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Abstract

A new method for designing multivariate data visualization tools is presented. Multivariate

data visualization involves representation of data elements with multiple dimensions in a low

dimensional enviroment, such as a computer screen or printed media. Our tools are designed

to allow users to perform simple tasks like estimation, target detection, and detection of data

boundaries rapidly and accurately. These techniques could be used for large datasets where

more traditional techniques do not work well or for time-sensitive applications that require

rapid understanding and informative data displays.

Our design technique is based on principles arising in an area of cognitive psychology called

preattentive processing. Preattentive processing studies visual features that are \preatten-

tively" detected by the human visual system. Viewers do not have to focus their attention on

particular regions of an image to determine whether elements with certain features are present

or absent. Examples of preattentive features include colour, orientation, intensity, size, shape,

curvature, and line length. Because this ability is part of the low-level human visual system,

detection is performed very rapidly, almost certainly using a large degree of parallelism. In

this thesis we investigate the hypothesis that these features can be used to e�ectively repre-

sent multivariate data elements. Visualization tools that use this technique will allow users to

perform rapid and accurate visual processing of their data displays.

We chose to investigate two known preattentive features, colour and orientation. The par-

ticular question investigated is whether rapid and accurate estimation is possible using these

preattentive features. Experiments that simulated displays using our preattentive visualization

tool were run. The experiments used data similar to that which occurred in a set of salmon

migration studies. This choice was made to investigate the likelihood of our techniques be-

ing relevant to real-world problems. Analysis of the results of the experiments showed that

rapid and accurate estimation is possible with both colour and orientation. A second ques-

tion, whether interaction occurs between the two features, was answered negatively. Additional

information about exposure durations and feature and data interaction were also discovered.
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Chapter 1

Introduction

\A picture shows me at a glance what it takes dozens of pages of a book to
expound"

{ Fathers and Sons, Turgenev

Many di�erent disciplines use computers to store and analyse data. The data are generated

in various ways. Computer simulations are being used to model real-world systems. These

programs produce large datasets, re
ecting the state of the system at a given point in time.

Experiments in areas like physics, chemistry, astronomy, and management science often produce

a variety of data. These are usually post-processed using a computer. Real time systems such as

air tra�c control and medical imaging often require a rapid and intuitive method for displaying

information as it is generated.

Di�erent methods have been used to convert raw data into a more usable visual format.

The best known example is the conversion of numeric data into di�erent types of graphs.

Many commercial statistical languages supply primitives for various types of visualization that

go beyond simple bar graphs, pie charts, and scatter plots. Recently, specialized visualization

software tools such as the Application Visualization System (AVS), apE, VIS-5D, and the

Wavefront Data Visualizer have been developed for computer graphics workstations. The �eld

of visual interactive simulation has emerged to research ways of adding useful visualization and

1



Chapter 1. Introduction 2

user interaction to simulation programs.

Empirical methods and guidelines are now needed to build more complex visualization

systems. Work in vision and psychology has shown how various object properties a�ect the

human visual system. Certain features such as colour, size, shape, orientation and texture

seem to \pop out" of a scene immediately. Careful use of these visual properties may be

important when trying to design informative visualization tools. Many of these properties

are studied in preattentive processing, a phenomenon investigated in cognitive psychology.

Suggestions from this area on how to apply these features to visualization have arisen. The

work reported in this thesis represents the �rst two steps in a three-step process to develop

e�ective visualization tools for a particular class of multivariate data. The �rst step was

examining the literature on preattentive processing to �nd new techniques for visualization.

The second step was designing and experimentally testing prototype visualization tools based

on these preattentive features. The �nal step will involve building robust visualization tools

for actual applications by incorporating the experience gained from the prototypes.

The Department of Oceanography at UBC is currently using simulation programs to deter-

mine causal e�ects of ocean currents on sockeye salmon migration patterns. This investigation

could bene�t from a number of di�erent types of visualization. One common problem is the

need to plot multidimensional data in some intuitive form in a two-dimensional environment,

such as a computer screen or printed report. Plots may need to be animated in time, to study

temporal trends and relationships.

In order to help researchers in Oceanography analyse their simulation data, we designed a

set of \standard" visualization tools. These tools were written in an ad-hoc manner, without

explicitly using results from research in preattentive processing. Three tools were designed: one

to compare latitude of landfall for two di�erent years, one to compare salmon swim speeds for

two di�erent years, and one to compare landfall dates for two di�erent years. Strong evidence

was found to support oceanography's hypothesis that ocean currents a�ect salmon migration

patterns. Results from this work are included in two papers to be published in the literature
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[Tho92a][Tho92b]. The researchers in Oceanography are currently conducting the second and

third phases of their experiment. Data from these simulations will be analysed using the same

three visualization tools.

The researchers made a number of suggestions after using our visualization tools. In par-

ticular, they wanted to combine multiple displays into a single presentation format. To address

this request, we designed a multivariate data visualization tool that explicitly uses results and

visual features from preattentive processing. We wanted a tool that worked well with a real-

world task and real-world data. Researchers in Oceanography helped us choose a task that was

of interest to them. We used data from the salmon migration simulations when we tested the

visualization design.

We decided to study the use of colour and orientation to represent multiple data values

in a single display. Psychological experiments were designed to test these features. A display

that contained 174 rectangles was shown to a subject for 450 milliseconds. Rectangles were

coloured either blue or red. Rectangles were oriented either at 0� or at 60� (Figure 5.2). Half

of the subjects were asked to estimate the percentage of blue rectangles in the display. The

other half were asked to estimate the percentage of rectangles oriented at 60�. Each display

simulated a visualization tool presenting salmon migration data. Subjects were performing the

task proposed by oceanography when they estimated the number of rectangles with a given

preattentive feature. Results from these experiments were analysed to answer the following

questions:

� Can estimation be performed reliably within the exposure duration we chose?

� Do subjects perform better with a particular feature (i.e., is one feature better for the

estimation task)?

� Do features interfere with one another? Does encoding a data value irrelevant to the esti-

mation task with a secondary preattentive feature a�ect the subject's estimation ability?

We computed a number of statistics, including t-test and analysis of variance F -test values,
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to analyse the data generated during the experiments. Results from these tests indicated the

following conclusions:

� rapid and accurate estimation can be performed using both colour and orientation within

a 450 millisecond exposure duration

� there is no evidence of a subject preference for either colour or orientation during the

estimation task

� there is evidence of a subject preference for the underlying data being displayed during

the estimation task

� there is no evidence that orientation interferes with a subject's ability to perform colour

estimation

� there is no evidence that colour interferes with a subject's ability to perform orientation

estimation

� there is no evidence of interaction between the primary preattentive feature and the

underlying data being displayed

Chapter 2 of this thesis describes research related to scienti�c visualization. The four visu-

alization methods, volume visualization, 
ow visualization, multivariate data visualization, and

visual interactive simulation are examined. Chapter 3 discusses material related to preattentive

processing. Three opposing theories that hypothesize how the human visual system performs

preattentive processing are explained. Chapter 4 describes Oceanography's salmon migration

simulations and the visualization techniques used to examine their data. The task selection

and design process for our psychological experiments are presented in Chapter 5. Chapter 6

analyses data from the experiments, statistically testing for a number of hypotheses. Conclu-

sions from the analysis are presented in Chapter 7, and directions for future work are discussed

in Chapter 8.



Chapter 2

Related Work

\Felix qui potuit rerum cognoscere causas
[Lucky is he who could understand the causes of things]"

{ Virgil (70-19 B.C.)

Scienti�c visualization as a discipline within computer graphics is a relatively recent devel-

opment. The �rst reference to \scienti�c visualization" per se occurred sometime in the late

1980s. Panels and workshops in a variety of di�erent disciplines are now addressing scienti�c

visualization and its relationship to their work [Wol88][Tre89][Bec91b]. The area is expanding

into a number of sub�elds that use computer graphics to solve various types of problems. Ex-

amples of these techniques include volume visualization, medical imaging, 
ow visualization,

and multivariate data visualization.

The term \visualization" is often used to refer to the presentation of information to a viewer.

Common presentation methods include tables, graphs, pictures, and sound. However, some may

question where the actual visualization occurs. Is the presentation of data \visualization", or

does \visualization" occur in the visual and auditory processing of the presentation done by the

user? Vande Wettering notes visualization is \: : :an intelligent, cognitive process performed

by human beings" and that visualization tools \: : :merely facilitate mental insight by the

5
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researchers who use them"1. Much of the published work to date seems to blur or ignore this

distinction. Our notion of \visualization" is the presentation of data in a format speci�cally

designed to make use of the human visual system, especially low-level human vision. In this way

we take into account both the representation of data and the cognitive processing performed

by the viewer.

Visualization can be de�ned in a mathematical context to more formally illustrate the

path from data to information presentation. The most general setting looks at visualization of

arbitrary relations. We will be content to concentrate on functional relationships. We represent

these symbolically as

f : D) R (2:1)

where (informally) the domain D is the set of \independent" values, and the range R is the set

of \dependent" results. Assuming D is a subset of Rm and R is a subset of Rn then f : D ) R

can be considered an (m+ n)-dimensional dataset. Visualization is a similar mapping of data

to some presentation format.

g : data) presentation (2:2)

Researchers usually want to determine or verify the mapping f . The visualization mapping

g is designed to display data in a way that makes it easy to understand or validate f . This

can be done in a variety of ways. g can present data elements in a more useable or intuitive

manner. It can be used as a �lter to extract and juxtapose some subset of the data. It can

highlight speci�c data elements or relationships between di�erent elements. An important

aspect of g is the choice of features used to represent data elements. Common features include

spatial location within a display, colour, size, shape, orientation, and sound. The set data often

includes values not only from D and R, but from other sources as well. Known results can be

juxtaposed with experimental results to ensure f simulates some real-world system in a logical

or expected way. A simulated time axis can be added to a dataset to allow frame-by-frame

animation.

1Visualization Tools: An Introduction. Pixel, 1(2), 1990, pg. 32
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Visualization tools are utilities that perform the mapping g. They take as input the set

data, and produce as output a presentation of the data elements in some speci�ed format.

Most tools require the user to de�ne g explicitly. Others automate this process by attempting

to choose an appropriate mapping based on the information the user wants to extract from

the data. This requires knowledge about the type of presentation that is most appropriate for

the given task. A number of papers have been written that discuss visualization for speci�c

types of problems and environments. Relatively few papers discuss rules or guidelines for the

design and use of general visualization tools. Researchers are now searching for visualization

techniques that can be applied to a variety of visualization problems.

Visualization of data and real-world phenomena is an area of study with a long history.

Tufte speaks of some 500 years of information representation, starting with the perfection of

perspective drawings during the Italian Renaissance [Tuf90]. Books on graphic design show

charts and graphs dating back some 150 years to the mid 1800s [Her74] [Tuf83]. More recently,

computer simulations have prompted the design of a variety of computer-based visualization

techniques. Researchers have found that appropriate visual displays can signi�cantly increase

the usefulness of a simulation program. Tools have been written that allow simulation languages

to create graphical displays. Programs that post-process data from computer and mathematical

models also create graphical displays. These programs can visualize data in a variety of complex

and useful ways.

The current stage of research is concerned with the intelligent design of visualization tools.

Scientists are now turning to computer graphics, psychology, and visual arts to understand how

the human visual system analyses images. This has led to the use of visual properties to make

displays more intuitive. These visual properties take advantage of the fundamental workings of

the human visual system itself. Some of the most interesting work has used the psychological

phenomena known as preattentive processing. This allows users to quickly detect interesting

trends or properties in data through the use of abstract features such as colour, texture, shape,

and orientation.
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Not everyone believes that graphical displays are better than text descriptions. DeSanctis

reviewed research that compared graphical and textual displays [DeS84]. He found that most

experiments tested one of the following areas:

� interpretation accuracy, to ensure data is correctly interpreted

� problem comprehension, to see how quickly data is understood

� task performance, to see how presentation of data a�ects solving the task at hand

� decision quality, to see how presentation of data a�ects the quality of decisions made

� speed of comprehension, to see how quickly data can be summarized

� decision speed, to see how quickly a decision can be reached

� memory for information, to see how presentation of data a�ects ability to recall speci�c

facts

� viewer preference, to see which type of data presentation users prefer

DeSanctis notes some obvious results, for example that tables are usually better than graphs

for obtaining speci�c data values, but graphs are usually better than tables for identifying

trends. He also states some controversial proposals, for example that colour does not enhance

comprehension or task performance. In fact, DeSanctis claims that contradictory results exist

for all the experiment criteria. In some cases, researchers found graphics were better than text.

In other cases, text was favoured over graphics. DeSanctis feels these contradictions imply

graphics do not necessarily o�er advantages for any of the experimental criteria.

One should remember that DeSanctis focused on the comparison of graphs versus textual

tables only. He did not research possible advantages of more complex visual displays. The

contradictions he found suggest that graphics should be applied only in certain situations. If

used correctly, they can o�er an improvement over textual displays. It certainly seems unlikely
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that graphical displays never o�er an improvement over textual displays in any situation. In

fact, DeSanctis suggests that guidelines be developed that tell designers when graphics may be

useful.

Standard Visualization Tools

Visualization in scienti�c computing is attempting to address a number of related problems.

The National Science Foundation panel on scienti�c visualization calls these the \domain of

visualization" [McC87], by which they mean the application areas to which visualization is being

applied, the tools being brought to bear, and the research problems arising as a result. Three

key areas being researched are meaningful representation of data, immediate visual feedback

and interaction, and management and analysis of large datasets.

One obvious use of visualization is the presentation of data in a useful, intuitive, or mean-

ingful manner. This is usually done by attaching \features" such as colour, spatial location,

and sound to each data element. Features are chosen to show properties within and relation-

ships among data elements. An example of this technique is the presentation of data from

computer and mathematical simulations. Originally, visualization of this data consisted of so

called \business graphics". This included printed tables of formulas or numbers and graphs

produced using groups of characters to represent bars or lines. Simulation programs that gen-

erated the data provided no commands to display results in a concise or coherent manner

[Gor69][Fra77][Bra83]. A set of �nal results was printed when the simulation ended. Printing

intermediate values to ensure the program was working correctly often produced a seemingly

endless stream of data. Commercial software manufacturers have attempted to solve this prob-

lem by providing separate programs or libraries of routines that perform di�erent types of

visualization. Some packages take data produced by a simulation program and display it in a

meaningful way. Others add commands to the language, allowing visualization to be included

as part of the simulation program.
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A problem with traditional simulation systems is the lack of immediate visual feedback

and interaction. Users want to be able to view their results in real time, as they are being

produced. This allows experimentation when interesting phenomena are discovered during

simulation execution. Users want to be able to \steer" the simulation, to direct its path to follow

interesting trends as the data is generated. This class of software tool is called visual interactive

simulation. Interaction will increase productivity if the visualization leads to a good choice.

A number of researchers have created visual interactive simulation tools that allow interactive

analysis [Mel85][OKe86][Set88]. They provide various empirical and anecdotal results that show

visual interactive simulation as an improvement over existing simulation models [Kau81][Bel87].

The requirements for visual interactive simulation are similar to another important class

of problem, the visualization of output from real-time applications. Systems like air tra�c

control require rapid and informative visualization of multivariate data. These displays are

often shared by di�erent operators, who visually acquire di�erent data from di�erent parts of

the display at the same time. The visualization technique must allow a variety of tasks to

be performed rapidly and accurately on dynamically changing subsets of the overall display.

Medical imaging systems such as CT, MRI, and ultrasound are another type of application

that could bene�t from real-time visualization techniques. This method of exploratory analysis

presents data to the user in real time. The user analyses the data and decides how to proceed.

An informative visualization technique that allows rapid and accurate visual analysis would

decrease the amount of time needed to complete the analysis task. This is important, because

these types of systems often cannot be time-shared.

Recent developments in computing have created a number of high volume data sources. Ex-

amples include supercomputers, satellites, geophysical monitoring stations, and medical scan-

ners. Much of this data is stored without ever being analysed, due in part to the amount of

time required to apply traditional analysis techniques. Research in visualization tries to ad-

dress both the management and presentation of this type of data. The underlying database

must allow e�cient query and retrieval, �ltering, and transformation of data elements. A high

speed communication system may be needed to move data from a repository to a workstation
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where visualization is performed. Di�erent visualization tools can use a single database and

common access methods to obtain the data they require. This data is then presented to the

user in some prede�ned format, depending on the tool being used.

A number of dedicated visualization tools have been written to solve some of the prob-

lems mentioned above. They allow post-processing of experiment and simulation data, and are

usually run on graphics workstations. The programs o�er a number of very powerful visualiza-

tion techniques such as two- and three-dimensional modelling and rendering, volume rendering,

temporal and spatial animation, and even stereo displays. Most of the tools also allow user

interaction both before and during the visualization process.

The Application Visualization System (AVS) is a visualization tool built from several data-

manipulation modules [Van90a]. It runs as a set of individual UNIX processes combined and

controlled by a network 
ow manager. The AVS modules are grouped into four basic types:

� data sources, that convert data from a given input format into an AVS speci�c data

type (bytes, integers, reals, strings, �elds, colour maps, geometric objects, volumes, pixel

maps)

� data �lters, that convert an input data type to a new output data type. Filters can be

used for tasks like cropping and transposing

� data mappers, that convert an input �eld into a geometric output. Standard mappers

include alpha-blending, isosurface rendering, and �eld 
ow visualization

� renderers, that allow manipulation and rendering of AVS objects. Standard renderers

include a geometry editor, an image editor, and a volume visualization module

Users can place modules in a con�guration of their choice to convert, �lter, map, and render

data in di�erent ways. A network manager binds and controls communication between each

module. Users can also write their own modules, to extend the standard AVS package.

apE is a set of visualization tools written at Ohio State University [Van90b]. Like AVS,
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apE allows users to place individual modules in a 
owchart-like con�guration. Input data is

converted to a proprietary data format called 
ux. A network 
ow manager directs data from a

set of input �les through each module. Rendering modules at the end of the 
ow display results

in di�erent ways. apE includes its own set of modules to perform data conversion, �ltering,

transformation, editing, and rendering. Standard display modules include contour and colour

maps, isosurfaces, volume visualization, and rendering of geometric objects.

The VIS-5D visualization system was written by the University of Wisconsin Space Science

and Engineering Center. It was originally designed to help earth scientists interactively analyse

and animate large datasets [Hib90]. VIS-5D expects data to be formatted as a �ve-dimensional

grid. Three dimensions are used to represent spatial location, one to represent time, and one

to represent multiple physical variables. Users can interactively change the presentation of the

data by controlling the following factors:

� the viewpoint in three dimensions

� the combination of variables being simultaneously displayed

� choice of visual feature for any variable being displayed

� time dynamics

� the spatial extents of the region being shown

� calculation of new variables from existing ones

� an object's transparency

Although AVS, apE, and VIS-5D give users access to previously unavailable visualization

techniques, they do have drawbacks. Most excel at a speci�c subset of tasks required for

general visualization. There is no simple way to integrate the packages together to form a

single powerful unit. The tools are usually used to post-process already existing data. Their

ability to produce data in a simulation-like manner seems to be limited. Finally, many people
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do not have access to the equipment or expertise required to use the software. These people

need a set of tools that allow intuitive visualization using simple graphic primitives.

Volume Visualization

Volume visualization is a rendering technique that attempts to display data representing volu-

metric objects or models. Volume visualization allows users to address two related problems:

� a need to visualize three-dimensional objects in order to obtain a better understanding

about some aspect of the object

� a need to visualize not only the surface but also the interior of the object

A number of traditional three-dimensional rendering techniques such as scan-line rendering or

ray tracing can solve the �rst requirement. The second requirement is more di�cult to satisfy.

Early graphics systems employed \cutting planes" to solve the problem. More recently, various

methods have been proposed to allow a user to see \inside" the objects they are visualizing.

Yagel, Kaufman, and Zhang have developed a technique that allows a user to render and

manipulate objects in a three-dimensional environment [Yag91]. Their system presents a set

of tools that are both familiar and intuitive to the user. Volumetric objects are discretized

into volume elements (voxels) using a scan-conversion algorithm. The voxel-based objects are

then rendered using a modi�ed ray-tracing algorithm called 3D raster ray tracing. Users can

manipulate their objects using the following tools:

� a user can place mirrors in the scene to obtain multiple views of an object or objects

� a user can tell the system to cast shadows to help visualize the spatial location and

orientation of objects

� a user can change the specularity of an object to help visualize the object's surface features
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� a user can perform a variety of constructive solid geometry operations on an object (e.g.,

dissection, clipping, �ltering, thresholding). One obvious use of these operations would

be to clip away part of the surface, to see what was inside the object

Another way of looking inside an object is to make the outer layers of the object semi-

transparent. This allows us to \see" through these layers to whatever lies inside the model.

Drebin used this technique to visualize medical images [Dre88]. The body's outer surfaces

(tissue and fat) are rendered as though they are transparent. The inner surfaces (bone) are

solid. The resulting image is a skeleton surrounded by a semi-transparent \skin". Users can

thus obtain visual information about both the surface and the interior of the body being

displayed.

Flow Visualization

Flow visualization is concerned with the simulation, visualization, and analysis of atmospheric

and 
uid 
ows. Wind tunnel simulations study how air 
ows around and through various

objects. Fluid mechanics uses visualization tools to analyse phenomena such as vortices, tur-

bulence, and eddies in a 
uid 
ow �eld.

Sethian has designed a 
ow visualization tool that runs interactively in real time on a par-

allel processor computer, the Connection Machine CM-2 [Set88]. Perhaps the most important

feature of Sethian's visualization tool is its real-time interactive ability. Users can watch the

progress of a simulation and immediately respond to interesting events. This often involves

changing system parameters to explore unexpected results as they evolve. A more complete

description of such \visual interactive simulation" techniques is given later in this chapter.

Sethian's visualization tool allows a user to design the shape of a 
ow tunnel and place

various geometric objects inside it. Coloured particles (smoke and dye) can be interactively

injected to follow the 
uid 
ow. Objects that provide a constant stream of particles from a

�xed spatial location are also available. These are used to analyse the direction of the 
ow over
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time. Sethian provides a number of examples where unexpected 
ow �elds are easily observed

using his visualization software.

A group at the NASA Ames Research Center has been using virtual reality as part of the

design of their wind tunnel simulation software [Bry91]. Users interact with their \virtual wind

tunnel" using a data glove and a head-mounted display. They can place tufts and coloured

particles into their world to help analyse the 
ow �eld. Tufts are small vanes that are an-

chored at a �xed position in the 
ow. They show changes in the 
ow �eld at that spatial

location. Coloured particles move through the 
ow �eld over time. They form particle paths

and streamlines, which help users understand and analyse the shape of the 
ow �eld.

Multivariate Data Visualization

Multivariate data visualization deals with the problem of representing high-dimensional data in

a low-dimensional environment. High-dimensional data is a set of data elements, each of which

encapsulates a relatively large number of data values. An example we will see later in this thesis

is a set of data elements that represent migrating salmon. Each data element, or salmon, has

a number of data values associated with it, like current geographical location, future location

of landfall, swim speed, swim orientation, and type of salmon. Researchers need a way to

visually represent this information in a two- or three-dimensional environment. Multivariate

data visualization attempts to solve this problem by addressing two related questions. First,

is it useful or even reasonable to visually display the data elements with all their associated

data values? There may be a limit to the amount of information we can process at one time.

Second, if we do want to \see" all the data values, how can we display the information in a

low-dimensional environment, such as a computer screen or printed media? One possibility is to

display the data so the user can distinguish between di�erent data values. Another possibility

is a display that shows trends in the data, rather than individual values.

Treinish has been developing a 
exible multidimensional visualization system [Tre91]. He
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is designing an environment that helps scientists analyse the data they produce. This goal

has led to a number of system requirements. Treinish feels visualization techniques should

take advantage of the power of the human visual system. The system should be usable by the

scientist directly and should not require a visualization specialist. A discipline-independent

system should handle arbitrary types of data. In order to meet these requirements, Treinish

proposes a construct called the visualization pipeline as follows:

� the raw data is stored in a data repository in some abstract, data-independent format

(Treinish suggests using the Common Data Format). Users can select the data they want

to visualize from the repository

� the selected data can be passed through a number of �lters, in order to convert it into the

desired format. These may include scaling and projecting the data, as well as conversion

to a speci�c format or coordinate system

� if the data is continuous, it may need to be sampled or gridded to a user-selected resolution

� �nally, the data is visualized or rendered using one of a number of visualization tools

provided with the system (e.g., two- and three-dimensional plots, contour plots, surfaces,

or �eld 
ows)

Treinish stresses the importance of the data repository and the supporting data management

facilities. He feels this is key to allowing discipline-independent visualization. Data selection

and manipulation is separated from data visualization. This gives the user enough 
exibility

to work with arbitrary data sets and a variety of visualization techniques.

Ware and Beatty have designed a method that uses colour to represent multidimensional

data elements [War85][War88]. Data with up to �ve dimensions can be processed by their sys-

tem. Elements are represented as spatially located coloured squares. Individual data values are

assigned to the following properties of the square representing the data element: x-coordinate,

y-coordinate, red intensity, green intensity, and blue intensity. An obvious extension to six

dimensions would be to plot elements in a simulated three-dimensional environment.
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(a)

(b)

Figure 2.1: Examples of Ware and Beatty's coherency visualization technique. This 5-di-
mensional dataset is made up of four coherent groups of elements: (a) data represented by
four \clouds" of grey squares; (b) data represented by four \clouds" of coloured squares
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Ware and Beatty's visualization tool is used for coherency testing (cluster analysis). Co-

herency occurs when data elements can be separated into groups of elements with common

properties. The data values of the data elements in a given group are similar. Coherent data

is represented visually as spatial groups of similarly coloured squares. The data in Figure 2.1a

contains either three or four coherent groups. It is di�cult to determine whether squares in

the center of the �gure belong to one or two groups. The use of colour in Figure 2.1b shows

very clearly that the data contains four coherent groups. These are represented visually by the

four coloured \clouds" of squares. The importance of colour is illustrated by the four over-

lapping data elements in the center of the �gure, two of which are yellow and two of which

are purple. Colour allows us to classify these elements into their respective groups. Without

colour, we would probably guess all four elements belonged to the purple group. This method

allows users to quickly determine whether or not a dataset is coherent. One possible drawback

to this technique is the fact that it cannot support data elements with more than �ve or six

dimensions.

Pickett and Grinstein have been using results from cognitive psychology as part of the design

of their visualization tools [Pic88][Gri89][Lev90]. Pickett and Grinstein are also developing

tools for coherency testing. Their tools display structure in the data as a set of textures and

boundaries. Groups of data elements with similar values appear as a spatial group in the

display with a unique texture. Di�erent groups are identi�ed by their di�ering textures.

Pickett and Grinstein's method has a number of important features. The use of texture

is based on an area of research in cognitive psychology called preattentive processing. The

display mechanism is speci�cally designed to take advantage of the human low-level vision

system. This method is also able to display data with more than �ve dimensions. This is an

improvement over colour contour plots and Ware and Beatty's colour square method. Recently,

Pickett and Grinstein have extended their method to use other visual primitives, such as colour

[Lev91] and sound. A more detailed explanation of their visualization tools is presented in the

\Iconographic Displays" section in the next chapter of this thesis.
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Visual Interactive Simulation

Visual interactive simulation (VIS) was a term �rst conceived by Hurrion in 1976. VIS is

concerned with two important problems: visualization of simulation data and user interaction

with a running simulation [Bel87]. After building a number of models for various companies

in the United Kingdom, Hurrion o�ered a set of anecdotal observations supporting the use

of VIS [Hur80]. He suggested VIS made users more attentive, partly because pictures were

more interesting than text and partly because users felt they had more control over the system.

Visualization of intermediate results sometimes gave rise to interesting situations the user had

never envisioned. This often led to a new line of research and experimentation.

A number of papers have been written showing practical examples of VIS applications.

Kaufman showed an example of converting a traditional simulation program into an interactive

program that used graphics [Kau81]. Researchers in the United Kingdom have developed a

set of library routines that allow VIS on an Apple microcomputer [OKe86]. After applying

their software to various practical simulation problems, they concluded that a machine with

relatively simple graphic primitives and computational power o�ered an acceptable platform

for VIS software.

Scientists at AT&T Bell Labs have developed a general VIS package, the Performance

Analysis Workstation [Mel85]. The workstation allows design and testing of queueing networks.

All the tasks on the workstation are graphical. Users design the network topology by positioning

resources on the screen and placing links between them. They can allocate screen space for

various graphs or informational messages. The simulation can be started, interrupted, modi�ed,

and monitored using commands available through pop-up menus. The workstation visually

displays activity in the network, including movement and queueing of requests as the simulation

executes.

Workgroups in Bell Labs have been using the Performance Analysis Workstation for a vari-

ety of applications. Results from the workstationmirror the observations of Hurrion, speci�cally
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that users enjoy using the workstation, and that interesting phenomena often arise while the

simulation is running.

Future Directions

Various panels and workgroups that consulted scientists studying visualization seem to con�rm

opinions suggested in previous work. These people provided some interesting insight on the

current state of scienti�c visualization [McC87][Bro88][Tre89]. They feel visualization is made

up of a number of di�erent disciplines, including physical science, computer graphics and

computer science, psychology, and visual arts. The recent need for some form of intelligent

data representation has stimulated the formation of interdisciplinary groups. These groups

are pooling their expertise in an attempt to come up with guidelines and solutions to the

visualization problem.

Another interesting point was the strong support shown for visual interactive simulation.

The panel members agreed that up to this point visualization has been a post-production task.

Scientists visualize data that was obtained some time in the past. People now want to produce

visual displays while the data is being generated. Through user interaction, they want to be

able to \steer" the path of computation in response to the visualization they see while the

simulation runs. This is exactly the concept Bell and O'Keefe suggested in their research paper

[Bel87]. Visual interaction simulation methods can also be used to visualize data from real-time

systems such a air tra�c control and medical imaging systems.

Finally, researchers recognize the fact that not everyone has the sophisticated computer

equipment needed to generate complex visual images. This creates two additional visualization

requirements. First, there should be some simple way to transport data from where it is

generated to where it will be visualized. Various groups are working to produce advanced

networking tools that will allow supercomputers and workstations to communicate e�ciently.

Second, there is an understanding that visualization does not need to be complicated in order
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to be useful; some data can bene�t from advanced techniques such as stereo display or volume

rendering, but most data can be visualized using simple wireframe objects or colour-coded

plots. This type of simple visualization can be done on personal workstations or even personal

computers.

In order to address these requirements, we decided to use the built-in processing of the

human visual system to assist with visualization. In particular, we studied results from an

area of cognitive psychology called preattentive processing. Preattentive processing describes

a set of simple visual features that are detected in parallel by the low-level human visual

system. Background information on preattentive processing is presented in the next chapter.

We hypothesize that the use of preattentive features in a visualization tool will allow users to

perform rapid and accurate visual tasks such as grouping of similar data elements, detection of

elements with a unique characteristic, and estimation of the number of elements with a given

value or values. We tested this hypothesis using psychological experiments that simulated a

preattentive visualization tool. This is described in two chapters later in this thesis.
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Preattentive Processing

\One man does not see everything in a glance"
{ Ph�niss�, Euripides

Researchers in psychology and vision have been working to explain how the human visual system

analyses images. One interesting result has been the discovery of visual properties that are

\preattentively" processed. These properties are detected immediately by the visual system.

Viewers do not have to focus their attention on an image to determine whether elements with

the given property are present or absent.

An example of preattentive processing is detecting a �lled circle in a group of empty circles

(Figure 3.1). The target object contains a preattentive property, \�lled", that the distractor

objects do not. A viewer can quickly glance at the image to determine whether the target is

present or absent.

Properties that are preattentively processed can be used to highlight important image char-

acteristics. Experiments in psychology have used preattentive properties to assist in performing

the following visual tasks:

� target detection, where users attempt to rapidly and accurately detect the presence or

absence of a \target" element that uses a unique preattentive property within a �eld of

22
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(a) (b)

Figure 3.1: Examples of target detection: (a) target can be preattentively detected because
it contains the unique feature \�lled"; (b) �lled circle target cannot be preattentively
detected because it contains no preattentive feature unique from its distractors

distractor elements (Figure 3.1)

� boundary detection, where users attempt to rapidly and accurately detect a texture

boundary between two groups of elements, where all of the elements in each group have

a common preattentive property (Figure 3.2)

� counting, where users attempt to count or estimate the number of elements in a display

that use a unique preattentive property

Feature Integration Theory

Triesman has provided some exciting insight into preattentive processing by researching two

important problems [Tri85]. First, she has tried to determine which properties are detected

preattentively. She calls these properties \preattentive features". Second, she has formulated

a hypothesis about how the human visual system performs preattentive processing.

Triesman ran experiments using target and boundary detection to classify preattentive

features. For target detection, subjects had to determine whether the target was present or

absent in a �eld of distractors. Boundary detection involved placing a group of objects that
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(a) (b)

Figure 3.2: Examples of boundary detection: (a) the horizontal boundary between two
groups is preattentively processed because each group contains a unique feature; (b) the
vertical boundary is not apparent, because both groups use the same features (�lled versus
empty and square versus circle)

used a unique feature within a set of distractors to see if the boundary could be preattentively

detected.

Researchers test for preattentive target detection by varying the number of distractors in

a scene. If search time is relatively constant and below some chosen threshold, independent

of the number of distractors, the search is said to be preattentive. Similarly, for boundary

detection, if users can classify the boundary within some �xed time, the feature used to de�ne

the boundary is said to be preattentive. A common threshold time is 250 milliseconds, because

this allows subjects \one look" at the scene. The human visual system cannot decide to change

where the eye is looking within this time frame.

Objects that are made up of a conjunction of unique features cannot be detected preatten-

tively. A conjunction occurs when the target object is made up of two or more features, each

of which is contained in the distractor objects. Figure 3.1b shows an example of a conjunc-

tion target. The target is made up of two features, �lled and circle. Both of these features

occur in the distractor objects (�lled squares and empty circles). Thus, the target cannot be

preattentively detected.
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Triesman has compiled a list of features that can be preattentively detected [Tri85][Tri88].

These features include line length, orientation, contrast, hue, curvature, and closure. It is

important to note that some of these features are asymmetric. For example, a sloped line

in a sea of vertical lines can be preattentively detected. However, a vertical line in a sea of

sloped lines cannot be preattentively detected. Another important consideration is the e�ect

of di�erent types of background distractors on the feature target. These kinds of factors must

be taken into consideration when trying to design systems that rely on preattentive processing.

Triesman breaks human early vision into a set of feature maps and a master map of locations

in an e�ort to explain preattentive processing. Each feature map registers activity in response

to a given feature. Triesman proposes a manageable number of feature maps, including one for

each of the human vision colour primaries red, yellow, and blue as well as separate maps for

orientation, shape, texture, and other preattentive features.

When the human visual system �rst sees an image, all the features are encoded in parallel

into their respective maps. One can check to see if there is activity in a given map, and perhaps

get some indication of the amount of activity. The individual feature maps give no information

about location, spatial arrangement, or relationships to activity in other maps.

The master map of locations holds information about intensity or hue discontinuities at

given spatial locations. Focused attention acts through the master map. By examining a given

location, one automatically gets information about all the features present at that location.

This is provided through a set of links to individual feature maps (Figure 3.3).

This framework provides a general hypothesis that explains how preattentive processing

occurs. If the target has a unique feature, one can simply access the given feature map to see

if any activity is occurring there. Feature maps are encoded in parallel, so feature detection

is almost instantaneous. A conjunction target cannot be detected by accessing an individual

feature map. Activity there may be caused by the target, or by distractors that share the

given preattentive feature. In order to locate the target, one must search serially through the

master map of locations, looking for an object with the correct features. This requires focused
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Figure 3.3: Framework for early vision that explains preattentive processing. Individual
maps can be accessed to detect feature activity. Focused attention acts through a serial
scan of the master map of locations.

attention and a relatively large amount of time.

In later work, Triesman has expanded her strict dichotomy of features being detected either

in parallel or in serial [Tri88][Tri91]. She now believes that parallel and serial represent two

ends of a spectrum. \More" and \less" are also encoded on this spectrum, not just \present"

and \absent". The amount of di�erentiation between the target and the distractors for a given

feature will a�ect search time. For example, a long vertical line can be detected immediately

among a group of short vertical lines. As the length of the target shrinks, the search time

increases, because the target is harder to distinguish from the distractors. At some point,

the target line becomes shorter than the distractors. If the length of the target continues to
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(a) (b)

Figure 3.4: Example of similar textons: (a) two textons that appear di�erent in isola-
tion; (b) the same two textons cannot be distinguished in a randomly oriented texture
enviroment

decrease, search time decreases, because the degree of similarity between the target and the

distractors is decreasing.

Texton Theory

Texture segregation involves preattentively locating groups of similar objects and the bound-

aries that separate them. Triesman used texture segregation during her experiments with

boundary detection. Figure 3.2a is an example of a horizontal texture boundary with empty

shapes on the top and �lled shapes on the bottom. Figure 3.2b is an example of a vertical tex-

ture boundary with �lled circles and empty squares on the left, and empty circles and �lled

squares on the right.

Jul�esz has also investigated texture perception and its relationship to preattentive process-



Chapter 3. Preattentive Processing 28

ing [Jul81][Jul83][Jul84]. He has proposed his own hypothesis on how preattentive processing

occurs. Jul�esz believes that the early vision system detects a group of features called textons.

Textons can be classi�ed into three general categories:

1. Elongated blobs (e.g., line segments, rectangles, ellipses) with speci�c properties such as

hue, orientation, and width

2. Terminators (ends of line segments)

3. Crossings of line segments

Jul�esz believes that only di�erences in textons or their density can be detected preat-

tentively. No positional information about neighboring textons is available without focused

attention. Like Triesman, Jul�esz believes preattentive processing occurs in parallel and focused

attention occurs in serial.

Figure 3.4 shows an example of an image that supports the texton hypothesis. Although

the two objects look very di�erent in isolation, they are actually the same texton. Both are

blobs with the same height and width. Both are made up of the same set of line segments and

each has two terminators. When oriented randomly in an image, one cannot preattentively

detect the texture boundary between the two groups of objects.

Similarity Theory

Some researchers do not support the dichotomy of serial and parallel search modes. Initial

work in this area was done by Quinlan and Humphreys [Qui87]. They investigated conjunction

searches by focusing on two factors. First, search time may depend on the number of items of

information required to identify the target. Second, search time may depend on how easily a

target can be distinguished from its distractors, regardless of the presence of unique preattentive

features. Note that in later work Triesman addressed this second factor [Tri88]. Quinlan and
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(a) (b)

Figure 3.5: Example of N-N similarity a�ecting search e�ciency: (a) high N-N similarity
allows easy detection of target shaped like the letter L; (b) low N-N similarity increases
di�culty of detecting target shaped like the letter L

Humphreys found that Triesman's feature integration theory was unable to explain all the

results obtained from the above experiments.

Duncan and Humphreys have now proposed their own explanation of preattentive process-

ing, which assumes search ability varies continuously depending on the type of task and display

conditions [Dun89][M�ul90]. According to their theory, search time depends on two important

criteria, T-N similarity and N-N similarity. T-N similarity is the amount of similarity between

the targets and nontargets (distractors). N-N similarity is the amount of similarity within the

nontargets themselves. These two factors a�ect search time as follows:

� as T-N similarity increases, search e�ciency decreases and search time increases

� as N-N similarity decreases, search e�ciency decreases and search time increases

� T-N similarity and N-N similarity are related (Figure 3.5). Decreasing N-N similarity

has little e�ect if T-N similarity is low. Increasing T-N similarity has little e�ect if N-N
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similarity is high

Triesman's feature integration theory has di�culty explaining the results of Figure 3.5. In

both cases, the distractors seem to use exactly the same features as the target, namely oriented,

connected lines of a �xed length. Yet experimental results show displays similar to Figure 3.5a

produce an average search time increase of 4.5 milliseconds per additional distractor, while

displays similar to Figure 3.5b produce an average search time increase of 54.5 milliseconds per

additional distractor.

In order to explain the above and other search phenomena, Duncan and Humphreys propose

a three-step theory of visual selection.

1. The visual �eld is segmented into structural units. Individual structural units share some

common property (e.g., spatial proximity, hue, shape, motion). Each structural unit may

again be segmented into smaller units. This produces a hierarchical representation of the

visual �eld. Within the hierarchy, each structural unit is described by a set of properties

(e.g., spatial location, hue, texture, size). This segmentation process occurs in parallel.

2. Because access to visual short-term memory is limited, Duncan and Humphreys assume

that there exists a limited resource that is allocated among structural units. Because

vision is being directed to search for particular information, a template of the information

being sought is available. Each structural unit is compared to this template. The better

the match, the more resources allocated to the given structural unit relative to other

units with a poorer match.

Because units are grouped in a hierarchy, a poor match between the template and a

structural unit allows e�cient rejection of other units that are strongly grouped to the

rejected unit.

3. Structural units with a relatively large number of resources have the highest probability

of access to the visual short-term memory. Thus, structural units that most closely match
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the template of information being sought are presented to the visual short-term memory

�rst. Search speed is a function of the speed of resource allocation and the amount of

competition for access to the visual short-term memory.

Given these three steps, we can see how T-N and N-N similarity a�ect search e�ciency.

Increased T-N similarity means more structural units match the template, so competition

for visual short-term memory access increases. Decreased N-N similarity means we cannot

e�ciently reject large numbers of strongly grouped structural units, so resource allocation time

and search time increases.

Three-Dimensional Icons

To date, most of the features identi�ed as preattentive have been relatively simple properties.

Examples include hue, orientation, line length, and size. Enns and Rensink have identi�ed

a class of three-dimensional elements that can be detected preattentively [Enn90a][Enn90b].

They have shown that the three-dimensionality is what makes the elements \pop-out" of the

visual scene. This is important, because it suggests that more complex high-level concepts may

be processed preattentively by the low-level vision system.

Figure 3.6 shows an example of these three-dimensional icons. The elements in Figure 3.6a

are made up of three planes. The planes are arranged to form an element that looks like a

three-dimensional cube. Subjects can preattentively detect the group of cubes with a three-

dimensional orientation that di�ers from the distractors. The elements in Figure 3.6b are made

up of the same three planes. However, the planes are arranged to produce an element with no

apparent three-dimensionality. Subjects cannot preattentively detect the group of elements that

have been rotated 180 degrees. Apparently, information about three-dimensional orientation is

preattentively processed.

Enns and Rensink have also shown how lighting and shadows provide three-dimensional in-

formation that is preattentively processed [Enn90c][Enn90d]. Spheres are drawn with shadows



Chapter 3. Preattentive Processing 32

(a)

(b)

Figure 3.6: Three-dimensional icons: (a) when the cubes appear \three-dimensional", the
group with a di�erent orientation is preattentively detected; (b) when three-dimensional
cues are removed, the unique group cannot be preattentive detected
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(a) (b)

Figure 3.7: Hue and brightness segregation: (a) hue texture boundary with varying bright-
ness across the array; (b) brightness texture boundary with varying hue across the array

so they appear to be lit either from above or from below. Subjects can preattentively detect

the group of spheres that appear to be lit di�erently than the distractors.

Interference Experiments

Callaghan has done research to see how similarity within feature groups a�ects texture segre-

gation [Cal90]. She found that varying certain irrelevant features within a group can interfere

with boundary detection. Her initial experiments dealt with location of a horizontal or verti-

cal texture boundary [Cal84]. Subjects were presented with a six by six array of elements. The

texture boundary was formed by either di�erences in hue or di�erences in brightness. For hue

segregation, the brightness in both groups varied randomly between two values. For brightness

segregation, hue varied randomly between two values (Figure 3.7). Subjects had to determine

whether the texture boundary was vertical or horizontal. Control experiments were run to

see how quickly subjects could detect simple hue and brightness boundaries. The control ar-

rays had a uniform brightness during hue segregation, and a uniform hue during brightness
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(a) (b)

Figure 3.8: Form and hue segregation: (a) hue boundary is preattentively detected, even
though form varies in both groups; (b) hue interferes with detection of form boundary

segregation.

Callaghan found that non-uniform brightness will interfere with hue segregation. It took

subjects longer to determine where the texture boundary occurred, relative to the control array.

However, a non-uniform hue did not interfere with brightness segregation. A brightness texture

boundary can be detected in a �xed amount of time, regardless of whether the hue 
uctuates

or not. This asymmetry was veri�ed through further experimentation [Cal90].

Callaghan's more recent work has shown a similar asymmetry between form and hue [Cal89].

As before, subjects were asked to locate a horizontal or vertical texture boundary in a six by

six array. During the experiment, the arrays were segregated by either hue or form. For hue

segregation, form varied randomly within the array (circle or square). For form segregation,

hue varied randomly. Results showed that variation of hue interfered with form segregation.

However, variation of form did not interfere with hue segregation (Figure 3.8).

These interference asymmetries suggest some preattentive features may be \more impor-

tant" than others. The visual system reports information on one type of feature over and above
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others that may also be present. Callaghan's experiments suggest that brightness overrides hue

information and that hue overrides shape information.

Iconographic Displays

Pickett and Grinstein have been working to develop a method of displaying multidimensional

data in a two-dimensional environment [Pic88]. The two most common display mediums,

computer screens and printed documents, are both two-dimensional.

Initially, work has focused on spatially or temporally coherent data sets. This type of data

generally contains clusters of data elements with similar values. Previously, data with up to

three dimensions was plotted in colour. Each data dimension controlled the intensity of one of

the three primary colours red, green, and blue. Coherent areas within the data set occurred

where colour values were similar. Relationships between data elements were shown as spatial

changes in colour. Pickett decided to use texture as a medium that could show relationships

among higher dimensional data. The texture segregations would preattentively display areas

with similar data elements. Researchers could then quickly decide whether further analysis was

required.

Pickett developed icons that could be used to represent each data element. An icon consists

of a body segment plus a number of limbs (Figure 3.9). Each value in the data element controls

the angle of one of the limbs. The icons in Figure 3.9 can support �ve-dimensional data

elements. The four limbs support the �rst four dimensions. The �nal dimension controls the

orientation of the icon's body in the image.

Once the data-icon mapping is de�ned, an icon can be produced for each data element.

These icons are then displayed on a two-dimensional grid in some logical fashion. The result

is an image that contains various textures that can be preattentively detected. Groups of data

elements with similar values produce similar icons. These icons, when displayed as a group,

form a texture pattern in the image. The boundary of this pattern can be seen, because icons
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(a) (b) (c)

(d)

Figure 3.9: Examples of \stick-men" icons: all three icons have four limbs and one body
segment (shown in bold), so they can support �ve-dimensional data elements; (d) an
iconographic display of 5-D weather satellite data from the west end of Lake Ontario
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(a) (b)

Figure 3.10: Examples of Cherno� faces: notice that the various facial characteristics,
such as nose length, eyes, mouth, jowls, etc., are controlled by various data values in each
face

outside the given group have a di�erent form and produce a di�erent texture pattern.

The key to this technique is designing icons that, when displayed, produce a good texture

boundary between groups of similar data elements. To this end, Pickett and Grinstein have

been working on an icon toolkit, to allow users to produce and test a variety of icons with their

data sets [Gri89]. They have also added an audio component to the icons. Running the mouse

across the image will produce a set of tones. Like the icons, the tones are mapped to the values

in each data element. It is believed these tones will allow researchers to detect interesting

relationships in their data.

Other researchers have suggested using various types of \icons" to plot individual data

elements. One of the more unique suggestions has been to use faces (Figure 3.10) with di�erent

expressions to represent multidimensional data [Che73][Bru78].

Each data value in a multidimensional data element controls an individual facial charac-

teristic. Examples of these characteristics include the nose, eyes, eyebrows, mouth, and jowls.

Cherno� claims he can support data with up to eighteen dimensions. He also claims groupings

in coherent data will be drawn as groups of icons with similar facial expressions. This tech-

nique seems to be more suited to summarizing multidimensional data elements, rather than

segmenting them. Still, it shows that researchers are exploring a wide variety of ideas.
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We will look at two preattentive features, hue and orientation, and will investigate their

use for a common task, estimation. Psychological experiments that simulate a visualization

tool for estimation using these features will be described in Chapter 5.



Chapter 4

Salmon Migration Simulations

\Di qua, di l�a, di gi�u, di su li mena
[Hither, tither, upward, downward they are driven]"

{ Inferno, Dante

A salmon is a well-known type of �sh that lives, among other areas, on the western Canadian

coast. Salmon are split into six species: Atlantic, Sockeye, Coho, Chinook, Chum, and Pink.

The life history of a salmon consists of four stages: birth, freshwater growth stage, ocean growth

stage, and migration and spawning [Pea92]. Salmon are born as fry in freshwater rivers and

streams. After birth, the fry spend time feeding and maturing before swimming downstream to

the open ocean. The amount of time spent can vary widely from a few months to several years,

depending on the type of salmon. Upon reaching the ocean, the salmon moves to its \open

ocean habitat", where it spends most of its ocean life feeding and growing. Ocean habitats for

the various species of salmon are not well de�ned. Sockeye salmon are thought to feed in the

Subarctic Domain, an area of the Paci�c Ocean north of 40� latitude stretching from the coast

of Alaska to the Bering Sea. After a period of one to six years, salmon begin their migration

run. This consists of an open ocean stage back to the British Columbia coast and a coastal

stage back to a freshwater stream to spawn. Salmon almost always spawn in the stream where

they were born. Scientists now know salmon �nd their stream of birth using smell when they

39
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Figure 4.1: The British Columbia coast, showing Vancouver Island, the Juan de Fuca
Straight, the Johnstone Straight, and the Fraser River. Arrows represent the migration
patterns of returning salmon

reach the coast. The direction �nding methods used to navigate from the open ocean habitat

to the coast are still being researched. Once the salmon reaches its stream of birth, it spawns

and then dies. Typical spawning produces between 2,000 and 5,000 eggs.

The ocean phase of sockeye salmon migration is not well understood [LeB90]. It is recog-

nized that it is rapid, well directed, and well timed. Previous work has examined the e�ect of

climate and ocean conditions during migration to see how they a�ect the point of landfall for

Fraser River sockeye. The entrance to the Fraser River is located on the southwest coast of

British Columbia, near Vancouver. When the Gulf of Alaska is warm, sockeye make landfall

at the north end of Vancouver Island and approach the Fraser River primarily via a northern
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route through the Johnstone Strait. When the Gulf of Alaska is cold, sockeye are distributed

further south, make landfall on the west coast of Vancouver Island, and approach the Fraser

River primarily via a southern route through the Juan De Fuca Strait (Figure 4.1). The per-

centage of sockeye returning around the northern end is called the Johnstone Strait Diversion

(hereafter JSD). The JSD has a distinct interannual variability and is measured by records of

salmon caught by �shermen each year. Research is being conducted to determine the factors

that drive this variability.

Recent work in plotting ocean currents has provided scientists with a possible explanation

for sockeye migration patterns. It has been speculated that the interannual variability of

ocean surface circulation has impact on where the sockeye make landfall. A multi-institutional

investigation has been initiated to examine the in
uences of currents, temperature and salinity

on open ocean return migrations of sockeye salmon. Researchers are using the OSCURS (Ocean

Surface Circulation Simulation) model [Ing88][Ing89]. Possible return migration paths of the

sockeye are plotted by placing 174 simulated salmon at �xed locations in the open ocean

(Figure 4.2). The simulated salmon use a common set of \rules" to �nd their way back to the

British Columbia coast. Three separate experiments have been proposed. Salmon from each

experiment react to di�erent sets of environmental stimuli. These experiments are designed to

test the following:

1. The in
uence of currents on compass-oriented migrations. Compass-oriented salmon take

a single \look" before their migration run to determine the direction to the coast. They

use a biological \compass" to swim in this �xed direction during their migration run,

regardless of external forces (e.g., currents) that may shift their migration path

2. The in
uence of currents on bicoordinate-orientated migrations. Bicoordinate-oriented

salmon make multiple \looks" during their migration run. Each \look" allows them to

adjust for external forces by updating the direction they need to swim to reach the coast

3. The in
uence of currents, temperature and salinity on compass- and bicoordinate-orientated

migrations
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(a)

(b)

Figure 4.2: Examples of output from OSCURS program: (a) dots represent starting po-
sitions of 174 simulated salmon; (b) trailer beginning at each salmon's starting position
tracks its path to the British Columbia coast
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The simulations address the following questions regarding the ocean phase of sockeye return

migrations:

� What is the range of sockeye swimming speeds (as opposed to migration rates)?

� What direction-�nding mechanisms are used by sockeye (i.e., compass-orientation, plot-

ting and/or bicoordinate-orientation)?

� How does the interannual variability of open ocean current, temperature and salinity

�elds impact the observed interannual variability of the point of landfall and timing of

sockeye returns?

The model simulations of the �rst phase are complete. They focused on two years with

signi�cantly di�erent JSDs, 1982 (22% JSD) and 1983 (80% JSD). Simulations of passive salmon

for each of the two years con�rmed that the magnitudes of the surface currents are su�cient

to in
uence the migrating sockeye. The average net north-south current drifts were 2.4 and

5.1 kilometres per day, respectively. Over a migration period of sixty days, the di�erence in

these drifts could account for sockeye landfall in 1983 of up to 150 kilometres further north

than 1982. A shift in landfall of this distance might explain the large di�erence in JSDs.

Fifty-four simulations of compass-orientated sockeye were run. Each simulation \released"

174 sockeye, distributed over the Northeast Paci�c sub-arctic habitat (Figure 4.2a). The fol-

lowing model parameters were used:

� 1982 and 1983 surface currents

� sockeye swim speeds of 20.8 cm/s (18 km/d), 34.7 cm/s (30 km/d) and 55.6 cm/s (48

km/d)

� sockeye swim directions of 90�, 112:5�, and 135�

� \release" times (simulated start dates) of May 1, June 1, and July 1
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These studies illustrate the problems discussed in Chapter 2, namely display of multidi-

mensional data in a two-dimensional environment, time animated displays, and displays that

allow comparison of plots to quickly detect di�erences.

Standard Visualization Tools

We started our analysis of Oceanography's simulation data by building a set of \standard" vi-

sualization tools. These tools were written in an ad-hoc manner, without using results from

research in preattentive processing. This helped us understand the Oceanography simulations

and the type of data analysis researchers required. We also wanted to see what kind of visu-

alization tools we could build using standard design techniques. The design process involved

consulting with the end users and writing tools to analyse a single speci�c problem. Three dif-

ferent programs were written. The �rst compared latitude of landfall for two di�erent years.

The second compared salmon swim speeds for two di�erent years. The third compared date of

landfall for two di�erent years.

An example of output from the latitude of landfall visualization tool is show in Figure 4.3.

The top and center images show latitude of landfall values for the two years under study,

1982 and 1983, respectively. The researchers in oceanography subdivided the range of possible

landfall values into three regions: from 45� to 51� latitude, from 51� to 54� latitude, and from

54� to 60� latitude. Salmon making landfall below 45� or above 60� are not displayed. Each

region is represented by a unique grey scale range. A salmon's latitude of landfall is shown by

drawing a grey square at the salmon's starting position. The intensity of the square identi�es

both the region and the exact latitude where the salmon made landfall.

The bottom image shows the di�erence in latitude of landfall between 1982 and 1983. The

range of possible values is subdivided into two regions. A salmon that landed farther north in

1983 versus 1982 is shown by drawing a light grey square at its starting position. A salmon that

landed farther south in 1983 versus 1982 is shown by drawing a dark grey square at its starting
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Figure 4.3: Example output from the landfall visualization tool. Top image shows latitude
of landfall for 1982. Center image shows latitude of landfall for 1983. Bottom image shows
di�erence in latitude of landfall between 1983 and 1982
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Figure 4.4: Example output from the swim speed visualization tool. Top image shows
di�erence in swim speed and migration speed for 1982. Center image show di�erence in
swim speed and migration speed for 1983. Bottom image show di�erence in migration
speed between 1983 and 1982
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Figure 4.5: Example output from the date of landfall visualization tool. Top image shows
stock classi�cation for salmon in 1982, based on date of landfall. Center image shows
stock classi�cation for salmon in 1983. Bottom image shows di�erence in date of landfall
between 1983 and 1982
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position. Salmon with the same latitude of landfall in both 1982 and 1983 are represented by

an empty square. Again, salmon that made landfall outside the range 45� to 60� in either of

the two years are not displayed. The data in Figure 4.3 support the hypothesis that ocean

currents a�ect salmon migration patterns. The majority of the squares in the bottom image

are light grey, indicating the majority of salmon in 1983 landed farther north than they did in

1982. These results are similar to the real data, which shows a 1982 JSD of 22% and a 1983

JSD of 80%.

The other two programs visualize data in a similar way. The swim speed visualization tool

compares a salmon's swim speed and its actual migration speed (Figure 4.4). Swim speed is

a constant speed used by the salmon to swim towards the British Columbia coast. Migration

speed is the speed the salmon makes after taking into account the e�ect of the current. The

current may assist or resist the salmon's forward progress. The top and center images compare

swim speed and migration speed for 1982 and 1983 respectively. A salmon with a migration

speed faster than its swim speed is coloured light grey. A salmon with a migration speed

slower than its swim speed is coloured dark grey. The bottom image compares the di�erence in

migration speed between 1982 and 1983. Salmon that are faster are coloured light grey, while

salmon that are slower are coloured dark grey.

The date of landfall visualization tool classi�es salmon as belonging to one of three di�erent

stocks, Stikine, Chilko, or Adams (Figure 4.5). \Stock" refers to a speci�c area of the Fraser

River where the salmon are born and where they migrate to spawn. Researchers know the time

periods during which salmon from a given stock arrive at the mouth of the Fraser river. The

visualization tools can assign a salmon to a given stock using its date of landfall. Salmon that

arrived during the Stikine migration period are coloured light grey. Salmon that arrived during

the Chilko migration period are coloured dark grey. Salmon that arrived during the Adams

migration period are coloured black. Salmon that arrived during none of the above migration

periods are represented by an empty square. The bottom image shows the di�erence in date of

landfall between 1983 and 1982. Salmon that landed earlier in 1983 versus 1982 are coloured

light grey. Salmon that landed later are coloured dark grey.
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The visualization tools could be more useful if they had some way to \superimpose" all

three frames of data into a single display. This would allow the researchers to search more easily

for dependencies among the di�erent variables. To design this type of tool, one must answer

the question \How should the variables be combined and displayed simultaneously?" An ad-

hoc assignment of features such as colour, shape, orientation, and intensity to individual data

values may not result in a useful visualization tool. In fact, as discussed in the next chapter, it

may result in a tool that inhibits the user's ability to extract the desired information. Results

from research in preattentive processing can be used to design a \preattentive" visualization

tool. Such tools intelligently represent multivariate data using multiple preattentive features.



Chapter 5

Psychological Experiments

\Errors, like straws, upon the surface 
oat
He who would search for pearls must dive below"

{ John Dryden (1631-1700)

Through experimentation, we hope to determine whether or not research in preattentive pro-

cessing can help design more useful and intuitive scienti�c visualization tools, as described in

Chapter 3. DeSanctis gave a number of criteria that measure the usefulness of a graphical

display: interpretation accuracy, problem comprehension, task performance, decision quality,

speed of comprehension, decision speed, memory for information, and viewer preference. We

use estimation error and reaction time to measure accuracy for three of these criteria. In our

experiments, a \more useful" visualization tool will be one with an improved interpretation

accuracy, task performance, or decision speed.

The experiments used data from the salmon migration simulations. They were limited to a

speci�c set of preattentive features and a speci�c type of task. Due to the general nature of our

data and task, we believe these experiments can be extended to a broad range of visualization

problems. In general, we expected to address the following issues:

� are preattentive features \better" than standard visualization methods?

50
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� in what situations are preattentive features useful or not useful?

� are preattentive visualization tools \intuitive" to the user, or do they require a large

amount of initial explanation?

� does encoding separate data values with di�erent preattentive features cause an interfer-

ence e�ect for the given task due to feature preference?

� do our observations match what we would expect, given results from previous experiments

in preattentive processing?

Task Selection

We consulted with researchers in Oceanography to identify a suitable task to use during the

psychological experiments. We wanted to choose a task that was simple, but that still posed

a question of interest to Oceanography. Part of this involved using results from the salmon

migration simulations during the experiments. This allowed us to see how our visualization

techniques performed with \real-world" data. We decided to ask subjects to estimate the

number of simulated salmon that made landfall north of some �xed latitude. Relative landfall

was encoded on a two-dimensional map of the open ocean at the spatial position the salmon

started its migration run. A preattentive feature was used to represent position of landfall. For

example, during one experiment salmon that landed north of the given latitude were coloured

blue, while salmon that landed south were coloured red. Subjects were asked to estimate the

percentage of blue elements in each display.

We wanted to see how preattentive features interfere with one another. Callaghan's ex-

periments showed a \feature preference" hierarchy for her texture boundary detection task

[Cal84][Cal89]. We wanted to see if irrelevant preattentive features interfere with a subject's

estimation ability, similar to the way irrelevant preattentive features interfere with boundary

detection ability. We decided to use the stream function for our \interference" variable. The
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stream function is a scalar value that represents current direction and speed at a given po-

sition in the ocean, for a given instant in time. It is the potential function for the velocity

�eld. Given the stream function �(x; y), the x and y components of the current vector can be

calculated as follows.

Vx =
@�
@x

Vy = �
@�
@y

(5:1)

A stream function value was encoded at each spatial position where a salmon started a migration

run. A preattentive feature was used to represent the stream function. Stream function is

an unnecessary piece of information, because our estimation task asks only about latitude

of landfall. We needed to ensure that stream function acted only as an interference value,

independent of latitude of landfall. In fact, we suspect that stream function and landfall are

correlated. Subjects might \learn" about this dependence during the experiment (which is

exactly what researchers in Oceanography had to do). It would then be possible to use either

landfall or stream function information to complete the estimation task. We would be unable

to determine how di�erent choices for our primary preattentive feature a�ect estimation ability.

Subjects would simply gather information about the data value encoded with the \preferred"

feature. If stream function and latitude of landfall are dependent, information about either one

might be used to give a landfall estimation.

The latitude of landfall values from the migration simulations were modi�ed to give us an

even distribution of \northern salmon" (this is explained further below). These changes also

provided the desired independence. Any dependence that might have existed was lost when

we modi�ed the landfall values. Note that when Oceanography studies the actual simulation

data, they will be looking for a hypothesized correlation between latitude of landfall and the

stream function �eld.

Open ocean current data was available for the years 1946 to 1990. The salmon migration
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simulation was run for each of these years. The latitude position where each salmon made

landfall was recorded. This allowed us to calculate an average latitude of landfall for a salmon,

based on its starting position. We compared these average values to individual simulation

results. For a given year, this allowed us to classify a salmon as landing farther north or south

versus the average landfall data.

Each simulation ran for a predetermined number of simulated days. Stream function infor-

mation for each day was recorded. This allowed us to calculate a set of average stream function

values for each year from 1946 to 1990. As mentioned above, these values were encoded at each

spatial position where a salmon started a migration run. In summary, our proposed task was

as follows:

� our primary data value was whether a salmon lands north or south of the average latitude

of landfall for the salmon's starting position

� the primary data value was encoded at the spatial position the salmon started its migra-

tion run, using preattentive feature A

� our secondary data value was the average stream function value at every spatial location

where a salmon started a migration run

� the secondary data value was encoded using preattentive feature B

� subjects were asked to estimate the percentage of elements in the display with a given

preattentive feature (i.e., the number of salmon landing north of the average latitude of

landfall) to the nearest 10%

� estimation error (percentage of over- or under-estimation) and reaction time were used

as a measure of subject performance
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(a) (b)

Figure 5.1: Examples of the rectangle orientations used during the experiment: (a) 0�

rotation; (b) 60� rotation

Experiment Design

Through experimentation, we hoped to answer two speci�c sets of questions about preattentive

features and their use in visualization tools:

� is it possible for subjects to provide a reasonable estimation of the relative number of

elements in a display with a given preattentive feature? What features under what

conditions allow this?

� how does encoding an \irrelevant" data dimension with a secondary preattentive feature

interfere with a subject's estimation ability? Which features interfere with one another

and which do not?

We decided to examine two features, hue and orientation. These have been shown to be

preattentive in various experiments by Jul�esz [Jul83] and Triesman [Tri88]. Two unique line

orientations were used: 0� rotation and 60� rotation (Figure 5.1). Two di�erent hues were

used, H1 and H2. These hues were chosen from the Munsell colour space, and they satis�ed

the following properties:

1. The hues were isoluminent, that is, the perceived brightness of both hues were equal
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2. The perceived di�erence between hues H1 and H2 were equal to the perceived di�erence

between a rectangle rotated 0� and one rotated 60�

An explanation of how we determined these properties will be given later in this chapter. Our

design allowed us to use oriented, coloured rectangles to represent latitude of landfall and

stream function values at the starting position of each salmon.

Latitude of landfall and stream function values for each year were split into two subgroups

before the experiment began. Latitude of landfall was divided into a subgroup of values south

of the average latitude of landfall position, and a subgroup of values equal to or north of the

average latitude of landfall position. The stream function was divided into two equally sized

subgroups. All the values in the �rst subgroup were less than or equal to all the values in the

second subgroup. We could then use either of our two preattentive features to encode landfall

and stream function values.

The experiment was divided into four subsections or \blocks", B1, B2, B3, and B4. The

primary and secondary data value varied within each block, as did the primary and secondary

preattentive feature. This gave us the following:

1. Primary data value was latitude of landfall, represented by hue. Secondary data value

was stream function, represented by orientation (Figure 5.2)

2. Primary data value was latitude of landfall, represented by orientation. Secondary data

value was stream function, represented by hue

3. Primary data value was stream function, represented by hue. Secondary data value was

latitude of landfall, represented by orientation

4. Primary data value was stream function, represented by orientation. Secondary data

value was latitude of landfall, represented by hue

Each block was further divided into two control subsections and one experiment subsection

(Figure 5.3). The control subsections used a �xed value for the secondary feature. This allowed
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Figure 5.2: Example of a display from block B1, latitude of landfall represented by hue,
stream function represented by orientation
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us to see how a real interference feature a�ected estimation error and reaction time. As an

example, block B1 was subdivided as follows:

� Control subsection 1 consisted of 36 trials. Landfall was encoded using hue. Stream

function was ignored, and every rectangle was oriented 0�

� Control subsection 2 consisted of 36 trials. Landfall was encoded using hue. Stream

function was ignored, and every rectangle was oriented 60�

� The experiment subsection consisted of 72 trials. Landfall was encoded using hue. Stream

function was encoded using orientation

The 72 trials used in control subsections were almost the same as the 72 trials used in the

experiment subsection. The only di�erence was whether stream function was ignored or used

to determine orientation. In fact, there were only 36 unique trials. Each trial was shown four

times during the experiment to obtain the desired number of trials. Each of the 36 unique

trials contained a certain percentage of target elements. We wanted an equal number of trials

for each percentage value. For example, in block B1, the target element was a salmon that

lands north of the average landfall position. We wanted 4 trials in which 5-15% of the salmon

were \northern", 4 trials in which 15-25% of the salmon were \northern", and so on up to 85-

95%. These percentage values are called intervals, and are numbered from 1 (5-15% northern)

to 9 (85-95% northern). The original simulation data was modi�ed to give us the desired

distribution.

Blocks B2, B3, and B4 were subdivided in a similar manner. Each subject completed either

blocks B1 and B3 (testing hue), or blocks B2 and B4 (testing orientation), for a total of 288

trials. The 144 trials within each block were presented in a random order to the subject.

The only di�erence between blocks B1 and B3 and blocks B2 and B4 was the primary data

value. Blocks B1 and B2 used landfall as the primary data value. Blocks B3 and B4 used stream

function as the primary data value. Stream function and latitude of landfall were subdivided
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Estimation
Experiment

Block 1

Sub 1-3Sub 1-1

Sub 1-2

Block 2

Sub 2-3Sub 2-1

Sub 2-2

Block 3

Sub 3-3Sub 3-1

Sub 3-2

Block 4

Sub 4-3Sub 4-1

Sub 4-2

Figure 5.3: Overview of the experiment design

Block Block Primary Primary Secondary Secondary Total

Name Type Value Feature Value Feature Trials

Sub 1-1 control landfall hue | 0� orientation 36

Sub 1-2 control landfall hue | 60� orientation 36

Sub 1-3 experiment landfall hue stream orientation 72

Sub 2-1 control landfall orientation | red 36

Sub 2-2 control landfall orientation | blue 36

Sub 2-3 experiment landfall orientation stream hue 72

Sub 3-1 control stream hue | 0� orientation 36

Sub 3-2 control stream hue | 60� orientation 36

Sub 3-3 experiment stream hue landfall orientation 72

Sub 4-1 control stream orientation | red 36

Sub 4-2 control stream orientation | blue 36

Sub 4-3 experiment stream orientation landfall hue 72

Table 5.1: Information for each subsection in the experiment, including name, type, pri-
mary data value, primary preattentive feature, secondary data value, secondary preatten-
tive feature, and total number of trials
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for blocks B3 and B4 as follows. An average stream function value was calculated using data

for the years 1946 to 1990. A particular stream function value could then be classi�ed as lower

than, equal to, or greater than the average value. Latitude of landfall was split into two equal

groups for each year 1946 to 1990. The primary and secondary data values were subdivided in

a way identical to blocks B1 and B2.

The above variation was designed to give us two di�erent types of spatial patterns. The

\question" asked in blocks B3 and B4 is: what percentage of stream function values are equal to

or greater than the average value? Although this is not a question of interest for Oceanography,

it was asked to help validate results from the psychological experiments. Landfall values tend

to subdivide into two separate \groups" of elements. Stream function values tend to subdivide

into a concentric ring-like pattern. We wanted to compare estimation error and reaction time

between blocks B1 and B3 and blocks B2 and B4. A di�erence would suggest estimation ability

depends, at least in part, on the type of spatial pattern presented to the subject.

Colour Selection

The hues used during the psychological experiments were chosen from the Munsell colour space.

This colour space was originally proposed by Albert H. Munsell in 1898. It was later revised

by the Optical Society of America in 1943 to more closely approximate Munsell's desire for a

functional and perceptually balanced colour system. A colour from the Munsell colour space

is speci�ed using the three \dimensions", hue, chroma, and value.

In Munsell space, hue refers to some uniquely identi�able colour, or as Munsell suggested,

\the quality by which we distinguish one colour from another, as a red from a yellow, a green,

a blue, or a purple"1. Hue is represented by a circular band divided into ten sections. Munsell

named these sections red, yellow-red, yellow, green-yellow, green, blue-green, blue, purple-blue,

purple, and red-purple (or R, YR, Y, GY, G, BG, B, PB, P, and RP for short). Each section

1Munsell: A Grammar of Colour. New York, New York: Van Nostrand Rienhold Company, 1969, pg. 18
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Figure 5.4: Munsell colour space, showing it's three dimensions hue, value, and chroma

can be further divided into ten subsections if �ner divisions of hue are needed. A number

preceding the hue name is used to de�ne the subsection (for example, 5R or 7BG).

Value refers to a colour's lightness or darkness. Munsell de�ned value as \the quality by

which we distinguish a light colour from a dark one"2. Value is divided into nine sections,

numbered 1 through 9. Dark colours have a low value, while lighter colours have a higher

value.

Chroma de�nes a colour's strength or weakness. Chroma is measured in numbered steps

starting at 1. Weak colours have low chroma values. Strong colours have high chroma values.

Greys are colours with a chroma value of zero. The maximum possible chroma value depends

on the hue and value being used.

2Ibid, pg. 20
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A visual representation of the Munsell colour space is shown in Figure 5.43. The circular

band represents hue. The pole running through the center of the colour space represents value.

Colours with increasing chroma radiate outwards from the value pole. A Munsell colour is

speci�ed by writing \hue value/chroma". For example, R 6/6 would be a relatively strong red.

BG9/2 would be a weak cyan.

We chose the Munsell space because it provides a number of desirable properties. Munsell

originally designed his colour space to be used by artists. One feature he tried to incorporate

into his system was perceptual \balance". Hues directly opposite one another will be balanced,

provided their value and chroma are equal. Thus, BG 5/5 is perceptually balanced with R 5/5,

and Y 2/3 is balanced with PB 2/3. Opposite hues with di�erent values and chromas can also

be balanced by varying the amount of each colour used within a given area. Given two Munsell

colours H1V1/C1 and H2V2/C2, we need V2C2 parts of hue H1 and V1C1 parts of hue H2.

For example, colours R 5/10 and BG5/5 can be balanced by using BG5/5 in two-thirds of the

area, and R 5/10 in one-third of the area. As we would expect, the stronger chroma and higher

value take up less of the total area than the weaker chroma and lower value.

A second and perhaps more important property is that Munsell colours with the same value

are isoluminent. Thus, colours R 5/5, G5/6, B5/3, and any other colours with value 5 are all

perceived as having equal luminance. This property was provided when the Munsell colour

table was revised in 1943.

Munsell colours must be converted into RGB triples to be displayed on a computer mon-

itor. The �rst step in this process is calculating a CIE to RGB conversion matrix for the

monitor being used. Given the CIE chromaticity values (xr; yr); (xg; yg); (xb; yb) for the mon-

itor phosphors, and the luminance of the monitor's maximum-brightness red, green, and blue

(Yr; Yg; Yb) we can compute the following.

3Ibid, pg. 23
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zr = 1� xr � yr

zg = 1� xg � yg

zb = 1� xb � yb

(5:2)

Cr =
Yr
yr

Cg =
Yg
yg

Cb =
Yb
yb

(5:3)

A colour is usually speci�ed in CIE colour space with a triple (x; y; Y ). These values are

used to obtain X and Z as shown in Equation 5.4 below. The values X , Y and Z are then

inserted into Equation 5.5 to obtain the monitor R;G;B values for the given colour [Fol90].

This process assumes the intensity steps produced by the video hardware are linear.

X = x
y Y

Z =
1� x� y

y Y

(5:4)

2
66664

R

G

B

3
77775 =

2
66664

xrCr xgCg xbCb

yrCr ygCg ybCb

zrCr zgCg zbCb

3
77775

�1 2
66664

X

Y

Z

3
77775

(5:5)

Our experiments were run on a Apple Macintosh II microcomputer using a software package

written by Rensink and Enns [Enn91]. This software was speci�cally designed to run preatten-

tive psychology experiments. The microcomputer was equipped with an Apple RGB 13-inch

colour display and a Mac II High-Resolution Video Card. It was capable of displaying 256

colours simultaneously. The CIE chromaticities for the monitor phosphors were supplied by

the manufacturer. A spot photometer was used to measure the luminance values for the mon-
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itor's maximum-intensity red, green, and blue. This gave us the following values, which were

used to obtain the conversion matrix shown in Equation 5.8.

(xr; yr; zr) = (0:625; 0:340; 0:035)

(xg; yg; zg) = (0:280; 0:595; 0:125)

(xb; yb; zb) = (0:155; 0:070; 0:775)

(5:6)

Yr = 5:5

Yg =16:6

Yb= 2:8

(5:7)

2
66664

R

G

B

3
77775 =

2
66664

0:1313 �0:0574 �0:0211

�0:0439 0:0806 0:0015

0:0025 �0:0080 0:0325

3
77775

2
66664

X

Y

Z

3
77775

(5:8)

Tables available in Wyszecki and Stiles give CIE chromaticity values for a large number

of Munsell colours [Wys82]. Once we have the CIE values for a Munsell colour, we can use

Equation 5.5 to convert them into RGB triples. Not all the Munsell colours can be displayed by

the monitor. Many of them fall outside the monitor's colour gamut. In particular, the number

of displayable green, blue-green, and blue hues is quite limited. Table 5.2 shows the number of

di�erent chroma values available for each of the primary Munsell hue and value combinations.

We know how to convert Munsell colours to monitor RGB colour space. We must still choose

two Munsell colours for our experiment. Recall that we required the following properties of our

two hues.

1. The hues will be isoluminent, that is, the perceived brightness of both hues will be equal

2. The perceived di�erence between hues H1 and H2 will be equal to the perceived di�erence

between a rectangle rotated 0� and one rotated 60�
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Hue Value

1 2 3 4 5 6 7 8 9

5R 2/ 5 4/ 7 5/ 8 6/ 9 8 /10 9 / 9 7/ 7 5/ 5 3/ 3

5YR 1/ 2 2/ 3 3/ 4 4/ 6 5 / 7 5 / 9 6/10 6/ 7 3/ 3

5Y 1/ 1 1/ 2 2/ 3 2/ 4 3 / 6 3 / 7 4/ 8 4/ 9 5/10

5GY 1/ 2 2/ 3 2/ 4 3/ 5 3 / 6 4 / 7 4/ 8 5/10 5/ 9

5G 1/ 4 2/ 8 3/11 4/13 4 /14 5 /14 6/13 8/11 6/ 6

5BG 1/ 3 2/ 6 2/ 9 3/10 3 /11 4 /10 5/10 5/ 8 5/ 5

5B 1/ 3 2/ 5 2/ 6 3/ 7 4 / 8 4 / 8 5/ 7 4/ 4 2/ 2

5PB 2/ 5 3/ 8 4/ 9 6/10 7 / 9 7 / 7 5/ 5 3/ 3 1/ 1

5P 3/11 5/14 7/16 9/16 11/14 10/10 7/ 7 5/ 5 2/ 2

5RP 3/ 7 4/ 9 5/10 7/11 8 /12 9 /11 9/ 9 6/ 6 3/ 3

Table 5.2: Number of displayable colours for all primary Munsell hue and value com-
binations (Apple RGB 13-inch colour display), in the format \displayable chroma/total
chroma"

Requirement 1 was satis�ed by ensuring both hues had the same value in Munsell space. We

chose Munsell value 7, because that slice through Munsell space provided the largest range of

displayable colours for a variety of di�erent hues.

Requirement 2 was satis�ed by running a set of preliminary experiments. We started

with a simple target detection task. Users were asked to detect the presence or absence of a

rectangle rotated 60� in a �eld of distractor rectangles rotated 0�. Both the target and distractor

rectangles were coloured 5R7/8. The experiment consisted of 30 trials. 15 of the 30 trials were

randomly chosen to contain the target. Each trial consisted of 36 rectangles (including the

target, if present), drawn in random positions on the screen. The average reaction time for

detection was computed from the trials in which the user responded correctly.

After the �rst experiment, the target and distractors were changed. The target was a

rectangle coloured 10RP7/8. The distractors were rectangles coloured 5R 7/8. Note that the

target is a single counter-clockwise \hue step" from the distractors in Munsell space. Both
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Rotation Average RT
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Figure 5.5: Results from hue and rotation di�erence experiments. The solid line shows
reaction time for rotation discrimination. Points along the dashed line show reaction time
for discriminating the given Munsell hue

the target and distractor rectangles were rotated 0�. The experiment consisted of 30 trials.

15 of the 30 trials were randomly chosen to contain the target. Each trial consisted of 36

rectangles (including the target, if present), drawn in random positions on the screen. The

average reaction time for detection was computed from the trials in which the user responded

correctly.

The hues used for the target and distractors during the second experiment were very similar.

Because of this, the average reaction time for the second experiment was higher than the average

reaction time for the �rst experiment. Additional experiments were run as follows.

� the target was moved another counter-clockwise \hue step" away from the distractors

(i.e., 5RP 7/8, 10P7/8, and so on)
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� the second experiment was re-run, and average reaction time was computed

� this process continued until an average reaction time equal to or below the average reac-

tion time of the �rst experiment was obtained

This process provided two isoluminent hues H1 and H2 with a perceived di�erence equal to

that of a 60� rotation, where perceived di�erence was measured by reaction time in the target

detection experiment.

Figure 5.5 shows a graph of the combined results of all subjects. The solid horizontal line

shows the average reaction time for detecting the rotated rectangle, 569 milliseconds. The

dashed line shows the average reaction times for detecting each coloured rectangle, starting

with 5P 7/8, which is three hue steps from the distractors, and ending with 5BG7/8, which

is ten hue steps from the distractors. The exact reaction times are provided in Table 11.5.

At �ve hue steps, or 10PB7/8, the average reaction time for hue detection was less than the

average reaction time for target detection. We chose to use the hues 5R 7/8 and 5PB 7/8 during

the experiment. These hues are 6 hue steps from one another. We assumed the equality in

perceived di�erence would transfer from the target detection task to the estimation task.

Experiment Procedure

Twelve subjects were used during the experiment, nine males and three females, all students or

sta� at the University of British Columbia. All subjects had normal or corrected vision and none

were known to be colour blind. Experiments were run in the Department of Psychology's vision

laboratory, using a Macintosh II microcomputer equipped with a 13-inch RGB monitor and

video hardware capable of displaying 256 colours simultaneously. In general, it took subjects

between 50 and 80 minutes to �nish the entire experiment. Subjects were paid an honorarium

of $10 for their participation in the experiment.

Each subject completed either blocks B1 and B3 (blocks using hue as the primary feature)
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or blocks B2 and B4 (blocks using orientation as the primary feature) for a total of 288 trials. At

the beginning of the experiment, subjects were shown a sample display frame. The experiment

procedure and task were explained to the subject. For example, subjects completing the hue

blocks were told:

During the experiment, you will be shown a number of displays or \trials" similar

to this one. Notice the trial is made up of rectangles, some of which are coloured

blue, some of which are coloured red. Your task will be to estimate, to the nearest

10%, the number of rectangles that are coloured blue. These trials will be shown

in the following way. First, the screen will blank for a short period of time. Just

before the trial is shown, a focus circle will be displayed, so you can prepare yourself.

The trial will be shown for a �xed period of time. The screen will blank, and the

computer will wait for you to type in your estimation. If your response is correct,

a plus sign will be shown. If your response is incorrect, a minus sign will be shown.

The computer will then proceed to the next trial. You can take as much time as

you like to make your estimation. However, in general, the longer you wait before

making your estimation, the less accurate your answer will be

Subjects were then shown how to enter their estimation. This was done by typing a digit

on the keyboard between 1 and 9, which corresponded to the percentage of rectangles they

estimated contained the target feature: 5-15%, 15-25%, and so on up to 85-95%. Subjects were

told no trial would contain less than 5% or more than 95% of the target rectangles.

Subjects started with a set of practice trials called \Fixed Practice". This consisted of nine

trials, one for each of the nine possible intervals. In one trial 10% of the rectangles were targets,

in another 20% were targets, and so on up to 90%. The practice trials were designed to calibrate

the subjects and to give them an idea of the speed of the trials and the experiment. Trials

were displayed one after another to the subject in the manner described above. If subjects

estimated correctly, they moved immediately to the next trial. If they estimated incorrectly,

the trial was redisplayed, and they were told the correct answer.

Next, subjects completed a second set of practice trials called \Random Practice". This set
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of trials consisted of 18 trials, two for each of the nine possible intervals. Trials were displayed

in a random order to the subject. This experiment was designed to run exactly like a real

experiment block. Trials in which the subject estimated incorrectly were not redisplayed and

subjects were not told the correct answer, although they were told whether their estimation

was right or wrong.

Finally, subjects completed the two experiment blocks B1 and B3 or B2 and B4. Each block

consisted of 72 control trials and 72 experiment trials. The 144 trials from each block were

presented to the subject in a random order. Subjects were provided with an opportunity to

rest after every 48 trials. Data from all four phases was saved for later analysis.
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Analysis of Results

\King, father, royal Dane, O! answer me
Let me not burst in ignorance; but tell : : :"

{ Hamlet, Shakespeare

A variety of information was obtained during the psychological experiments. Four data �les

were produced for each subject: a �xed practice �le, a random practice �le, a �le for the �rst

experiment block, and a �le for the second experiment block. Data for each trial included

a record of the subject's estimation, the correct estimation, response time, and trial type

(control or experiment) for the experiment blocks. Estimation error is the absolute value of

the di�erence between the subject's estimation and the correct estimation for a given trial.

Some trials showed large errors, usually when the correct estimation was in the lower 3

or upper 3 intervals. We hypothesize this was caused by subjects accidentally estimating the

wrong feature, either the number of red rectangles instead of blue rectangles or the number

of rectangles rotated 0� instead of 60�. This was supported to some extent by subjects who

mentioned they had made this type of mistake. We decided to modify the data by complement-

ing subject estimations that displayed an unusually large error. Estimations were corrected as

follows:

69



Chapter 6. Analysis of Results 70

� for intervals 1 (5-15% targets), 2 (15-25% targets), and 3 (25-35% targets), estimations

greater than 5 were \
ipped" about 5, that is, 6 became 4, 7 became 3, 8 became 2, and

9 became 1

� for intervals 7 (65-75% targets), 8 (75-85% targets), and 9 (85-95% targets), estimations

less than 5 were \
ipped" about 5, that is, 4 became 6, 3 became 7, 2 became 8, and 1

became 9

In total, less than 1% (21 of 2,304) of the trials were modi�ed. This data formed the basis

for the analysis described in this chapter. We performed a number of t-tests and analysis of

variance (ANOVA) F -tests while investigating our data. A t-test tests two independent samples

X1 and X2 to see if their means are equal within some con�dence interval 1 � �. Equality of

means is called the null hypothesis H� : �1 = �2. � represents the probability of rejecting H�

when it is in fact true. For example, an � = 0:10 gives a 10% probability of error. The t value

for a given � and number of degrees of freedom v is denoted (1��

2
)tv .

An ANOVA F -test compares three or more independent samples X1; : : : ; Xn to see if their

means are equal within some con�dence interval 1 � �. Equality of means is called the null

hypothesis H
�
: �1 = � � � = �n. � represents the probability of rejecting H

�
when it is in fact

true. The F value for a given � and number of degrees of freedom v is denoted (1��)Fv . The

analysis that follows addresses the following questions:

� can rapid and accurate estimation be performed using each of hue and orientation?

� is there evidence of a subject preference for either hue or orientation for the estimation

task?

� is there evidence of a subject preference for the type of data being displayed during the

estimation task?

� is there evidence that orientation interferes with a subject's ability to perform hue esti-

mation?
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� is there evidence that hue interferes with the subject's ability to perform orientation

estimation?

A t-test assumes X1 and X2 are independent and normally distributed with means �1 and �2

and the same variance �2. Similarly, an F -test assumes all Xi are independent and normally

distributed with means �i and the same variance �2. However, research by Glass and others

[Gla84] has shown that the violation of normality has little e�ect on t-test robustness. Also,

if the size of the samples is equal, that is, if n1 = n2, violation of homogeneity-of-variance

has little e�ect on t-test robustness. These assumptions extend to ANOVA F -test results.

Because our data meets these criteria, we did not test for normality or equal variance during

our analysis.

Estimation Ability

The �rst question we addressed was whether subjects were able to perform accurate estimation

in a 450 millisecond exposure duration. Figures 10.1{10.12 in Appendix A show graphs of

combined subject data for the control and experiment subsections of blocks B1, B2, B3, and

B4. Each graph plots average subject response V for each interval, standard deviation of subject

response �(V ) for each interval, and standard deviation of subject estimation error �(e) for

each interval. Tables 10.1{10.4 give exact values for these measurements, as well as average

subject estimation error for each interval e.

The results show that accurate estimation was possible during the experiment for all four

blocks. In the experiment subsections the total e ranged from a low of 0.54 in block B2 to a

high of 0.65 in block B1. �(e) was below 1.0 in all four blocks. This indicates that subject

responses were clustered close to the correct estimate. Results from the two control subsections

show similar trends.

Figure 6.1 graphs e across all nine intervals for the experiment subsection of blocks B1,

B2, B3, and B4. e for each block appears symmetric, with a maximum around interval 5 or 6,
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Figure 6.1: Graph of average error values for the experiment subsection of all four blocks
B1, B2, B3, and B4

and a minimum at interval 1 or 9. It appears subjects had more trouble estimating trials from

intervals 4, 5, and 6, and less trouble estimating trials from intervals 1, 2, 8, and 9. However,

this is a well known phenomena called the \end e�ect". Because subjects have more freedom

of choice at intervals 4, 5, and 6, their observed estimation error is higher than at intervals 1

and 9, where there is only one direction of freedom available. This trend is also due in part to

the fact that we \
ipped" subject estimations from intervals 1, 2, 3, 7, 8, and 9 that displayed

an unusually large error.
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Feature Preference

A point of interest was whether a subject's estimation ability di�ered depending on the feature

being estimated. A t-test was computed to see if estimation error mean was equal across primary

features for both the control and experiment subsections. Blocks B1 and B3 were combined to

form Bc. This super-block contained all trials where hue was the primary preattentive feature.

Blocks B2 and B4 were combined to form Bo. This super-block contained all trials where

orientation was the primary preattentive feature. The data displayed during Bc's trials is the

same data displayed during Bo's trials. The only di�erences are the features used to encode the

primary and secondary data values. The t-test compared means of the control and experiment

subsection's estimation error.

Subsection n1 n2 v t

Control 1 432 432 862 0.36

Control 2 432 432 862 1.43

Experiment 864 864 1726 0.45

(a)

Subsection n1 n2 v t

Control 1 432 432 862 2.06

Control 2 432 432 862 1.73

Experiment 864 864 1726 1.84

(b)

Table 6.1: t-test results for estimation error rates from: (a) hue and orientation trials; (b)
landfall and stream function trials

Table 6.1a shows the subsection, the number of hue trials n1, the number of orientation trials n2,

the degrees of freedom v, and the t-value t. The control t-values are less than 0:975t862 = 1:962

and the experiment t-value is less than 0:975t1726 = 1:960. Therefore, there appears to be no

feature preference for the estimation task. Any di�erence in means is probably due to sampling
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error, and not the choice of hue or orientation as a primary preattentive feature. We did not

expect to observe a feature preference, because we calibrated the perceived di�erence between

our two hues and our two orientations to be equal before the experiment.

Data Type Preference

It is possible that the spatial distribution of the data a�ects a subject's estimation ability. We

used two di�erent data sources during the experiment, latitude of landfall and stream function

values. A di�erence in estimation error mean across data types would indicate estimation

ability depends, at least in part, on the spatial distribution of the data being displayed. Blocks

B1 and B2 were combined to form Bl. This super-block contained all trials where latitude

of landfall was the primary data value. Blocks B3 and B4 were combined to form Bs. This

super-block contained all trials where stream function was the primary data value. Both Bl

and Bs have 864 trials where hue was the primary preattentive feature, and 864 trials where

orientation was the primary preattentive feature. The main di�erence between the two super-

blocks is the underlying data being displayed. The t-test compared means of the control and

experiment subsection's estimation error.

Table 6.1b shows the subsection, the number of landfall trials n1, the number of stream

function trials n2, the degrees of freedom v, and the t-values t. Control subsection 1's t-value

is greater than 0:975t862 = 1:962. This suggests that data type did have an e�ect on estimation

error in control subsection 1. Control subsection 2's t-value is less than 1:962, but it does fall

between 0:90t862 = 1:283 < p < 0:975t862 . Similarly, the experiment subsection's t-value falls

between 0:90t1726 = 1:282 < p < 0:975t1726 = 1:960. The t-test results indicate the possibility

of a data type in
uence on estimation error. With an � value of 0:10, we would not be able

to reject the null hypothesis, that data type does not a�ect estimation error, in any of the

subsections.
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Feature Interference

One question of interest was whether encoding an irrelevant data value with a secondary preat-

tentive feature a�ected a subject's estimation ability. We began by checking to see if orientation

interfered with a subject's ability to estimate using hue. t-tests were computed to compare esti-

mation error mean across control and experiment subsections for blocks B1 and B3, the blocks

that used hue as their primary preattentive feature.

Subsection n1 n2 v t

B1 432 432 862 0.03

B3 432 432 862 0.21

(a)

Subsection n1 n2 v t

B2 432 432 862 0.23

B4 432 432 862 1.15

(b)

Table 6.2: t-test results for estimation error rates from: (a) control and experiment hue
trials; (b) control and experiment orientation trials

Table 6.2a shows the block, the number of control trials n1, the number of experiment trials

n2, the degrees of freedom v, and the t-value t. The t-values for both blocks are less than

0:975t862 = 1:962. Therefore, there appears to be no interference due to encoding of an irrelevant

data value using orientation. Any di�erence in means is probably due to sampling error.

We continued to investigate interference by checking to see if hue interfered with a subject's

ability to estimate using orientation. t-tests were computed to compare estimation error mean

across control and experiment subsections for blocks B2 and B4, the blocks that used orientation

as their primary preattentive feature.

Table 6.2b shows the block, the number of control trials n1, the number of experiment
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trials n2, the degrees of freedom v, and the t-value t. The t-values for both blocks are less

than 0:975t862 = 1:962. Therefore, there appears to be no interference due to encoding of an

irrelevant data value using hue. Any di�erence in means is probably due to sampling error.

Feature and Data Type Interaction

Previous analysis has shown no subject preference for primary preattentive feature, but a

possible subject preference for the spatial distribution of primary data values. We wanted

to see if feature and data type interacted with one another. Suppose subjects prefer one

type of spatial distribution over another. Is the improvement in estimation ability di�erent

depending on our primary preattentive feature? That is, does estimation using hue receive

a larger improvement from the preferred spatial distribution, compared to estimation using

orientation? Perhaps orientation receives a larger improvement versus hue. A 2-factor ANOVA

F -test was computed to check for feature and data type interaction. A 2-factor ANOVA allows

comparison of means and interaction of two independent data values. We compared the two

independent variables feature and data type, each of which has two levels, hue and orientation

and landfall and stream function, respectively. These four groups of data correspond to blocks

B1, B2, B3, and B4.

Subsection J vb vw Ff Fd Fi

Control 1 2 8 860 0.22 7.03 0.46

Control 2 2 8 860 3.65 5.34 0.01

Experiment 2 8 1724 0.35 5.83 0.89

Table 6.3: F -test results of estimation error rates across feature and data type

Table 6.3 shows the subsection, number of levels J , between level degrees of freedom vb, within

level degrees of freedom vw, and F -values Ff , Fd, and Fi. Ff is the F -value for estimation

error mean across feature, Fd is the F -value for estimation error mean across data type, and
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Fi is the F -value for feature and data type interaction. The Ff values for all subsections are

less than 0:95F860 = 3:85, and the Fd values for all subsections are greater than 0:95F860. This

con�rms our previous analysis, namely feature type does not a�ect estimation error, but data

type may a�ect estimation error.

The interaction F -values Fi are all less than 0:95F1724 = 3:84. Therefore, no interaction

seems to be present. Neither feature gains a greater improvement in estimation error when

using a more prefered data type.

To conclude, we have addressed and statistically answered all the questions posed at the

beginning of the chapter. It has been demonstrated that the data are consistent with the

following conclusions:

� rapid and accurate estimation can be performed using either hue or orientation

� there is no evidence of a subject preference for either hue or orientation during the

estimation task for the particular hue and orientation values used

� there is evidence of a subject preference for the underlying data being displayed during

the estimation task

� there is no evidence that orientation interferes with a subject's ability to perform hue

estimation

� there is no evidence that hue interferes with a subject's ability to perform orientation

estimation

� there is no evidence of interaction between primary preattentive feature and the under-

lying data being displayed

These conclusions apply to data displayed for an exposure duration of 450 milliseconds. Because

we already have robust estimation ability, large increases in exposure duration probably would

not provide signi�cant improvement in estimation ability. A more interesting direction of
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investigation would be to decrease the exposure duration. This would allow us to examine two

important questions. First, at what exposure duration are subjects no longer able to perform

robust estimation? At some exposure duration below 450 milliseconds we expect subjects to

be unable to give accurate estimations. Second, do any interference e�ects begin to appear at

lower exposure durations? For example, we found that hue did not interfere with estimation

of orientation at a 450 milliseconds exposure duration. It may be that an interference e�ect

does exist, but 450 milliseconds gives subjects enough time to overcome this e�ect. If this is

true, the interference should appear at lower exposure durations. Feature preference may also

be dependent on exposure duration. We began investigating these possibilities by running a

set of informal experiments described below.

Exposure Duration Experiments

We conducted a set of post-experiments to obtain information on how exposure duration af-

fects the estimation task. 90 control and 90 experiment trials from block B1 were used during

the experiment. Exposure duration for each trial varied among �ve possible values: 15 millisec-

onds, 45 milliseconds, 105 milliseconds, 195 milliseconds, and 450 milliseconds. Presentation of

trials di�ered somewhat from the previous experiment. A \mask" of randomly oriented grey

rectangles was displayed for 105 milliseconds immediately following each trial. This was de-

signed to remove any \after-image" of the trial that may have been present in the subject's

visual short term memory. In summary, trials were presented in the following way:

� a blank screen was displayed for 195 milliseconds

� a focus circle was displayed for 105 milliseconds

� the trial was displayed for its exposure duration (one of 15, 45, 105, 195, or 450 millisec-

onds)

� a mask of randomly oriented grey rectangles was displayed for 105 milliseconds
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� the screen blanked, and subjects were allowed to enter their estimation

Because trials came from block B1, our primary data value was latitude of landfall, rep-

resented by hue, and our secondary value was stream function, represented by orientation.

Subjects estimated the number of blue rectangles in each trial. As before, an equal number of

trials for each interval was used. There were 10 control and 10 experiment trials where 5-15%

of the rectangles were blue, 10 control and 10 experiment trials were 15-25% of the rectangles

were blue, and so on up to 85-95% for a total of 180 trials. Trials at each interval were split

evenly among the �ve exposure durations. For example, there were 2 control and 2 experiment

trials with an exposure duration of 15 milliseconds at each interval (5-15%, 15-25% and so on

up to 85-95% for a total of 36 trials). Trials were presented to the subject in a random order

so the various exposure durations were intermixed.

Exposure Control 1 Control 2 Experiment

n e �(e) n e �(e) n e �(e)

15 ms 45 1.93 2.74 45 2.15 2.73 90 1.52 2.07

45 ms 45 1.06 1.46 45 1.44 1.94 90 1.13 1.51

105 ms 45 0.91 1.51 45 0.80 1.16 90 0.75 1.17

195 ms 45 0.71 1.44 45 0.71 1.06 90 0.76 1.10

450 ms 45 0.60 1.01 45 0.80 1.12 90 0.57 0.91

Table 6.4: Average estimation error and standard deviation of estimation error for control
and experiment trials at each exposure duration

Analysis of data from the previous experiment showed estimation was accurate at every

interval. Because of this, we combined trials with a given exposure duration into a single

block of data. For example, trials that were displayed for 105 milliseconds formed a single

group of 2 control and 2 experiment trials from each interval for a total of 18 control and

18 experiment trials. We plotted average estimation error versus exposure duration to see if

estimation ability was a�ected by display time. Figure 6.2 shows the graph of average estimation

error versus exposure duration for experiment trials. Table 6.4 shows the number of samples
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Figure 6.2: Graph of average error across exposure duration for combined results from
exposure duration experiment

n, average estimation error e, and standard deviation of estimation error �(e) for the control

and experiment trials.

Average estimation error and standard deviation of error seem to be reasonably stable, even

down to 105 milliseconds. Below that duration both values increased rapidly to a maximum

of 2.14 and 2.87 respectively. This indicates the minimum exposure duration for robust hue

estimation lies somewhere between 45 and 105 milliseconds.

We concluded our analysis by checking to see if orientation interfered with hue estimation at

any of the exposure durations. t-tests were computed to compare estimation error means across

control and experiment subsections for all �ve exposure durations. Table 6.5 shows the exposure

duration, the number of control trials n1, the number of experiment trials n2, the degrees of



Chapter 6. Analysis of Results 81

Exposure n1 n2 v t

15 ms 90 90 178 1.45

45 ms 90 90 178 0.51

105 ms 90 90 178 0.53

195 ms 90 90 178 0.31

450 ms 90 90 178 0.83

Table 6.5: t-test results of estimation error rates from control and experiment trials for all
�ve exposure durations

freedom v, and the t-value t. The t-values for all durations are less than 0:975t178 = 1:972, except

for the 15 millisecond exposure duration, where 0:90t178 = 1:286 < p < 0:95t178 = 1:653. This

suggests that orientation is not interfering with hue estimation at any of the exposure durations

tested. Additional experiments should test for hue interference, because Callaghan reported

asymmetric interference patterns during her research.
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Conclusions

\O most lame and impotent conclusion!"
{ Othello, Shakespeare

Preattentive features can be used to design simple and e�cient visualization tools. In our

studies, we simulated a visualization tool based on preattentive features that allowed rapid

and accurate estimation to be performed within 450 milliseconds. \Real world" data from

Oceanography's salmon migration simulations was used during the experiments. Half the sub-

jects were asked to estimate the percentage of rectangles in each display coloured blue, to the

nearest 10%. The other half were asked to estimate the number of rectangles rotated 60�, to

the nearest 10%. Average subject estimation error across all intervals was never more than

1.25. Standard deviation of error across all intervals was never more than 1.03. This shows

subject estimations clustered around the correct answer for all intervals.

There was an \end-e�ect" present during the estimation task. Subjects made the largest

estimation errors when 35-65% of the rectangles were targets (intervals 4, 5, and 6). Subjects

made the smallest errors when 5-15% or 85-95% of the rectangles were targets (intervals 1 and

9).

82
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Subjects showed no feature preference. They estimated targets that used hue and targets

that used orientation equally well. This is no doubt due in part to the fact that we calibrated the

perceived di�erence between our two hues and our two orientations to be equal for a related

target detection task. There was evidence of a data type preference. Subjects performed

better estimation when the primary data value was stream function. This indicates a subject's

estimation ability depends, at least in part, on the spatial distribution of the data values being

estimated. There was no evidence of interaction between feature and data type. Neither feature

gained a greater improvement in estimation error when the prefered data type was used.

Probably the most important new result is that no feature interference was observed. En-

coding an irrelevant data value with orientation did not a�ect hue estimation ability. Encoding

an irrelevant data value with hue did not a�ect orientation estimation ability. This suggests

that the two preattentive features can be used together in a single display. Users might use

hue and orientation to encode data elements in two di�erent ways. They would then be able

to perform di�erent types of preattentive data analysis on a single display.

Further experiments that varied exposure duration showed robust estimation is possible

below 450 milliseconds. Estimation seemed reasonably accurate down to an exposure duration

of 105 milliseconds. Below that, estimation ability deteriorated rapidly. There was no evidence

that orientation interfered with estimation using hue at any of the �ve exposure durations

tested.

Some of our results could be predicted from research in preattentive processing. Others

were more surprising. We expected estimation using hue and orientation to be an extension

of the results of Jul�esz [Jul83] and Triesman [Tri88]. They used hue and orientation in their

work to perform rapid and accurate target and boundary detection. Our data analysis shows

this turned out to be the case. On the other hand, we also expected to observe an interference

e�ect during our experiment. This would have been an extension of Callaghan's work, where

she showed a \feature hierarchy" of brightness-hue-shape [Cal84][Cal89].
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As our experiments suggest, results from preattentive processing can form a basis for the

design of visualization tools, but the results cannot be applied without some additional inves-

tigation to ensure the desired e�ects hold in the particular visualization environment to which

they are applied.
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Future Work

\Issun saki wa yami
[No man knows his future]"

{ Japanese Proverb

Our experiments and related analysis leave a number of interesting avenues for future work.

One obvious extension is to test for relationships among additional features. Intensity, size, and

shape are three features often used for data visualization. Information on feature preference

and interference would provide a more general and more useful set of guidelines on the use of

these features in the design of visualization software.

Many visualization tasks require more than two data values to be encoded at each spatial

location. Additional work could examine how to encode higher-dimensional elements in a low-

dimensional environment. One obvious possibility is using three or more features in a single

display. This type of visualization tool could exhibit new and unexpected types of interference.

There may also be a limit to the amount of information a subject can extract and process at

one time.

Our analysis showed no evidence of feature interference. Colour did not interfere with

orientation estimation, and orientation did not interfere with hue estimation. It is possible

that interference is sensitive to exposure duration. Subjects may have been able to overcome
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any interference that did exist within our 450 millisecond exposure duration. With experiments

designed to test for interference at di�erent exposure durations, we could determine whether

interference exists and the exposure durations at which it occurs. This type of experiment

could also be used to search for possible feature preferences that may occur during shorter

exposure durations.

Some subjects noted after the experiment they felt it would have been easier to estimate

the number of red rectangles, or the number of rectangles rotated 0�. There may be a subject

preference within feature for estimating. That is, red may be easier to estimate than blue, 0�

rotation may be easier to estimate than 60� rotation, or vise-versa. It would be simple to set

up a set of experiments similar to the ones we ran to test for these phenomena.

We explicitly chose two hues whose perceived di�erence from one another was equal to

the perceived di�erence between two rectangles oriented 0� and 60�. A choice of features

perceptually di�erent from one another might cause a subject feature preference during the

estimation task. For example, we could choose two isoluminent hues perceptually as far apart

from one another as possible. A set of experiments could be run to see if estimation using hue

was more rapid or accurate than estimation using orientation.

Estimation was shown to depend on exposure duration. Estimation error remained stable

down to 105 milliseconds, then increased rapidly as the exposure duration fell. It seems un-

likely that increases in exposure duration from 450 milliseconds will produce noticeably better

estimation. Searching for feature interference and preference at exposure durations between

45 and 105 milliseconds would allow us to determine whether these phenomena occur at the

boundary of estimation ability.

The data values used in our experiment were derived from salmon migration studies in

Oceanography. More comprehensive studies based on actual tasks performed by researchers

are needed before conclusive evidence will exist for using preattentive features. Other types of

data should be investigated as well if general visualization tools are to be based on preattentive

processing.
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Chapter 10

Appendix A

Experiment Results and Graphs

The following tables and graphs summarize the preattentive estimation experiment results.

Subjects were asked to estimate the relative percentage of elements in each display with a

given preattentive feature, to the nearest 10%. In blocks B1 and B3 subjects were asked to

estimate the number of rectangles coloured blue, to the nearest 10%. In blocks B2 and B4,

subjects were asked to estimate the number of rectangles oriented 60�.

Twelve subjects were used during the experiment. Each subject completed either blocks B1

and B3 (blocks using hue as the primary feature) or blocks B2 and B4 (blocks using orientation

as the primary feature) for a total of 288 trials.

Tables 10.1{10.4 list summary information for all four blocks. Each block is subdivided

into control 1 trials, control 2 trials, and experiment trials for each of the nine intervals. The

tables show average subject response V , standard deviation of subject response �(V ), average

subject error e, and standard deviation of subject error �(e). Figures 10.1{10.12 show graphs

of the control and experiment subsections of each table.
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Class Control 1 Control 2 Experiment

V �(V ) e �(e) V �(V ) e �(e) V �(V ) e �(e)

1 1.25 0.53 0.25 0.53 1.33 0.70 0.33 0.70 1.29 0.68 0.29 0.68

2 1.83 0.82 0.58 0.58 2.04 0.86 0.62 0.58 2.17 0.83 0.46 0.71

3 2.71 0.75 0.46 0.66 2.75 0.85 0.67 0.56 2.79 0.71 0.54 0.50

4 4.17 1.13 0.75 0.85 3.75 1.11 0.83 0.76 3.83 1.49 1.08 1.03

5 5.50 1.32 1.00 0.98 5.08 1.67 1.42 0.83 5.54 1.41 1.25 0.84

6 5.96 1.27 0.96 0.81 6.71 1.23 1.21 0.72 6.31 1.17 0.94 0.76

7 6.83 1.01 0.75 0.68 7.42 0.78 0.67 0.56 7.19 0.73 0.52 0.55

8 8.13 0.80 0.46 0.66 8.33 0.56 0.42 0.50 8.15 0.62 0.40 0.49

9 8.71 0.55 0.29 0.55 8.96 0.20 0.04 0.20 8.65 0.53 0.35 0.53

Total 5.01 2.71 0.61 0.75 5.15 2.84 0.69 0.74 5.10 2.72 0.65 0.77

Table 10.1: Summary of combined landfall/hue experiment results

Class Control 1 Control 2 Experiment

V �(V ) e �(e) V �(V ) e �(e) V �(V ) e �(e)

1 1.25 0.44 0.25 0.44 1.21 0.51 0.21 0.51 1.13 0.39 0.13 0.39

2 2.13 0.45 0.21 0.41 2.25 0.68 0.42 0.58 2.15 0.74 0.50 0.58

3 2.83 0.70 0.50 0.51 2.92 0.65 0.42 0.50 3.08 0.77 0.54 0.54

4 4.13 1.08 0.71 0.86 3.17 0.76 0.83 0.76 3.71 0.77 0.58 0.58

5 5.50 1.29 1.00 0.93 5.13 1.15 0.96 0.62 5.50 1.25 1.00 0.90

6 6.29 1.20 0.96 0.75 6.67 0.96 0.92 0.72 6.40 1.35 1.19 0.73

7 7.08 0.97 0.75 0.61 7.38 1.01 0.88 0.61 7.25 1.00 0.83 0.60

8 8.17 0.70 0.50 0.51 7.96 0.86 0.63 0.58 8.08 0.71 0.46 0.54

9 8.83 0.38 0.17 0.38 8.79 0.51 0.21 0.51 8.83 0.43 0.17 0.43

Total 5.13 2.69 0.56 0.68 5.05 2.73 0.61 0.66 5.13 2.72 0.60 0.69

Table 10.2: Summary of combined landfall/orientation experiment results
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Class Control 1 Control 2 Experiment

V �(V ) e �(e) V �(V ) e �(e) V �(V ) e �(e)

1 1.13 0.34 0.13 0.34 1.21 0.41 0.21 0.41 1.23 0.47 0.23 0.47

2 1.83 0.70 0.50 0.51 2.00 0.59 0.33 0.48 2.17 0.52 0.29 0.46

3 3.17 0.82 0.50 0.66 3.21 0.78 0.63 0.49 3.27 0.87 0.65 0.64

4 3.71 0.86 0.71 0.55 4.54 1.14 0.96 0.81 4.42 1.09 0.92 0.71

5 5.08 0.78 0.58 0.50 5.63 0.97 0.88 0.74 5.02 0.91 0.69 0.59

6 6.04 0.95 0.71 0.62 6.21 0.88 0.83 0.65 6.27 1.16 0.90 0.78

7 6.71 0.55 0.38 0.49 7.00 1.10 0.83 0.70 7.33 0.66 0.50 0.55

8 7.83 0.70 0.42 0.58 7.67 0.82 0.58 0.65 7.69 0.59 0.35 0.56

9 8.75 0.44 0.25 0.44 8.75 0.44 0.25 0.44 8.69 0.47 0.31 0.47

Total 4.92 2.60 0.46 0.55 5.13 2.58 0.59 0.66 5.12 2.56 0.54 0.63

Table 10.3: Summary of combined stream function/hue experiment results

Class Control 1 Control 2 Experiment

V �(V ) e �(e) V �(V ) e �(e) V �(V ) e �(e)

1 1.08 0.28 0.08 0.28 1.08 0.28 0.08 0.28 1.08 0.28 0.08 0.28

2 2.17 0.56 0.33 0.48 2.29 0.81 0.46 0.72 2.13 0.61 0.33 0.52

3 3.25 0.90 0.67 0.64 3.13 0.61 0.38 0.49 3.15 0.68 0.40 0.57

4 4.08 0.65 0.42 0.50 4.29 0.95 0.71 0.69 4.21 0.77 0.54 0.58

5 4.50 0.93 0.83 0.64 5.46 0.93 0.71 0.75 4.79 1.20 1.00 0.68

6 5.88 1.15 0.79 0.83 6.13 1.08 0.71 0.81 5.83 1.23 0.92 0.82

7 6.71 0.91 0.63 0.71 7.04 1.04 0.79 0.66 6.79 0.99 0.79 0.62

8 8.04 0.69 0.38 0.58 7.96 0.75 0.46 0.59 7.92 0.87 0.63 0.60

9 8.88 0.34 0.13 0.34 8.83 0.38 0.17 0.38 8.75 0.48 0.25 0.48

Total 4.95 2.60 0.47 0.62 5.13 2.61 0.50 0.65 4.96 2.59 0.55 0.66

Table 10.4: Summary of combined stream function/orientation experiment results
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Figure 10.1: Graph of combined results for control 1 subsection of block B1, primary value
landfall, primary feature hue
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Figure 10.2: Graph of combined results for control 2 subsection of block B1, primary value
landfall, primary feature hue
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Figure 10.3: Graph of combined results for experiment subsection of block B1, primary
value landfall, primary feature hue
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Figure 10.4: Graph of combined results for control 1 subsection of block B2, primary value
landfall, primary feature orientation
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Figure 10.5: Graph of combined results for control 2 subsection of block B2, primary value
landfall, primary feature orientation
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Figure 10.6: Graph of combined results for experiment subsection of block B2, primary
value landfall, primary feature orientation
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Figure 10.7: Graph of combined results for control 1 subsection of block B3, primary value
stream function, primary feature hue
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Figure 10.8: Graph of combined results for control 2 subsection of block B3, primary value
stream function, primary feature hue
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Figure 10.9: Graph of combined results for experiment subsection of block B3, primary
value stream function, primary feature hue
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Figure 10.10: Graph of combined results for control 1 subsection of block B4, primary
value stream function, primary feature orientation
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Figure 10.11: Graph of combined results for control 2 subsection of block B4, primary
value stream function, primary feature orientation
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Figure 10.12: Graph of combined results for experiment subsection of block B4, primary
value stream function, primary feature orientation
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Appendix B

Discrimination Experiment Results

The following tables list the discrimination experiment results. Subjects were asked to detect

the presence or absence of a target element in a �eld of distractor elements. Each subject

completed 11 \blocks", where a block corresponded to a unique target. For each block, the

distractors were rectangles rotated 0� and coloured 5R 7/8. In one block the target was a

rectangle rotated 60� and coloured 5R 7/8. The targets for the remaining blocks were rectangles

rotated 0� and coloured to be anywhere from 1 to 10 Munsell \hue steps" away from the

distractors. The hue steps 1 through 10 correspond to the Munsell hues 10RP7/8, 5RP 7/8,

10P7/8, 5P7/8, 10PB7/8, 5PB7/8, 10B 7/8, 5B7/8, 10GB7/8 and 5GB7/8.

Within each block subjects completed 30 \trials". 15 of the 30 trials were randomly selected

to contain the target element. A trial consisted of 36 rectangles (including the target, if present)

presented in a random pattern on the screen.

Tables 11.1{11.4 list summary information for all 11 experiment blocks. Each block is

subdivided into target present trials, target absent trials, and the combination of both present

and absent trials. The tables show number of correct responses n, average response time x,
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response time variance �2, and response time standard deviation �. Subjects were unable to

discriminate between the target and distractors for the �rst two \hue-step" blocks (Munsell

hues 10RP 7/8 and 5RP 7/8). Table 11.5 shows the combined results for all subjects.
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Target Present Absent Combined

n x �2 � n x �2 � n x �2 �

60� 13 403 2762 53 15 491 14367 120 28 450 10660 103

1 HS | | |

2 HS | | |

3 HS 8 772 40858 202 12 836 41049 203 20 810 39856 200

4 HS 14 501 8105 90 13 529 5507 74 27 515 6798 82

5 HS 14 469 5810 76 15 566 5114 72 29 520 7697 88

6 HS 15 434 2571 51 15 506 8115 90 30 470 6519 81

7 HS 14 401 2490 50 15 495 7219 85 29 449 7065 84

8 HS 15 394 1150 34 15 447 5177 72 30 420 3775 61

9 HS 15 421 8552 92 15 426 3278 57 30 423 5716 76

10 HS 14 394 2426 49 15 548 24496 157 29 474 19516 140

Table 11.1: Summary of discrimination experiment results for subject 1

Target Present Absent Combined

n x �2 � n x �2 � n x �2 �

60� 15 618 16628 129 15 1191 44119 210 30 905 114061 338

1 HS | | |

2 HS | | |

3 HS 11 1193 193292 440 10 1285 217785 467 21 1237 196903 444

4 HS 14 822 120381 347 15 841 16605 129 29 832 64282 254

5 HS 14 735 44779 212 14 834 77901 279 28 784 61605 248

6 HS 15 577 71369 267 15 805 26238 162 30 691 60581 246

7 HS 15 481 2738 52 14 857 162389 403 29 663 113263 337

8 HS 15 477 16007 127 15 620 32697 181 30 549 28801 170

9 HS 15 386 3098 56 14 504 4212 65 29 443 7100 84

10 HS 15 436 10274 101 15 491 5677 75 30 463 8469 92

Table 11.2: Summary of discrimination experiment results for subject 2
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Target Present Absent Combined

n x �2 � n x �2 � n x �2 �

60� 15 555 29160 171 15 557 9987 99 30 556 18851 137

1 HS | | |

2 HS | | |

3 HS 10 966 89299 299 15 984 17150 131 25 977 43570 209

4 HS 12 715 38513 196 14 931 35342 188 26 831 47387 218

5 HS 15 496 17275 131 13 584 11293 106 28 537 15999 126

6 HS 15 527 4809 69 15 768 7273 85 30 648 20771 144

7 HS 15 453 15091 123 15 492 2462 50 30 473 8869 94

8 HS 15 413 3246 57 14 518 11575 108 29 464 9826 99

9 HS 15 393 2746 52 15 425 2326 48 30 409 2711 52

10 HS 15 361 1119 33 15 412 2481 50 30 386 2409 49

Table 11.3: Summary of discrimination experiment results for subject 3

Target Present Absent Combined

n x �2 � n x �2 � n x �2 �

60� 15 368 406 20 15 346 468 22 30 357 553 24

1 HS | | |

2 HS | | |

3 HS 11 791 77716 279 12 720 102299 320 23 754 87777 296

4 HS 14 431 8765 94 13 451 4107 64 27 441 6379 80

5 HS 13 369 2039 45 15 343 1765 42 28 355 1987 45

6 HS 15 405 3733 61 15 459 7191 85 30 432 6052 78

7 HS 15 341 420 20 15 368 1941 44 30 354 1328 36

8 HS 15 337 573 24 15 334 2184 47 30 336 1335 37

9 HS 15 337 2244 47 15 335 1521 39 30 336 1819 43

10 HS 14 330 968 31 15 343 1644 41 29 336 1317 36

Table 11.4: Summary of discrimination experiment results for subject 4



Appendix B 111

Target Present Absent Combined

n x �2 � n x �2 � n x �2 �

60� 58 489 23003 152 60 646 122813 350 118 569 79353 282

1 HS | | |

2 HS | | |

3 HS 40 941 127659 357 49 945 118882 345 89 943 121423 384

4 HS 54 614 67568 260 55 698 56186 237 109 656 63039 251

5 HS 56 519 34780 186 57 577 53383 231 113 549 44621 211

6 HS 60 486 24486 156 60 635 35457 188 120 560 35314 188

7 HS 59 419 7931 89 59 548 72188 269 118 484 43882 209

8 HS 60 405 7507 87 59 479 23500 153 119 442 16667 129

9 HS 60 384 4879 70 59 421 6224 79 119 403 5837 76

10 HS 58 381 5177 72 60 448 14318 120 118 415 10894 104

Table 11.5: Summary of discrimination experiment results for all subjects
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Appendix C

Exposure Duration Experiment Results

The following tables list the exposure duration experiment results. Subjects were shown trials

that contained 174 rectangles coloured red and blue. Subjects were asked to estimate the

percentage of rectangles coloured blue, to the nearest multiple of 10%. Each subject completed

180 trials. In 90 trials, the rectangles were randomly chosen to be oriented either 0� or 60�.

In 45 trials, the rectangles were all oriented 0�. In the remaining 45 trials, the rectangles were

all oriented 60�. Each trial was shown for a �xed exposure duration. There were an equal

number of trials from �ve possible exposure durations: 15 milliseconds, 45 milliseconds, 105

milliseconds, 195 milliseconds, and 450 milliseconds.

Tables 12.1{12.5 list summary information for all subjects, grouped by exposure duration. Each

duration is divided into control 1 trials (0� orientation), control 2 trials (60� orientation), and

experiment trials (random orientation). The tables show the number of trials n, the average

estimation error e, and the standard deviation of estimation error �(e). Estimation error is

the absolute value of the correct response minus the subject's response. Table 12.6 shows the

combined results for all subjects.
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Exposure Control 1 Control 2 Experiment

n e �(e) n e �(e) n e �(e)

15 ms 9 2.88 3.74 9 1.88 2.57 18 1.05 1.66

45 ms 9 0.77 1.27 9 1.00 1.36 18 0.88 1.13

105 ms 9 0.88 1.11 9 0.77 1.06 18 0.55 0.84

195 ms 9 0.44 0.86 9 0.66 0.86 18 0.44 0.76

450 ms 9 0.55 0.93 9 0.88 1.22 18 0.44 0.76

Table 12.1: Summary of exposure duration experiment results for subject 1

Exposure Control 1 Control 2 Experiment

n e �(e) n e �(e) n e �(e)

15 ms 9 2.33 3.69 9 1.77 2.50 18 1.77 2.11

45 ms 9 1.44 1.90 9 2.44 3.00 18 1.72 2.07

105 ms 9 1.66 2.80 9 1.00 1.45 18 0.72 0.93

195 ms 9 1.66 3.02 9 0.66 1.11 18 1.16 1.51

450 ms 9 1.00 1.54 9 0.88 1.32 18 0.72 1.05

Table 12.2: Summary of exposure duration experiment results for subject 2

Exposure Control 1 Control 2 Experiment

n e �(e) n e �(e) n e �(e)

15 ms 9 1.22 1.96 9 2.33 2.80 18 1.50 2.23

45 ms 9 1.33 1.93 9 0.77 1.27 18 0.94 1.47

105 ms 9 0.77 1.27 9 0.77 1.45 18 0.94 1.30

195 ms 9 0.44 0.70 9 0.55 0.93 18 0.77 1.13

450 ms 9 0.44 0.70 9 0.77 1.06 18 0.88 1.23

Table 12.3: Summary of exposure duration experiment results for subject 3
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Exposure Control 1 Control 2 Experiment

n e �(e) n e �(e) n e �(e)

15 ms 9 1.33 2.12 9 2.55 3.37 18 1.22 1.71

45 ms 9 0.88 1.22 9 2.00 2.59 18 1.16 1.55

105 ms 9 0.55 0.79 9 0.55 0.93 18 0.77 1.60

195 ms 9 0.66 0.86 9 1.11 1.50 18 0.77 1.18

450 ms 9 0.44 0.86 9 0.77 1.27 18 0.44 0.84

Table 12.4: Summary of exposure duration experiment results for subject 4

Exposure Control 1 Control 2 Experiment

n e �(e) n e �(e) n e �(e)

15 ms 9 1.88 2.31 9 2.22 3.00 18 2.05 2.73

45 ms 9 0.88 1.11 9 1.00 1.27 18 0.94 1.35

105 ms 9 0.66 1.11 9 0.88 1.11 18 0.77 1.13

195 ms 9 0.33 0.61 9 0.55 1.06 18 0.66 0.90

450 ms 9 0.55 1.06 9 0.66 1.00 18 0.38 0.64

Table 12.5: Summary of exposure duration experiment results for subject 5

Exposure Control 1 Control 2 Experiment

n e �(e) n e �(e) n e �(e)

15 ms 45 1.93 2.74 45 2.15 2.73 90 1.52 2.07

45 ms 45 1.06 1.46 45 1.44 1.94 90 1.13 1.51

105 ms 45 0.91 1.51 45 0.80 1.16 90 0.75 1.17

195 ms 45 0.71 1.44 45 0.71 1.06 90 0.76 1.10

450 ms 45 0.60 1.01 45 0.80 1.12 90 0.57 0.91

Table 12.6: Summary of exposure duration experiment results for all subjects


