visible in isolation. Figure 1(c) removes orientation and
size, since neither are considered usable. The remaining features—luminance, hue, and regularity—
are easier to interpret.

Results from our investigations represent perceptual rules that describe how best to apply funda-
mental properties of color and texture during visualization. The intent is not to design a single new
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Fig. 2. Subtended visual angle θ , based on an element’s physical size s and viewing distance d.

Table I. Visual Acuity Limits for Basic Visual Properties
Property Description Acuity
Point acuity Resolve two point targets 1′
Grating acuity Distinguish bright and dark bars in a uniform gray patch 1–2′
Letter acuity Resolve letters, 20/20 vision means a 5 arc-minute letter can be seen with 90% accuracy 5′
Stereo acuity Resolve a just-noticeable depth difference through binocular disparity 10′′
Vernier acuity Resolve if lines are collinear 10′′

visualization technique, nor to focus on a specific domain area. Instead, our findings are meant to
compliment any visualization technique, current or future, that uses these visual features to display
information. We can also suggest ways to optimize the amount of information being visualized as the
display environment changes, for example, as the data is moved between different display devices,
or as a viewer zooms in and out on their data. Perceptual level-of-detail hierarchies, together with a
viewer’s interests and analysis needs, can be combined to ensure that the most important data is given
priority during visualization.

2. BACKGROUND

Issues related to perception, visual acuity, and the display of information have been studied by different
communities. We briefly review related research from human vision and visualization.

2.1 Human Vision

Light entering our eyes falls on the retina, a thin layer of photosensitive cells made up of approximately
120 million rods and 6 million cones [Glassner 1995; Ware 2012]. Cones are responsible for vision
in bright light, and are divided into three types, each of which is most sensitive to three different
wavelengths of light centered in the short, medium, and long regions of the visible spectrum. In bright
light, the cones are used to determine both color and luminance information. Rods are used in low light
situations, and are sensitive to variations in luminance. Since the cones do not function in low light,
we see luminance differences alone. Information leaving the eye is reorganized into three channels: a
luminance channel, and two opponent color channels that correspond to red–green and blue–yellow.
Processing of visual properties that depend on local spatial arrangements (e.g., size, orientation, and
motion) begins in the primary visual cortex (V1) [Marr 1982]. Output from this stage of vision is fed
into the higher-level cognitive system.

Visual acuity is a measurement of our ability to see detail. It defines limits on the information
densities that can be perceived. Acuity is measured with visual angle, the angle subtended by an
object on a viewer’s retina specified in arc-degrees, arc-minutes ′ (1◦ = 60′), or arc-seconds ′′ (1′ =
60′′). Given an object size s and a viewing distance d (Figure 2), visual angle θ can be calculated as
θ = 2 arctan(s/2/d).

Some basic acuities are summarized in Table I [Ware 2012]. Most acuities fall in the 1–2′ range,
which corresponds roughly to the spacing of receptors in the center of the fovea. A number of
ACM Transactions on Applied Perception, Vol. 9, No. 4, Article 20, Publication date: October 2012.
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superacuities exist, however, including stereo and vernier acuity. Here, post-receptor mechanisms in-
tegrate input from multiple receptors to resolve at higher resolutions.

Neural postprocessing combines input from both eyes. The area of overlap is approximately 120◦

with 30–35◦ of monocular vision on either side. This allows for combined horizontal and vertical fields-
of-view of approximately 180–190◦ and 120–135◦, respectively. Acuity within the overlap region has
been shown to be up to 7% more accurate, compared to the monocular boundaries [Campbell and
Green 1965].

2.2 Perception in Visualization

A long-standing goal in visualization is the construction of guidelines from human visual perception,
to be used, for example, to choose visual features that are best suited to representing different types of
data, or to supporting different analysis tasks.

A well-known example of perception in visualization is the use of perceptually balanced colormaps
to visualize continuous scalar values. Color models like CIE LUV, CIE Lab, and Munsell were built
to provide a rough measure of perceptual balance, where a unit step anywhere along the color scale
produces a perceptually uniform difference in color [CIE 1978]. More recent models like s-CIE Lab per-
form an initial filtering step to simulate the blurring that occurs when viewing high spatial frequency
color patterns [Zhang and Wandell 1997]. Rheingans and Tebbs refined this basic idea by plotting a
path through a perceptually balanced color model, then asking viewers to define how attribute values
map to positions on the path [Rheingans and Tebbs 1990]. Rogowitz and Treinish proposed rules to
automatically select a colormap based on an attribute’s spatial frequency, its continuous or discrete
nature, and the analysis tasks viewers need to perform [Rogowitz and Treinish 1993]. Ware ran exper-
iments that asked viewers to distinguish between individual colors and shapes formed by colors. He
used the results to build a colormap that spirals up the luminance axis, providing perceptual balance
and controlling simultaneous contrast error [Ware 1988]. Healey conducted a visual search experiment
to determine the number of colors a viewer can distinguish simultaneously. His results showed that
viewers can rapidly choose between up to seven isoluminant colors [Healey 1996].

Similar studies have explored the perceptual properties of texture. These were derived by measur-
ing statistical properties to perform texture segregation (e.g., Julész et al. [1973]), through experiments
that asked viewers to discriminate texture images (e.g., Rao and Lohse [1993]), or by defining filters
that mimic the low-level neural mechanisms of human vision (e.g., radially symmetric and direction-
ally tuned difference of offset Gaussians used in Malik and Perona [1990]). Results identified size,
directionality, contrast, and regularity, among others. These individual properties have been studied
extensively. For example, Watson and Ahumada constructed a standardized contrast image set, then
optimized a model that included effects of contrast filtering, orientation, and distance from fixation
[Watson and Ahumada 2005]. Liu et al. conducted a study of the effects of aspect ratio and “round-
ness” of an element on orientation detection [Liu et al. 2002]. Even at aspect ratios as small as 1.5:1,
viewers could align a probe to a target element with an average orientation error of ±3◦.

Interestingly, although various texture features are strong discriminators in image segmentation
algorithms, some of them are difficult to perceive. For example, experiments by Healey and Enns
showed that size, directionality, and contrast are perceptually salient, but regularity is not [Healey and
Enns 1999]. Healey and Enns used their results to construct “pexels,” perceptual texture elements that
vary their luminance, hue, size, orientation, and spatial density to represent multiple data attributes.
Other researchers have used a similar strategy to visualize data with texture. Grinstein et al. designed
stick men whose joint angles encode attribute values. When the stick men are arrayed across a display,
they form texture patterns whose spatial groupings and boundaries highlight attribute correlations
[Grinstein et al. 1989]. Ware and Knight used Gabor filters that varied their orientation, size, and
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contrast to visualize data elements with three separate attribute values [Ware and Knight 1995]. An
intriguing approach proposed by Interrante uses “natural” textures like weaves or brick patterns to
visualize data [Interrante 2000].

2.3 Level-of-Detail Visualization

The need to visualize large datasets is common. Many techniques attempt to make better use of avail-
able display resources. We briefly discuss approaches that address this problem by allowing a viewer
to selectively increase the resolution and visual angle of some of the elements in a visualization.

Focus + context techniques construct visualizations that combine a high-level overview and lower-
level details in a single image. For example, magnifying lenses increase resolution and visual an-
gle in user-selected areas of detail (e.g., semantic fisheye lenses [Furnas 1986]). A related technique
maps from Cartesian coordinates to hyperbolic space to magnify elements at the center of the display,
pushing more distant elements towards the edge of the screen [Lamping and Rao 1996].

A separate study by Yost et al. investigated visualizing data on large displays [Yost et al. 2007].
Pixel densities were chosen to exceed a viewer’s point acuity at the initial viewing position. Yost did
not try to identify limits on acuity, however. Instead, viewers were allowed to physically navigate—to
walk around the display—to resolve different parts of the visualization. Results showed that as the
display size increased, the amount of additional time needed to complete tasks rose more slowly than
the amount of additional data being presented. This suggests that large, high-resolution displays can
make visual exploration more efficient.

Our study of perceptual limits is not meant to replace these approaches. Instead, our results could be
integrated into these techniques, for example, by defining the level of magnification needed to properly
perceive the visual properties of objects within a fisheye lens or hyperbolic region. Our investigations
are also focused on a slightly different question. Rather than asking “What can our display environ-
ment show?” we want to answer “What can our viewers perceive within the display environment?” This
will allow us to filter our visualizations to make best use of the display resources we have available.

3. EXPERIMENT DESIGN

Our goal is to determine, for a given approach, the type and amount of visual information a human
viewer can comprehend. We believe this depends critically on two properties: resolution and visual
angle.

Resolution involves individual pixels on a display device. A minimum number of pixels are needed to
distinguish differences in a visual feature. For example, a single pixel cannot show differences in size
or orientation, since by definition an individual pixel cannot be resized or rotated. A single pixel might
be sufficient to present distinguishable differences in luminance or hue, however. We will identify the
minimum number of pixels needed for a collection of common visual features.

Visual angle defines the minimum physical size an object must subtend on the viewer’s retina to
produce distinguishable differences in a visual feature. Consider objects displayed on a multi-projector
powerwall. If a viewer stands back to observe the entire wall, small elements may be too small to
perceive. The subtended visual angle of an object is calculated from the object’s on-screen size in pixels,
the physical width and height of the display device, and the distance from the display to the viewer.
Since objects can be rotated, we define visual angle to be the subtended angle of the bounding box of
an object in all its possible orientations. We want to identify the minimum visual angle needed for the
same collection of common visual features.

We decided to investigate four visual features during our initial experiments: luminance, hue, size,
and orientation. These features include aspects of color and texture, and each feature is common
to many visualization techniques and systems. We believe understanding the resolution and visual
ACM Transactions on Applied Perception, Vol. 9, No. 4, Article 20, Publication date: October 2012.
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Fig. 3. Visual features used during the resolution experiment; all elements shown at 8 × 2 resolution except for size feature:
(a) dark, medium, and bright luminance, CIE xyY = (0.44, 0.48, 6.7), (0.43, 0.48, 13.6), (0.38, 0.43, 19.5), respectively; (b) blue,
brown, and pink hue, CIE xyY = (0.22, 0.23, 13.7), (0.43, 0.48, 13.6), (0.34, 0.28, 13.6), respectively; (c) 1, 4, and 16 pixel size;
(d) 15◦, 35◦, and 55◦ orientations counterclockwise from horizontal.

angle limits for these features will help to guide future studies of related color, texture, and motion
properties.

3.1 Selecting Visual Features

We began our studies by selecting a small set of values for each feature to be tested. We had to en-
sure these values were distinguishable when applied to an element with a large resolution and visual
angle. This is necessary to draw meaningful conclusions from the experiments that use these values.
Suppose, for example, we were searching for the hue resolution limit. Because our hues are known to
be distinguishable for large objects, if a viewer cannot see a color difference, we can assume this is due
to insufficient resolution.

To identify distinguishable feature values, we ran a preliminary pairwise-comparison experiment.
First, a saturated yellow “anchor” value f1 was selected with a luminance roughly 65% of the dis-
playable maximum (Figure 3(a), center element). f1 had a resolution of 32 × 8 pixels subtending a
visual angle of 0.97◦ at a 22-inch viewing distance. We then used a modified Cornsweet staircase
method to obtain distinguishability with 75% accuracy between f1 and a second feature f2 [Pollack
1968; Wales and Blake 1970].

—A value of f2 was chosen with f2 slightly different than f1, that is, �F = | f1 − f2| < ε, where ε is a
distance that is too small to produce distinguishable differences.

—Two large rectangular elements were displayed for 200 msec on a white background, then replaced
with a grey mask. One element was randomly selected to show f1. The other element showed f2.

—Viewers were asked whether the elements were identical or different.

—�F was changed by moving f2 relative to f1 until viewers could reliably identify the two rectangles
as being different.

—An identical procedure was applied, but in the opposite direction of f1– f2 to choose another value f3.

This produced three values f1, f2, and f3 that are distinguishable from one another when sufficient
resolution and visual angle are provided.

Applying this approach to each of the four visual features we tested produced eight pairings—two
for each feature—with equal perceived distinguishability, both within each feature and across dif-
ferent features. We used the Munsell color space to choose luminances and hues, since it provides
perceptual balance and subdivides hue into discrete, named regions. Munsell values specified in CIE
LUV [Wyszecki and Stiles 1982] were converted to CIE xyY , then to monitor RGB values calibrated to
generate the expected colors. Figure 3 shows approximations of these values.
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3.2 Novel Target Detection

Trials in our experiments contain a random collection of distractor elements, all with identical lumi-
nance, hue, size, and orientation. Half the trials are randomly selected to contain a target region, a
group of target elements with a visual appearance different from the distractors. For example, hue
targets would display a different hue than the distractors.

In traditional visual search experiments, a viewer is told what type of target to look for—search
for blue targets, for example—with response time and accuracy used to measure performance. In a
visualization environment, however, the visual properties of a region of interest normally cannot be
anticipated, particularly during exploratory analysis. To simulate this incomplete knowledge, we do
not prime our viewers by identifying the target. Instead, viewers are told “You will be asked to report
whether you saw a small group of elements that differ from all the other elements. If you see this
group, you will also be asked whether it had a horizontal or vertical orientation.”

By varying the specific feature that differs between the target and the distractors, we can measure
how rapidly viewers detect arbitrary targets within some criteria for success. It is also important to dif-
ferentiate between a viewer’s ability to detect a target—I see the target—versus the ability to identify
properties of the target—I see this kind of target. Asking about the target group’s orientation allows us
to determine whether viewers can also determine the shape of the target group and its basic orienta-
tion. We hope that results from this type of limited knowledge search experiment will be more directly
applicable to real-world visualization domains.

4. RESOLUTION EXPERIMENTS

The resolution experiments tested the effect of resolution on viewer response time and accuracy. Three
different resolutions were tested: a single pixel (a 1 × 1 region), four pixels (a 4 × 1 region), and sixteen
pixels (an 8 × 2 region).

4.1 Design

Trials from the resolution experiment were shown on a 19-inch LCD monitor (14.8 × 11.9 inches sub-
tending 37.38 × 30.28◦) with dimensions of 1280 × 1024 pixels, or 86 pixels-per-inch. Data elements
in each trial were displayed as 2D rectangular glyphs with an aspect ratio of 4:1. Since we are only
interested in how resolution affects viewer performance, we chose an element size that guaranteed a
sufficient visual angle. Given our fixed viewing distance of 22-inches from the monitor, we needed to
use “virtual pixels” formed by a 2 × 2 block of physical pixels. Any further reference to “pixels” in this
section implies virtual pixels.

Each trial contained a 20 × 20 array of elements, placed within a grid of 48 × 48 pixel cells sub-
tending 28.47 × 28.47◦. Each element was randomly jittered to introduce irregularity in the layout.
The background in each trial was white, with CIE xyY = (0.29, 0.30, 24.9). A viewer was presented
with 384 trials in random order. Half the trials were chosen to contain a target patch—target present
trials—while the other half—target absent trials—did not. For target present trials, the target patch
was randomly located and was positioned at least one row and one column away from the edge of the
grid.

Viewers were told to determine whether a region of elements different from the distractors was
present or absent in each trial. Viewers pressed one of two keys to record their answer. Viewers were
told to respond as quickly as possible, while still maintaining a high level of accuracy. After an an-
swer was entered, the display was replaced with a grey mask. If the viewer correctly reported the
target patch, he was then asked whether it had a horizontal or vertical orientation. Response time and
accuracy were recorded on each trial for later analysis.
ACM Transactions on Applied Perception, Vol. 9, No. 4, Article 20, Publication date: October 2012.
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Fig. 4. Example resolution trials, actual trials were 20 × 20 arrays of elements: (a) luminance trial with 1 × 1 resolution, dark
vertical target present; (b) hue trial with 8 × 2 resolution, pink vertical target present.

We constructed eight different feature sets for the three different feature values f1, f2, and f3 as
follows.

(1) Distractors use feature f1, targets use feature f2.
(2) Distractors use feature f2, targets use feature f1.
(3) Distractors use feature f1, targets use feature f3.
(4) Distractors use feature f3, targets use feature f1.
(5) Distractors use feature f1.
(6) Distractors use feature f2.
(7) Distractors use feature f1.
(8) Distractors use feature f3.

The first four feature sets represent target present trials; the last four represent target absent trials.
Resolution varied during the experiment. Each feature set used three different resolutions: elements

formed by 1×1 pixels (Figure 4(a)), 4×1 pixels, and 8×2 pixels (Figure 4(b)). This produced eight fea-
ture sets by three resolutions by two target patch orientations for a total of 48 different trial types. Two
trials for each trial type were shown, producing 96 trials. Given the four visual features we tested—
luminance, hue, size, and orientation—the total number of trials in the experiment was 384.

For certain resolutions, target values of size and orientation are not possible. For example, for size
trials with a 1 × 1 resolution, a viewer cannot see larger or smaller targets because both target and
distractor are constrained to be one pixel in size. These trials are included to properly balance the
experiment conditions during statistical analysis. The question arises, then, should answering “target
absent” for these trials be considered correct or incorrect? We decided to mark these trials as incorrect.
Although it is impossible for the viewer to distinguish the target, this situation mirrors a real visual-
ization environment where elements with a 1 × 1 resolution are shown, and size is used to represent
attribute values. Since “error” in our experiment means “the visual feature is not distinguishable at
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Table II. Raw rt and a by Resolution for the Four Feature Types: (a) by Target Present; (b) by Target Absent
Feature 1 × 1 4 × 1 8 × 2

luminance 2.81 / 51% 1.88 / 85% 1.47 / 95%
hue 3.29 / 26% 2.38 / 73% 1.30 / 100%
size 3.43 / 2% 2.69 / 50% 1.21 / 99%

orientation 3.59 / 0% 3.24 / 79% 1.52 / 99%
(a)

Feature 1 × 1 4 × 1 8 × 2
luminance 3.82 / 99% 3.44 / 98% 2.98 / 99%

hue 3.63 / 99% 3.60 / 99% 2.85 / 99%
size 3.40 / 97% 3.68 / 99% 3.40 / 99%

orientation 3.47 / 100% 3.83 / 97% 3.07 / 99%
(b)

the given resolution,” this choice seems reasonable. For elements with a 1 × 1 resolution, 16 size trials
contain a target that cannot be seen. Similarly, for elements with a 4 × 1 resolution, there are 8 trials
where a larger 8 × 2 target cannot be shown, and therefore cannot be seen. The same situation occurs
for orientation trials at a 1 × 1 resolution: 16 target present trials contain targets that are the same
orientation as the distractors. This effect can be seen in Table II, where the accuracies for size targets
at 1 × 1 and 4 × 1 resolutions are 2% and 50%, respectively, and the accuracy for orientation targets at
a 1 × 1 resolution is 0%.

Eleven graduate students (eight males and three females) participated during the experiment. Al-
though some of the viewers were familiar with traditional visual search experiments, none had pre-
vious experience with the novel detection task we employed. All viewers had normal or corrected-
to-normal vision, and none of the viewers were color blind. Each viewer completed trials for all four
feature types. Trials for the different features were intermixed, to support our novel target detection
approach. Since we are running a within-subjects experiment, our main concern with respect to sam-
ple size is the total number of trials completed for each experiment condition. Our eleven participants
produced 22 repetitions of each trial type, for a total of 4,224 trials.

The experiment was preceded by a small set of practice trials, to allow viewers to gain familiarity
with the different features being tested, and with the format and speed of the experiment. Viewers
were shown 16 practice trials—four features by target present and target absent by two target patch
orientations. Viewers continued the practice trial session until they reported they were comfortable
with the procedure and achieved an acceptable accuracy level. Following the practice session, the main
experiment was conducted. The total running time of the practice session and the main experiment was
approximately 60 minutes.

4.2 Results

Mean response time rt and mean viewer accuracy a were calculated for each unique combination of
target feature type, target present or absent, resolution, and target patch orientation. Multifactor
analysis of variance (ANOVA) was used to identify statistically significant differences in performance.
When significant differences were found, post-hoc Tukey honestly significant difference (HSD) tests
were used to identify pairwise significance. In summary, we identified the following statistically sig-
nificant results:

(1) rt decreased monotonically as resolution increased;
(2) a increased monotonically for target present trials as resolution increased;
(3) rt varied by feature type: it was lowest for luminance trials and highest for orientation trials;
(4) a varied by feature type: it was highest for luminance trials and lowest for size trials; and
(5) rt and a were higher for target absent trials, compared to target present trials.

4.3 Detailed Statistics

We started by testing to see if different types of target present trials (e.g., f1 distractors and f2 targets
versus f1 distractors and f3 targets) produced significantly different rt or a. If so, it would suggest that
ACM Transactions on Applied Perception, Vol. 9, No. 4, Article 20, Publication date: October 2012.
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Table III. Combined rt and a for the Four Feature Types: (a) by Target Present or Absent; (b) by Resolution
Feature P A

luminance 2.05 / 77% 3.41 / 99%
hue 2.32 / 66% 3.36 / 99%
size 2.44 / 50% 3.49 / 98%

orientation 2.78 / 59% 3.46 / 98%
(a)

Feature 1 × 1 4 × 1 8 × 2
luminance 3.31 / 75% 2.66 / 92% 2.22 / 97%

hue 3.46 / 63% 2.99 / 86% 2.08 / 100%
size 3.42 / 49% 3.18 / 75% 2.31 / 99%

orientation 3.53 / 50% 3.53 / 88% 2.29 / 99%
(b)

some feature pairings were easier to distinguish than others. No significant differences were found.
Based on this, we combined and averaged results over the four target present trial types.

ANOVAs showed a significant effect of resolution on both rt and a, F(2, 20) = 13.4, p < 0.005 and
F(2, 20) = 508.79, p < 0.005. As resolution increased, viewers were faster and more accurate. Sim-
ilarly, ANOVAs identified significant differences by feature type for both rt and a, F(3, 30) = 4.18,

p = 0.014 and F(3, 30) = 62.55, p < 0.005. Tukey HSD comparisons showed a significant difference
between luminance and orientation for rt (p = 0.034) and between luminance and size for a (p = 0.005).

For target present trials, rt was 2.4 seconds (s) and a was 64%. For target absent trials, they were
3.43 s and 99%. Target presence or absence was significant for both measures, F(1, 10) = 36.21, p <

0.005 for rt and F(1, 10) = 470.09, p < 0.005 for a. This type of finding is not uncommon for target
present–absent experiments. When viewers do not initially see a target, they spend some additional
time confirming their result. Also, when a is low, rt differences cannot always be trusted. Since we are
focusing on situations with higher a, this does not affect our guidelines on feature use.

Significant interaction effects for both rt and a were also identified: a feature type × target present or
absent effect, and a feature type × resolution effect. Table III(a) shows rt and a for each feature type,
divided by target present or absent. Differences in rt and a occurred across feature type for target
present trials, but were nearly uniform for target absent trials, with F(3, 30) = 5.11, p = 0.006 for
rt and F(3, 30) = 46.06, p < 0.005 for a. Table III(b) shows rt and a for each feature type, divided by
resolution. Differences in rt and a were larger for smaller resolutions, F(6, 60) = 3.24, p = 0.008 and
F(6, 60) = 26.31, p < 0.005, respectively. An accuracy ceiling is being approached for resolutions of
8 × 2. This is not surprising, since the values for each feature were chosen to produce roughly uniform
distinguishability, that is, to be equally detectable.

Finally, there was no significant difference between target detection and identifying a target group’s
orientation as horizontal or vertical (t(20) = 0.584, p = 0.57), with a = 98.8% and a = 97.2%, respec-
tively, for trials where viewers correctly detected a target patch.

5. VISUAL ANGLE EXPERIMENTS

The visual angle experiments tested the effect of visual angle on viewer response time and accuracy.
Three different visual angles were tested: 0.06125◦, 0.1225◦, and 0.245◦.

5.1 Design

As before, trials were presented on a 19-inch LCD monitor with 1280 × 1024 pixels. Elements in each
trial were displayed as 2D rectangular glyphs with an aspect ratio of 4:1. Since we are only interested
in how the visual angle affects viewer performance, we used the monitor’s native resolution and sized
each element to render without a pixelated or jagged appearance at each visual angle. Our result-
ing elements were too large to produce the required visual acuities at the original viewing distance,
so viewers were moved back to a distance of approximately 86.5-inches, producing a 0.06125◦ visual
angle. Elements displayed at this visual angle had a resolution of 12 × 3 pixels. Since this is above
the required resolution of 8 × 2 pixels identified during the previous experiment, an inability to iden-
tify targets would be due to an insufficient visual angle. The element’s resolution was doubled and
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Fig. 5. Example visual angle trials, actual trials were 20 × 20 arrays of elements: (a) hue trial with a 0.06125◦ visual angle,
pink horizontal target present; (b) size trial with a 0.1225◦ visual angle, smaller vertical target present; (c) luminance trial with
a 0.245◦ visual angle, brighter horizontal target present.

quadrupled—24×6 pixels and 48×12 pixels—to produce visual angles of 0.1225◦ and 0.245◦. Figure 5
shows examples of hue, size, and luminance trials using these visual angles.

Apart from these differences, the conditions in the visual angle experiment were identical to the reso-
lution experiment: four visual features—luminance, hue, size, and orientation—two target conditions—
present and absent—four target–distractor pairings, and two target patch orientations—horizontal
and vertical. The number of repetitions of each trial type and the practice trials presented to a viewer
prior to running the experiment were also the same.

Eleven graduate students—eight males and three females—participated during the experiment.
Seven of the viewers also participated in the resolution experiment. For these viewers, the order of the
experiments was randomized. Four viewers completed the resolution experiment first. The remain-
ing three completed the visual angle experiments first. All viewers had normal or corrected-to-normal
vision, and none of the viewers were color blind.

5.2 Results

Mean response time rt and mean viewer accuracy a were calculated for each trial type. Multifactor
ANOVA and Tukey HSD were used to identify statistically significant differences in performance. In
summary, we identified the following statistically significant results:

(1) rt decreased monotonically as visual angle increased;
(2) a increased monotonically as visual angle increased;
(3) rt varied by feature type: it was lowest for size trials and highest for orientation trials;
(4) a varied by feature type: it was highest for size trials and lowest for hue trials; and
(5) rt and a were higher for target absent trials, compared to target present trials.
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Table IV. Raw rt and a by Visual Angle for the Four Feature Types: (a) by Target Present; (b) by Target Absent
Feature 0.06125◦ 0.1225◦ 0.245◦

luminance 2.68 / 34% 2.09 / 73% 1.45 / 93%
hue 3.25 / 11% 2.60 / 52% 1.51 / 87%
size 2.56 / 40% 1.46 / 85% 1.24 / 99%

orientation 3.84 / 3% 2.71 / 66% 1.66 / 95%
(a)

Feature 0.06125◦ 0.1225◦ 0.245◦

luminance 3.03 / 100% 3.30 / 99% 2.47 / 99%
hue 3.02 / 98% 3.03 / 98% 2.69 / 98%
size 2.83 / 99% 2.80 / 99% 3.00 / 100%

orientation 2.91 / 99% 3.06 / 99% 2.55 / 99%
(b)

Table V. Combined rt and a: (a) Visual Angle by Target Present or Absent; (b) Feature Type by Target Present
or Absent

Angle P A
0.06125◦ 3.08 / 22% 2.95 / 99%

0.1225◦ 2.21 / 69% 3.05 / 99%
0.245◦ 1.47 / 94% 2.68 / 99%

(a)

Feature P A
luminance 2.08 / 66% 2.93 / 99%

hue 2.46 / 50% 2.91 / 98%
size 1.75 / 75% 2.87 / 99%

orientation 2.74 / 55% 2.84 / 99%
(b)

5.3 Detailed Statistics

As before, we confirmed that different target pairings for target present trials did not produce signif-
icantly different rt or a, allowing us to combine and average results over the four target present trial
types.

ANOVAs showed a significant effect of visual angle on both rt and a, with F(2, 20) = 7.78, p < 0.005
and F(2, 20) = 359.29, p < 0.005, respectively (Table IV). As the visual angle increased, viewers were
faster and more accurate. Different feature types also produced significantly different rt and a, with
F(3, 30) = 7.72, p < 0.005 and F(3, 30) = 44.08, p < 0.005, respectively. Tukey HSD comparisons
found a significant size–orientation difference in rt (p < 0.005), and significant size–orientation and
size–hue differences in a (p = 0.039 and p < 0.005, respectively). Identification of targets based on
size was significantly faster and more accurate than some of the other features.

Target present trials were faster but less accurate than target absent trials (Table IV), with rt of
2.25 s versus 2.89 s for target present or absent (F(1, 10) = 14.9, p < 0.005) and a of 61% versus 99%
for target present or absent (F(1, 10) = 95.28, p < 0.005). As with the resolution experiment, viewers
tended to confirm their intuition that no target is present, producing slower but more accurate results.

Significant interaction effects were identified in both rt and a for visual angle × target present or
absent, and feature type × target present or absent.

Table V(a) shows rt and a for visual angles 0.06125◦, 0.1225◦, and 0.245◦, divided by target present
or absent. Differences in rt and a changed more rapidly for target present versus target absent trials—
F(2, 20) = 5.67, p = 0.011 and F(2, 20) = 146.75, p < 0.005, respectively. Table V(b) shows rt and
a for each feature type, divided by target present or absent. Differences in rt and a were large for
target present trials versus nearly uniform for target absent trials, with F(3, 30) = 5.4, p < 0.005 and
F(3, 30) = 17.25, p < 0.005, respectively.

Finally, there was no significant difference between target detection and identifying a target group’s
orientation as horizontal or vertical (t(20) = 0.335, p = 0.74), with a = 98.9% and a = 97.3%, respec-
tively, for trials where viewers correctly detected a target patch.

5.4 Different Feature Values and Tasks

Our experiments studied three values for each feature type: an anchor f1, and two values f2 and f3
that are equally distinguishable from f1. We might ask “What if you used a different set of colors, or a
different set of sizes? Would the resolution and visual angle limits be the same for these new feature
values?”
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We believe the answer is Yes; that is, resolution and visual angle limits depend on feature values
being distinguishable from one another, and not on the specific values being displayed. Recall that
we chose feature values using just-noticeable differences (JNDs). Picking, for example, a different
anchor hue f1 and new hue values f2 and f3 will produce the same amount of JND between f1– f2
and f1– f3. If resolution and visual angle limits are dependent on distinguishability, then using these
new feature values in our experiments should produce identical resolution and visual angle limits
for hue. We have applied our results to visualization domains that do use a wide range of feature
values. Performance has closely tracked our theoretical findings. To fully test our hypothesis, however,
we would need to choose multiple sets of feature values, then conduct experiments to measure and
compare the resolution and visual angle limits of each set.

A related finding in our experiments was that, at the smallest resolution and visual angle, accuracy
for luminance trials varied significantly based on the specific luminance value used for the target. This
did not occur for the other three features. Since all of the targets had poor accuracy at this resolution
and visual angle, it did not affect our guidelines on the use of luminance. If follow-on experiments
with new feature values were conducted, however, it might provide an opportunity to better study this
anomaly.

Another question to consider is “Are these results limited to the specific task viewers performed dur-
ing the experiments?” We asked viewers to search for target regions, and report on their orientations.
This was done in part because it approximates searching for differences in a visualization, and in part
because visual search is a common experimental method for measuring feature salience. As with dif-
ferent feature values, we are optimistic that these results will extend to additional tasks like spatial
boundary detection, object tracking, and estimation. Although we have anecdotal evidence from ap-
plying our results to visualizations where different tasks are performed, additional experiments are
needed to properly test this capability.

6. DISPLAY HIERARCHIES

Based on our experimental results, we are now able to define minimum requirements in resolution
and visual angle to produce a required level of accuracy. These limits are encoded into a distinguisha-
bility graph that subdivides 2D space into regions of “distinguishable” and “not distinguishable” for
each feature. A display environment’s properties—the display’s physical size and pixel dimensions, the
viewing distance, and the number of pixels allotted to each element—define a “display point” in the dis-
tinguishability graph. For each visual feature, this display point lies within either the distinguishable
or not distinguishable region. This defines whether the feature should be used to visualize data.

As the display environment changes—as a viewer zooms to change the resolution and visual angle
of the elements, or when a viewer moves to a different display device—the display point moves. As the
display point enters or leaves different distinguishable regions, the corresponding visual features can
be enabled or disabled. In this way the visualization dynamically updates to ensure that only those
features that produce distinguishable differences are displayed.

6.1 Distinguishability Graph

Although any threshold accuracy can be used to define a feature’s minimum required resolution and
visual angle, we selected a ≥ 66% on target present trials as our cutoff (Figure 6(b)).

One interesting finding, at least in our experiments, was that neither luminance nor hue allowed
for accurate detection for elements with a single-pixel resolution, even when a very small number
of highly distinguishable values were shown. Size required the largest minimum resolution—8 × 2,
but this is not surprising, since elements with 1 × 1 and 4 × 1 resolutions were unable to show some
or all of the smallest and largest size values we studied. Hue required the largest minimum visual
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Feature Resolution Angle

luminance 4 × 1 0.1225◦
hue 4 × 1 0.245◦
size 8 × 2 0.1225◦

orientation 4 × 1 0.1225◦

(a)

4 × 1 2 × 81 × 1

.245º

.06125º

.1225º

luminance
hue
size

orientation

none

display
resolution

visual
acuity

luminance
hue

orientation

luminance
orientation

luminance
size

orientation

(b)

Fig. 6. Distinguishability limits: (a) minimum resolution and visual angle for the visual features luminance, hue, size, and
orientation; (b) distinguishability graph showing the visual features that are recognizable within each region of the graph.

angle—0.245◦. Identification was good when a sufficient visual angle was provided—87% for elements
with a 4 × 1 resolution, but dropped off once the visual angle fell to 0.1225◦—52%, even though distin-
guishable hues and large resolutions were being displayed.

6.2 Psychometric Curve Fitting

An alternative suggestion to determine the resolution and visual angle limits needed to identify target
patches is to fit a psychometric curve to percentage correct results to locate the 66% accuracy rate
[Ulrich and Miller 2004]. Following this suggestion, we fit a Weibull curve to our data. The Weibull
cumulative distribution function y = 1 − e−(x/λ)k

can be rewritten to apply to a two-alternative forced
choice experiment:

y = 1 − (1 − g)e−(bx/t)k

b = − log
(

1 − a
1 − g

)1/k (1)

Here, g = 0.5 is chance performance, t is the resolution or visual angle cutoff for our desired target
accuracy a = 0.66, and k is the slope of the Weibull function. Our goal is to choose t and k to maximize
the function’s fit to the likelihood of our viewer’s actual responses x.

Figure 7(a) shows an example of fitting a Weibull curve to accuracy data for all size trials—both
target present and target absent—across the three display resolutions we tested. The a = 66% cutoff is
shown just to the left of 4×1 targets. Figures 7(b) and 7(c) show results for target present trials and all
trials, respectively, rounded to the next highest resolution or visual angle we tested. Resolution limits
for target present trials are identical to our distinguishability graph (Figure 6(a)), but visual angle
limits are higher for luminance and size—0.245◦ for curve fitting versus 0.1225◦ for direct comparison
to a. When all trials are analyzed, better performance on target absent trials reduces the resolution
limits for luminance and size, and the visual angle limits for all four features. Since our visualization
require the ability to identify targets with a given visual feature, we are most interested in target
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1 × 1 4 × 1 8 × 2

60%

100%

90%

70%

80%

display
resolution

accuracy

(a)

Feature Resolution Angle

luminance 4 × 1 0.245◦
hue 4 × 1 0.245◦
size 8 × 2 0.1225◦

orientation 4 × 1 0.245◦

(b)

Feature Resolution Angle

luminance 1 × 1 0.06125◦
hue 4 × 1 0.1225◦
size 4 × 1 0.06125◦

orientation 4 × 1 0.1225◦

(c)

Fig. 7. Distinguishability limits from psychometric curve fitting: (a) example Weibull curve fit to accuracy data for size targets
across all trials and three display resolutions; (b) minimum resolution and visual angle for target present trials; (c) minimum
resolution and visual angle for all trials

present performance (Figures 6(a) and 7(b)). We chose to apply the distinguishability graph limits in
the examples below, since they hint at the possibility of reasonable accuracy for slightly lower visual
angle limits.

6.3 Visualizing Climatology Data

To investigate the practical aspects of our experimental results, we visualized climatology datasets pro-
vided by the International Panel on Climate Control. The datasets contain eleven historical monthly
weather conditions sampled at 1/2◦ latitude and longitude steps for positive elevations throughout the
world.

Figure 1 shows an example of how visual features can be added (Figure 1(a)) or removed (Figure 1(c))
as a viewer zooms in or out on their data. Rather than continuing to investigate zooming in a single
display environment, we explore visualizing data on a small screen smartphone, and on a large screen
powerwall.

6.3.1 Smartphone. Figure 8 shows simulated examples of February’s historical weather conditions
over North America visualized on an iPhone with a 4-inch × 3-inch screen containing 480 × 320 pixels.

Figure 8(a) visualizes four data attributes: wet day frequency → luminance, temperature → hue,
wind speed → size, and precipitation → orientation. We built a continuous color scale around the
luminance axis in Munsell space near the boundary of our monitor’s gamut, subdivided into percep-
tually uniform luminance and hue steps. This produces colors that (1) are perceptually balanced, and
(2) maintain a roughly constant simultaneous contrast error [Healey and Enns 1999]. Elements are
assigned a 2 × 2 pixel region with a visual angle of 0.084◦ for a 5.8-inch viewing distance. Not surpris-
ingly, variations in size are difficult to distinguish, since both the resolution and the visual angle are
below the minimums required for distinguishable sizes—8 × 2 and 0.1225◦, respectively (Figure 6(a)).
Even worse, elements with small sizes obscure their luminance, hue, and orientation.

In Figure 8(b) size is removed. Although the resulting display is easier to interpret, the elements
still do not have sufficient resolution or visual angle to be fully distinguishable. In Figure 8(c) the
visualization has been zoomed 200%, increasing the elements to a resolution of 4 × 4 pixels and a
visual angle of 0.1685◦. This produces some noticeable improvements, for example, in orientation’s
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Fig. 8. Mockups of visualizations on an iPhone, view from 5.8-inches: (a) all visual features enabled; (b) luminance, hue, and
orientation enabled, but with resolution and visual angle below required minimums; (c) 200% zoom producing elements above
the required minimums.

distinguishability along the coastlines of Newfoundland and Nova Scotia. Although variations in hue
are clearly visible, the visual angle is below the hue’s minimum visual angle of 0.245◦, suggesting that
a higher zoom level could improve color performance. The tighter packing of elements can also cause
the the perception of a target’s color to shift, based on the colors of the local neighbors that surround it.

6.3.2 Powerwall. We also studied a 4-projector powerwall with projector resolutions of 1440×1050
pixels. Assuming a 100 pixel overlap between neighboring projectors, the resolution of the powerwall is
2780 × 1910 pixels, and its physical size is 96 × 72-inches. At a normal viewing distance of 200-inches,
the visual angle of each pixel is 0.0096◦. Figure 9 simulates visualizing January’s historical weather
conditions. The same data-feature mapping is used: wet day frequency → luminance, temperature →
hue, wind speed → size, and precipitation → orientation. Each element is assigned a 4 × 4 resolution,
with a visual angle of 0.0382◦.

The left side of Figure 9 visualizes all four attributes. As before, variations in size are difficult to
identify and obscure other features for small elements. On the right side of Figure 9 size has been
removed. Elements now have sufficient resolution to visualize differences in luminance, hue, and ori-
entation. Individual elements are still well below the minimum visual angle of 0.1225◦, however. This
is demonstrated for hue using the four test patches in the upper-left corner of the image. The leftmost
and rightmost patches are solid pink and solid brown, respectively. The inner patches are made up of
1 × 1 pixel and 4 × 4 pixel checkerboard patterns of pink and brown. The checkerboard pattern is not
obvious in either patch because the visual system is integrating the patches’ colors into an additive
result.
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Fig. 9. Visualizations on a powerwall, view from 4-inches: (left) all visual features enabled; (right) luminance, hue, and orien-
tation enabled, but with resolution and visual angle below required minimums.

The right side of Figure 9 show that increasing the pixel count may not lead to a corresponding
increase in information content. Although the powerwall contains ∼5.8 million pixels, we cannot visu-
alize 5.8 million data values. Our experiments suggest that we need a 12 × 12 resolution to produce
visual angles that show differences in luminance, hue, and orientation. At this resolution, only 40,200
elements can be displayed.

One advantage of a powerwall is that it allows viewers to physically “zoom” or “pan” where they
are looking. Ball et al. describe a study of physical versus virtual navigation. When available, physi-
cal navigation was preferred, and it significantly improved performance [Ball et al. 2007]. Figure 10
visualizes a subset of the powerwall at a simulated 48-inch viewing distance and a per-element visual
angle of 0.1592◦, slightly below (for hue) or above (for luminance and orientation) the recommended
limits. Notice how the 4 × 4 checkerboard pattern is now distinguishable as pink and brown, while the
1 × 1 checkerboard is still hard to recognize.

7. CONCLUSIONS

This article describes an investigation of the limits of resolution and visual angle in visualization.
We conducted psychophysical experiments to choose a small set of luminances, hues, sizes, and orien-
tations that are easily distinguished in isolation. We then ran novel target-detection experiments to
determine the minimum size of a 2D geometric glyph—both in pixel resolution and in subtended visual
angle—needed to support rapid and accurate identification of the presence or absence of an element
with a unique visual appearance.

Figure 6(a) shows the minimum resolutions and visual angles our experiments identified. These
results were used to build a perceptual display hierarchy, a subdivision of view space to automatically
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Fig. 10. A cropped view from the powerwall visualization with a simulated decrease in viewing distance, producing a resolution
of 4 × 4 pixels and a visual angle of 0.1592◦, view from 4-inches.

add or remove features from a visualization, for example, as elements grow or shrink during zooming,
or as resolutions and visual angles change when the visualizations are moved between different display
environments.

7.1 Future Work

Our experimental results provide a solid foundation from which to conduct additional studies. One
obvious extension is to study additional visual features like saturation, contrast, flicker, direction of
motion, and velocity of motion. These have been shown to be salient [Healey and Enns 1999; Huber
and Healey 2005], highlighting their potential for visualizing data. In addition to this, we are currently
focusing on three possibilities: (1) What additional factors should we consider to better generalize our
results? (2) How does the spatial packing density of elements affect viewer performance? and (3) Can
results from experiments on text legibility be applied to our goal of data visualization?

7.1.1 Generalizability. Our initial findings may depend on other factors that we have not yet tested.
For example, field of view affects performance, with detail falling off rapidly at the periphery due to
a reduction in the total number of receptor cells outside the fovea, and in their packing density—
the so-called cortical magnification factor [Anstis 1998]. Researchers have studied how eccentricity
affects the visual angle needed to detect different visual features. In fact, it may be possible to use
existing discrimination models to estimate limits on resolution and visual angle for both foveal and
peripheral vision, then compare these to our experimental findings. An element’s appearance can also
impact its distinguishability, for example, different shapes or heterogeneous sets of elements may
be interpreted differently than collections of rectangular glyphs. Finally, JND does not necessarily
predict performance, so theoretical results need to be validated with users visualizing real data for
real analysis tasks. We are considering all of these issues as areas for future study.

7.1.2 Spatial Packing Density. A separate issue that arose during our experiments is the effect of
spatial packing density. For example, during the resolution experiments the packing density decreased
when the element size fell (Figure 4). This may affect viewer performance. Sagi and Julész suggested
that orientation detection is a short-range phenomena, occurring within a local neighborhood defined
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by average element size [Sagi and Julész 1987]. Joseph et al. also hint at a target detection advantage
for dense versus sparse element packing [Joseph et al. 1997]. Simple modifications should allow us to
measure the effect of spatial packing density. Advantages for higher density displays would suggest,
for example, that element sizes should grow or shrink to maintain an appropriately packing density
during viewpoint changes. Color surround—a shift in a target’s color appearance based on its neigh-
bors’ colors—would also need to be considered.

7.1.3 Legibility. Research on text legibility may offer insights into visual acuity that are directly
relevant to our goal of data visualization. Legge et al. have studied how visual features like contrast,
size, color, and luminance affect text legibility [Legge et al. 1987, 1990]. Legge documents thresholds
on a viewer’s reading ability, for example, the effects of character contrast and size on reading speed,
and the interaction that occurs between these two features. Although Legge’s display environment
differs from ours—following text moving across a display versus scanning to explore visual properties
of glyphs—we believe it would be interesting, and potentially fruitful, to see whether results from
legibility research extend to the visualization domain.
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