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Abstract. This paper introduces the basic steps to build a similarity-
based visualization tool for large image collections. We build the simi-
larity metrics based on human perception. Psychophysical experiments
have shown that human observers can recognize the gist of scenes within
100 milliseconds (msec) by comprehending the global properties of an
image. Color also plays an important role in human rapid scene recogni-
tion. However, previous works often neglect color features. We propose
new scene descriptors that preserve the information from coherent color
regions, as well as the spatial layouts of scenes. Experiments show that
our descriptors outperform existing state-of-the-art approaches. Given
the similarity metrics, a hierarchical structure of an image collection can
be built in a top-down manner. Representative images are chosen for
image clusters and visualized using a force-directed graph.

1 Introduction

With the rapid development of cellphone cameras, storage devices and social
media, capturing, saving and sharing images has become much more common.
Because of this, the size of image collections is growing rapidly both in terms of
absolute data size and the number of images being saved. For example, Flickr
is reported to contain 5.26 billion public photos, with approximately 2 million
photos uploaded each day in 2015 [1]. Instagram reports 95 million photos are
being posted daily [2]. Even a personal gallery may contain many thousands
of images. This makes it difficult or impossible for users to retrieve images or
fully explore a large image collection by visual inspection. Therefore, we seek
an effective exploration tool that allows users to interactively and efficiently
browse and retrieve images from large collections in ways that keep the images
organized. Although images are generally classified as object images or scene
images, in this paper we focus on scene images.

Visualization is an effective way to communicate information through visual
imagery. Currently, there are few examples of visualization tools for large image
collections. Most exploration tools manage images using labels like dates, events,
people and locations. Unfortunately, this method has numerous drawbacks. First,
users usually do not provide detailed labels, which makes it difficult to retrieve
images by keyword query when they are incomplete or unavailable. Second, many
words are ambiguous. For example, if a user searches on the label apple, it could
be a fruit or a personal computer.
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Recent works [3-5] have used similarity-based approaches to visualize large
image collections. The images are grouped into clusters automatically based on
their visual distances. There are two main issues: developing the metric of similar-
ity between images, and visualizing clusters. First, the computational distances
between images should be similar to their perceived difference. Many traditional
computer vision approaches [6, 7] describe images based on lower-level features
(e.g. textures and edge-based structures). This can make them slow or inaccu-
rate. We want to design similarity metrics by learning from human perception.
Humans can understand the gist of a scene in a single glance, even if the image is
blurred, which means people often recognize the categories of images as a whole
without looking at significant amounts of low-level detail [8]. Recent works based
on global features like the “gist” of Oliva and Torralba [9] and the spatial pyra-
mid framework of Lazebnik et al. [10] have achieved great performance both in
terms of accuracy and efficiency. Second, it is infeasible to display all the images
in clusters at once, so it is crucial to find appropriate ways to visualize clusters.

In this paper, we present the following novel contributions: (1) a method to
process scene descriptors in a way that preserves both color information and
global scene properties; (2) an approach to construct highly compact scene de-
scriptors; (3) an application of the Color Coherent Vector (CCV) model [11]
to preserve coherent color region information, improving the performance of
the scene descriptors; (4) and classification experiments on both small and large
image datasets to statistically verify that our methods outperform existing state-
of-the-art approaches.

2 Background

Human observers can understand a variety of visual information from an image
and recognize its basic-level category within 100 msec [12]. Instead of relying
entirely on computer vision techniques, there are potential advantages in learning
from human observers’ perceptual processing of images.

2.1 Human Perception of Scene Gist

The experimental work of Greene and Oliva [13] has shown that in the early
perception stages, observers can comprehend global properties of a scene (such
as the mean depth of the scene and whether it is navigable or not) more easily
than classifying them into basic-level categories (e.g. mountains, rivers). This
result supports the user study [14] in which seven global properties were chosen
to represent scenes: openness, expansion, mean depth, temperature, transience,
concealment and navigability. In the fast scene categorization task, the perfor-
mance of human observers was indistinguishable from a Naive Bayes classifier
whose input was rankings for the seven properties. These results suggest global
properties are sufficient to represent the gist of a scene.

The role of color in rapid recognition of scene gist is significant. The experi-
ments of Oliva and Schyns [12] have shown that color has an influence on recog-
nition tasks when the color is related to the meaning or “diagnostic” of the scene
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categories. The experimental study of Castelhano and Henderson [15] demon-
strated that gist activation is affected by color when the images are blurred.
The study also showed the reason color expedites gist activation is not because
it helps in the segmentation process, but because it is directly related to the
scene’s gist.

2.2 Scene-centered Image Features

Many traditional scene recognition approaches are object-centered. They build
hierarchical levels of features in a bottom-up manner [6,7]. The lower-level fea-
tures (e.g. colors and textures) are grouped into higher-level ones (e.g. regions
and objects).The semantic meanings of the scenes are inferred from the highest-
level features.

However, recent scene-centered approaches [16,9,17] have shown that holis-
tic representations of images can be built directly from low-level features. This
is because there are regular and unique patterns of statistical distributions of
features in different scene categories. The global properties of a “gist” descrip-
tor [9] are estimated from a set of global feature templates that are effective to
represent images.

Different from approaches based on the human perception of scene gist, re-
lated research [18,10,19] makes use of state-of-the-art computer vision tech-
niques to build global features. Xiao et.al [18] identify several features as ker-
nels including histogram of oriented gradients, scale-invariant feature transform
(SIFT), color histograms, etc. The “all features” classifier that is based on a
weighted sum of these kernels is reported to have higher precision than any in-
dividual feature during scene classification. Alternatively, the spatial pyramid
framework [10] is a sophisticated method to summarize local features. Images
are iteratively partitioned into sub-regions, and histograms of features are com-
puted locally in each sub-region. Similar to the “gist” descriptor, this framework
preserves the spatial layouts of features and is widely used in scene classification.

2.3 Color-based Immage Features

Color information plays an important role in scene recognition. A color histogram
itself is not enough for complex recognition tasks, but color histograms with
geometric information have achieved strong performance [20,11,21]. The CCV
model [11] computes histograms for coherent and incoherent pixels separately.
Pixels in large contiguous regions are considered coherent while the remaining
pixels are incoherent.

2.4 Image Collection Visualization

After the image features are extracted, pairwise distances between images can
be computed. The images are generally grouped into clusters using standard
methods like k-means based on their pairwise distances. For example, Google
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Image Swirl [5] builds clusters of images based on visual similarity. An exemplar
is chosen from each cluster as a representative. The exemplars are visualized
using a balloon tree.

3 Similarity Metrics

There are two important findings we can harness from human perception. First,
global properties are sufficient for scene recognition and scene descriptors can
be built directly from low-level features. Second, color information helps scene
recognition. State-of-the-art descriptors like “gist” [9] and histogram of oriented
gradients with a spatial pyramid framework (denoted HOG) [10] have preserved
the global features, but they only deal with grayscale images. There are many
suggestions for color descriptors, such as RGB-SIFT [22] and HSV-SIFT [23].
They compute SIFT descriptors in different color channels separately, then stack
the feature vectors together. However, the size of those descriptors are several
times larger than the original ones, which makes them less efficient. In this paper,
we will present novel approaches to build compact descriptors that preserve both
color information and global properties.
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Fig. 1. Pipeline of our approach. (a;,b;) is the color feature for each pixel. (g1, ..., gm)
is a global property descriptor. (ci, ..., ¢n) is a color vector. wy is the weight of global
property descriptor in feature combination
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The pipeline of our approach is shown in Figure 1. The local color features
are extracted densely and then are quantized into “visual words” using the bag-
of-words model. An image is represented by a color vector computed from the
frequencies of “visual words” in the spatial pyramid framework. The final de-
scriptor of an image is the weighted combination of the color vector and a global
property descriptor (e.g. “gist” or HOG). The details are discussed in the sections
below.

3.1 Color Feature Extraction

In the experiments of Oliva and Schyns [24], the (a, b) vector of Lab color space
is used to represent colors based on two important Lab properties. First, the
luminance L is separated from the other two channels, so (a,b) is invariant
to changes of luminance in the scene. Second, a and b represent colors along
two color-opponent dimensions. The human visual system processes colors along
similar dimensions. Additionally, the Euclidian distance between two (L, a,b)
vectors is similar to their perceived color difference.

After converting an image from RGB space to Lab, each pixel is described
by a (L, a,b) vector. We discard L for lightness change invariance and only use
the (a,b) vector as the color feature for each pixel.

3.2 Feature Quantization and Image Representation

The local color features are quantized to n discrete colors using the bag-of-
words models described in [25]. The local features are randomly sampled from
the image collection and are then grouped into n clusters using k-means. The n
cluster centers are called the “vocabulary”. The “visual word”, or the quantized
values, of each pixel in the image is the index of its nearest center.

The CCV model [11] shows that splitting an image into coherent and inco-
herent regions contributes to the improvement of image retrieval accuracy, which
matches the experimental results of Castelhano et al. [15] that shows color re-
gions are related to human scene recognition. A pixel is coherent if it is in a
color region whose size is greater than a threshold 7'. Given the total number of
pixels in an image N, the normalized threshold ¢ is given by ¢t = %

In order to differentiate coherent and incoherent pixels in our approach, we
update the visual word of each incoherent pixel using

VW, = VW, +n (1)

Here, VW; is the visual word (which is a scalar value) of the i-th pixel in an
image and n is the length of the “vocabulary”.

The spatial pyramid framework [10] is used to summarize the visual words.
This framework divides images into sub-blocks at different levels and computes
histograms within each sub-block. The histograms are stacked together with
weights to generate a vector to describe the image. By applying Equation 1, it
is equivalent to stacking histograms of coherent and incoherent pixels together
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in each sub-block. Therefore, the coherent and incoherent information does not
break the overall spatial layout of the spatial pyramid framework.

3.3 Feature Combination

In scene classification, the weighted combination of multiple kernels can generate
better results if the weights are chosen properly. The weights of individual kernels
of the “all features” descriptor of Xiao et al. [18] are proportional to the fourth
power of their accuracy. Hou et al. [26] assigns higher weights to kernels with
high accuracy. Past research has shown color features alone cannot achieve high
accuracy. That is probably why color information is often neglected. However,
the study of human perception [12,15] shows the importance of color in scene
recognition. Instead of combining a large number of different features, we focus
on combining color and global features.

The kernel combination method is designed for supervised learning, but we
want to apply our approach to unsupervised clustering of images so that the im-
age clusters can be constructed more flexibly. Let G be a global feature descriptor
and C the computed color vector described in above sections. The descriptor D
of an image is the weighted concatenation of G and C' as shown in this equation:

D = CAT (wy G, (1 —wy) *C). (2)

Here, wy is the weight of the global-property descriptor. Suppose X and Y
are two sets of values (e.g. a collection of visual words) and Hy and Hy are their
histograms that both have m bins. The histogram intersection kernel between
Hx and Hy is given by the histogram intersection function [27]:

K(Hx,Hy) = me(HX(i)aHY(i))- (3)
i—1

Suppose G is a descriptor built from histograms (e.g. HOG), and K (Gx, Gy)
is a kernel of feature G. Let K(Cx,Cy) be a kernel of C, Ko, be the weighted
combination of the kernel of G (weighted by w,) and C (weighted by w,), and
Kp be a kernel of D. Then K, is:

Kcomz’wg*K(Gx,Gy)+wc*K(Cx,Cy). (4)
If we = (1-wy), Kp is:

KD = K(CAT(wq * Gx, We * Cx), CAT(wq * Gy, We * Cy)) (5)

We can prove that Kcon, equals Kp given w. = (1-wg), which illustrates that
constructing the combined feature D using Equation 2 is equivalent to weighted
kernel combination if G is in the form of a histogram. A global feature descriptor
like “gist” is not built directly from histograms, but it also summarizes low level
features. Therefore, Equation 2 works for other global feature descriptors like
“gist” as well.
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The descriptor D is constructed in a very compact way since the vocabulary
of C is usually small. For instance, for a two-level HOG descriptor with a 200-
word vocabulary and two-level color vector C' with an 8-word vocabulary, the
length of the HOG descriptor is 1000 while the length of the D vector is only
1080.

4 Experiments

We use scene classification experiments to evaluate the performance of our de-
scriptors. Since the categories of images in the database are labeled by observers,
the classification accuracy measures how different the similarity metrics are from
human-perceived visual distances. The first part of the experiment is to find op-
timal values for w, (the weight of the global feature descriptor, denoted w for
simplicity) and ¢ (the normalized threshold to split coherent and incoherent pix-
els). The second goal is to compare our algorithms with other state-of-the-art
approaches to scene classification. The “gist” [9] (denoted gist) and HOG [10]
approaches are chosen for comparison.

There are two datasets used in the experiments. The first is the Eight Scene
Categories (8-scene) Dataset [9] with 2,688 color images from eight outdoor
scenes. The second is the SUN397 [18] Dataset with 108,604 color images from
397 categories including indoor, outdoor natural and outdoor man-made scenes.
There are at least 100 images in each scene category in both datasets. The
1-vs-all SVMs were trained using samples from those two datasets.

As described above, the descriptor D could be constructed in multiple ways.
First, the CCV model could be applied (denoted ccv) or not (denoted noccv).
Second, the color vector C' could be combined with different global feature de-
scriptors. There are four possible types of descriptors: gist-ccv, gist-noccv, HOG-
ccv, and HOG-noccev.

4.1 Parameter Selection

The optimal parameters of the above four descriptors were computed from small
sampled image sets of a database. For the 8-scene database, 50 training and 50
test images were randomly chosen from each category for each trial. There were
20 trials in total. The sample size was about 30% of the database. For SUN397,
10% of the images were uniformly selected to construct an image subset, then
five training and five test images were randomly chosen for each category from
the subset for each trial. Five trials were run. The size of samples for each trial
was 3.65% of SUN397 database.

When the CCV model was not applied, w was the only parameter. There
were two parameters w and ¢ when CCV was applied. As an example, in the
8-scene database, the classification accuracy of HOG-ccv and HOG-noccv with
changes of w and t is shown Figure 2.

We simply chose the w and t associated with the highest average accuracy as
their optimal values (shown in Table 1). In each case, the “slope” of the accuracy
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Fig. 2. The average accuracy of different descriptors with w and ¢ changing from zero
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Table 1. The optimal parameters for all descriptor in the 8-scene and SUN397 database

gist-noccv gist-ccv HOG-noccv HOG-ccv
8-scene | w =0.70 |w =0.55,t =0.95| w=0.95 w = 0.90, t =0.05
SUN397 | w=0.75 | w=0.70,t =0.95 | w=0.80 |w=0.70,t = 0.95

was small near the optimal values. This suggested the accuracy of descriptors

was not sensitive to changes in w or ¢.

4.2 Comparison with State-of-the-Art

The four combined descriptors were compared with gist and HOG respectively.
Given the optimal values of w and ¢, the experiments were run on the 8-scene
database (50 trials) and the SUN397 database (10 trials). In each trial, 50 train-
ing and 50 test images were randomly selected from each category. All of the

descriptors used the same training and test images.

8-Scene

SUN397

Fig. 3. The classification accuracy of different descriptors in 8-Scene and SUN 397

database

Average Accuracy (%)

Average Accuracy (%)
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The average classification performances are shown in Figure 3. For each
database, we performed two groups of repeated measures one-way analysis of
variance (ANOVA) and post-hoc tests to compare the accuracy of G (HOG in
group one and gist in group two) with their combined descriptors D (shown in
Table 2, including F-values). In both 8-scene and SUN397 database, the com-
bined descriptors D were all significantly more accurate than the original global
feature descriptors G alone. Additionally, there were no significant differences
between G-ccv and G-noccv in the 8-scene database, but gist-ccv was signifi-
cantly more accurate than the gist-noccv while the accuracy of HOG-noccv was
significantly higher than HOG-ccv in SUN397. This suggested that the CCV
model worked well with gist-based descriptors (e.g. the “gist” [9]), but not so
well with computer-vision-based descriptors (e.g. HOG [10]) in a large database.
Moreover, we found that gist-ccv performed consistently better than gist-noccv
for every trial in SUN397, which indicated that the color coherent information
had a significant influence on the improvement of classification accuracy when
combined with gist-based descriptors.

Table 2. The pairwise comparisons among the accuracy of state-of-the-art descriptors
(i.e.gist and HOG, denoted G) and the combined descriptors. The first two rows are
the results on the 8-Scene database and the last two rows are on the SUN397 database

Group G - G-cev G - G-noccv | G-ccv — G-noccv F

HOGs | -1.030, p<0.01 | -0.900, p<0.01 | 0.130, p—0.702 | F(2,48)—38.449,p<0.01
gists | -1.080, p<0.01 | -1.275, p<0.01 | -0.195, p—0.403 | F(2,48)=41.004,p<0.01

—1852.262,p<0.01

HOGs07 | -3.669, p<0.01 | -3.962, p<0.01 | -0.293, p<0.01 | F(2,
(

)
gistzer | -1.967, p<<0.01 | -1.698, p<0.01 | 0.269, p<0.01 F(2,8)=435.452,p<0.01

5 Cluster Visualization

After the descriptors are computed for every images in a dataset, the images
can be grouped into clusters using k-means. The visual distance between two
images is defined by the distance of their descriptors. A tree structure of clusters
is built in a top-down and breadth-first manner. Let L; be a set of clusters at
the i-th level. Starting from the entire dataset (Lo), the dataset is divided into
k clusters (L;1). Every cluster in L; is split to construct L;y1. A cluster cannot
be split once its size is smaller than a certain threshold. The process terminates
when there are no more clusters to split. The number k of k-means clustering is
determined using the gap statistic method [28] or set by a user.

One image is chosen from each cluster to represent it. The selected image
should be as similar to all other images as possible. The distances of every pair
of images are computed, and the image with the smallest average distance from
all other images is chosen as the representative.
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pr—

Fig. 4. The visualization of clusters at level one. The Dataset is the 8-scene database

To achieve intuitive and aesthetic visualization results, the distances of im-
ages should be preserved and occlusions should be avoided if possible. To achieve
this, a force-directed graph is employed. The visualization of clusters at level one
of the 8-scene database is shown in Figure 4. The on-screen Euclidean distance
represents the visual differences between images: farther apart for larger dissim-
ilarities. The overall distribution of images is uniform and relatively symmetric.

If the users want to see the details of a cluster, they can expand (or “zoom
into”) it. Then, only the representative images of the sub-clusters of the expanded
cluster will be shown. A slider bar on the top of the screen shows the current
level of the clusters being displayed.

6 Conclusion

We have introduced the basic steps for constructing a similarity-based large
image collection visualization system based on gist-based similarity metrics. In-
spired by the exceptional ability of humans to perceive scenes, we designed global
feature descriptors that exploit color informaiton. Our descriptors preserve the
information from coherent color regions, as well as the spatial layouts of scenes.
The color features are combined with sophisticated global property features in
a compact way. Parameter selection experiments were run on small sampled
images sets to find optimal parameters for our descriptors. The experimental
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results showed that our descriptors are insensitive to changes in those param-
eters. Follow-on similarity experiments identified our approaches as achieving
significantly improved precision over state-of-the-art algorithms like “gist” [9]
and HOG with spatial pyramid framework [10].

We have also introduced methods to build hierarchical structures for im-
age collections given our similarity metrics, and have shown how to use these
hierarchies to visualize image clusters using force-directed graphs.

We note that a single image may not be able to represent clusters with large
variance. It is better to synthesize representative images that are in accordance
with the users’ impressions of clusters. This is left for future work.
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