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Abstract

This paper describes a new method forvisualiz-
ing complex information spaces as painted images.
Scientific visualization converts data into pictures
that allow viewers to “see” trends, relationships,
and patterns. We introduce a formal definition of
the correspondence between traditional visualiza-
tion techniques and painterly styles from the Im-
pressionist art movement. This correspondence al-
lows us to apply perceptual guidelines from visu-
alization to control the presentation of information
in a computer-generated painting. The result is an
image that is visually engaging, but that also allows
viewers to rapidly and accurately explore and ana-
lyze the underlying data values. We conclude by
applying our technique to a collection of environ-
mental and weather readings, to demonstrate its vi-
ability in a practical, real-world visualization envi-
ronment.

1 Introduction
This paper describes a formal method for constructing visual
representations of complex information spaces that support
rapid and accurate exploration and analysis. Our technique
falls within the domain ofscientific visualization,the con-
version of collections of strings and numbers (or datasets, as
they are often called) into images that allow viewers toex-
plore, analyze, validate,anddiscoverwithin their data. We
focused on two important issues[Smith and Van Rosendale,
1998] during our investigations:

1. Multidimensional displays:Our technique must support
the visualization of multiple overlapping data fields to-
gether in the same display. This is much more difficult
than representing a single data field in isolation. Design-
ing techniques to effectively represent multidimensional
datasets is an open area of research in visualization.

2. Aesthetic displays:We also seek to create images that
are visually engaging. We believe this will motivate
viewers to study a visualization in more detail. It will
draw viewers into an image, and can be used to empha-
size areas of importance in a dataset.

We address these goals by: (1) applying results from human
perception to create images that harness the strengths of our
low-level visual system, and (2) using artistic techniques from
the Impressionist movement to producepainterly renditions
that are both beautiful and engaging. From an AI perspec-
tive, the contribution of this work is the identification of a
close relationship between specific painterly techniques and
the performance properties of human perception; our formal-
ization lays the groundwork for the generation of scientific
visualizations that are effective and aesthetically pleasing.

Our technique converts a collection of data values into a
painterly image as follows. First, one or more computer gen-
erated “brush strokes” are attached to each data element in
the collection. A brush stroke has style properties (e.g.,color,
length, or direction) that we can vary to modify its visual ap-
pearance. Data values in the data element are used to se-
lect specific states for the different properties. The result is
a stroke that represents its corresponding data element. Ren-
dering all of the strokes for every data element produces a
painterly image whose stroke properties visualize the under-
lying dataset.

The remainder of this paper describes in detail how each
step in this process is managed and controlled. We begin
by defining formalisms for: (1) a multidimensional dataset
and its visualization, and (2) the brush strokes that make up a
painterly image. We next present a set of perceptual rules on
the use of color and texture in visualization that we extend via
our formalisms to the painterly domain. These rules ensure
the images we produce represent a dataset in a perceptually
salient manner. Finally, we discuss how our techniques were
used to visualize a real-world collection of environmental and
weather readings for the continental United States. We con-
clude with a summary and a short description of future work.

2 Formalisms
We began our investigation by identifying methods for build-
ing painterly images that we can use to represent multidimen-
sional datasets. A key insight is that many painterly styles
correspond closely to perceptual features that are detected by
the human visual system. In some sense this is not surprising.
Artistic masters understood intuitively which properties of a
painting would capture a viewer’s gaze, and their styles nat-
urally focused on harnessing these features. Moreover, cer-
tain movements used scientific studies of the visual system
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to help them understand how viewers would perceive their
work. The overlap of artistic styles and perception offers a
important starting point: the body of knowledge on the use
of perception during visualization will help us to predict how
corresponding painterly styles might perform in the same en-
vironment.

In order to make use of this advantage, we define a relation-
ship between traditional visualization techniques and painted
images. This is done by constructing a correspondence be-
tween formal specifications of the two environments. The
correspondence can then be used to extend our perceptual
guidelines to a painterly domain.

2.1 Multidimensional Visualization

A simple formalization of a multidimensional visualization
consists of two parts: a description of the dataset, and a def-
inition of the mapping function used to convert it into an im-
age. A multidimensional datasetD = {e1, . . . , en} con-
tains n samples points or data elementsei. D represents
two or more data attributesA = {A1, . . . , Am}, m > 1;
data elements encode values for each attribute, that is,ei =
{ai,1, . . . , ai,m}, ai,j ∈ Aj .

Visualization begins with the construction of a data-feature
mappingM(V, φ) that converts the raw data into images that
are presented to the viewer.V = {V1, . . . , Vm} identifies
a visual featureVj to use to display data attributeAj . φj :
Aj → Vj maps the domain ofAj to the range of displayable
values inVj . Based on these definitions, visualization is the
selection ofM and a viewer’s interpretation of the images
produced byM . An effective visualization choosesM to
support the exploration and analysis tasks the viewer wants
to perform.

3 Painterly Styles
Our investigation of painterly styles is directed by two sepa-
rate criteria. First, we restrict our search to a particular move-
ment in art known as Impressionism. Second, we attempt to
pair each style with a corresponding visual feature that has
proven to be effective in a perceptual visualization environ-
ment. There are no technical reasons for why Impressionism
was chosen over any other movement. In fact, we expect the
basic theories behind our technique will extend to other types
of artistic presentation. For our initial work, however, we felt
it was important to narrow our focus to a set of fundamental
goals in the context of a single type of painting style.

The term “Impressionism” was attached to a small group
of French artists (initially including Monet, Degas, Manet,
Renoir, and Pissarro, and later C´ezanne, Sisley, and Van
Gogh, among others) who broke from the traditional schools
of the time to approach painting from a new perspective. The
Impressionist technique was based on a number of underlying
principles (see also[Schapiro, 1997]):

1. Object and environment interpenetrate.Outlines of
objects are softened or obscured (e.g., Monet’s water
lilies); objects are bathed and interact with light; shad-
ows are colored and movement is represented as unfin-
ished outlines.

2. Color acquires independence.There is no constant hue
for an object, atmospheric conditions and light moder-
ate color across its surface; objects may be reduced to
swatches of color.

3. Show a small section of nature.The artist is not placed
in a privileged position relative to nature; the world is
shown as a series of close-up details.

4. Minimize perspective.Perspective is shortened and dis-
tance reduced to turn 3D space into a 2D image.

5. Solicit a viewer’s optics.Study the retinal system; divide
tones as separate brush strokes to vitalize color rather
than graying with overlapping strokes; harness simul-
taneous contrast; use models from color scientists like
Chevreul[Chevreul, 1967] or Rood[Rood, 1879].

Although these general characteristics are perhaps less pre-
cise than we might prefer, we can still draw a number of im-
portant conclusions. Properties of hue, luminance, and light-
ing were explicitly controlled and even studied in a scientific
fashion by some of the Impressionists. Rather than using an
“object-based” representation, the artists appear to be more
concerned with subdividing a painting based on the interac-
tions of light with color and other surface properties. Addi-
tional painterly styles can be identified by studying the paint-
ings themselves. These styles often varied dramatically be-
tween individual artists, acting to define their unique painting
techniques. Examples include:

• path: the path or direction a brush stroke follows; Van
Gogh made extensive use of curved paths to define
boundaries and shape in his paintings; other artists fa-
vored simpler, straighter strokes,

• length: the length of individual strokes on the canvas,
often used to differentiate between contextually different
parts of a painting,

• density:the number of strokes laid down in a fixed area
of canvas,

• coarseness:the coarseness of the brush used to apply
a stroke; a coarser brush causes visible bristle lines and
surface roughness, and

• weight: the amount of paint applied during each stroke;
heavy strokes highlight brush coarseness and produce
ridges of paint that cause underhanging shadows when
lit from the proper direction.

In this context, a paintingP can be seen as a collection ofn
brush strokesP = {b1, . . . , bn}, with each stroke made up of
p style propertiesSj , that is,bi = {si,1, . . . , si,j}, si,j ∈ Sj .

Although it would be tedious (and perhaps uninformative)
to characterize a real painting in this manner, these definitions
provide an effective way to relate the visualization process to
a painted image. First, we can match many of the painterly
styles to visual features used during visualization. For exam-
ple, color and lighting in Impressionism has a direct corre-
spondence to the use of hue and luminance in perceptual vi-
sualization. Other styles (e.g.,path, density, and length) have
similar partners in perception (e.g.,orientation, contrast, and
size). Second, data elementsei in a dataset are analogous to
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brush strokesbi in a painting. Attribute valuesai,j in element
ei could therefore be used to select specificsi,j for each style
in bi.

Consider a data-feature mappingM(V, φ) in this context.
The visual featuresVj ∈ V can be converted to their corre-
sponding painterly stylesSj . M now describes how to con-
vert a data elementei into painted brush strokebi whose vi-
sual appearance represents the attribute valuesai,j embedded
in ei. The close correspondenceVj ↔ Sj between perceptual
features and many of the painterly styles we hope to apply is
particularly advantageous. Since numerous controlled exper-
iments on the use of perceptual features have already been
conducted, we have a large body of evidence to use to predict
how we expect painterly styles to react in a multidimensional
visualization environment.

4 Perceptual Characteristics
Past research has studied methods for applying rules of per-
ception during visualization[Bergmanet al., 1995; Healey
and Enns, 1999; Rheingans and Tebbs, 1990]. The cog-
nitive abilities of the low-level human visual system have
been studied extensively in the area of human psychophysics.
One interesting result is the identification of a limited set
of visual features that are detected rapidly, accurately, and
relatively effortlessly by a human viewer[Triesman, 1985;
Wolfe, 1994]. These features are similar to the ones we dis-
play during multidimensional visualization (e.g.,hue, lumi-
nance, orientation, size, and motion). When combined prop-
erly, they can be used to perform exploratory analysis tasks
like searching for data elements with a particular attribute
value, identifying boundaries between groups of elements
with similar values, tracking elements as they move in time
and space, and estimating the number of elements with com-
mon values. The ability to harness the low-level visual sys-
tem during visualization through the use of these features is
especially attractive, since:

• analysis is rapid and accurate, often requiring no more
than 200 milliseconds,

• task completion time is constant and independent of the
number of elements in a display, and

• different visual features can interact with one another to
mask information; psychophysical experiments allow us
to identify and avoid these interference patterns.

A data-feature mapping that builds on a perceptual founda-
tion can support high-level exploration and analysis of large
amounts of data in a relatively short period of time. Our re-
cent work focuses on the combined use of fundamental prop-
erties of color and texture to encode multiple attributes in a
single display. We draw on three specific areas of research in
perception and visualization to guide the construction of our
brush strokes: color selection, texture selection, and feature
hierarchies that can cause visual interference and masking.

4.1 Color Selection
Color is a common feature used in many visualization de-
signs. Some techniques attempt to measure and control the

color difference viewers perceive between pairs of colors.
This allows:

• perceptual balance:a unit step anywhere along the
color scale produces a perceptually uniform difference
in color,

• distinguishability:within a discrete collection of colors,
every color is equally distinguishable from all the others
(i.e.,no color is “easier” or “harder” to identify), and

• flexibility: colors can be selected from any part of color
space.

Standard color models like CIE LUV or CIE Lab use Eu-
clidean distance to approximate perceived color difference.
More complex techniques extend this basic idea. For ex-
ample, Rheingans and Tebbs[Rheingans and Tebbs, 1990]
plotted a path through a color model, a allowed a viewer to
vary how colors are selected along the path. Ware constructed
color scales that spiral up around the luminance axis[Ware,
1988]; such a scale maintains a uniform simultaneous con-
trast error along its length. Healey and Enns[Healey and
Enns, 1999] showed that color distance, linear separation, and
color category must all be controlled to select discrete collec-
tions of equally distinguishable colors.

Our color selection technique combines different aspects of
each of these methods. A single loop spiraling up around the
luminance axis is plotted in the region of CIE LUV space that
contains our monitor’s color gamut. The path is subdivided
into r named color regions (e.g.,a blue region, a green region,
and so on).n colors are then selected by choosingn

r colors
uniformly spaced along each of ther color regions. The result
is a set of colors selected from a perceptually balanced color
model, each with a roughly constant simultaneous contrast er-
ror, and chosen such that color distance and linear separation
are constant within each named color region.

4.2 Texture Selection
Although texture is often viewed as a single visual feature, it
can be decomposed into fundamental perceptual dimensions.
Research in computer vision has used properties like regular-
ity, directionality, and contrast to perform automatic texture
segmentation and classification. Results from psychophysics
have shown that many of these properties can also be detected
by the low-level visual system.

One promising approach in visualization has been to use
the perceptual dimensions of a texture pattern to represent
multiple data attributes. Individual values in a data element
control a corresponding texture dimension, producing a tex-
ture pattern that changes its visual appearance based on the
underlying dataset. Grinstein et al.[Grinsteinet al., 1989]
built “stick-man” icons to represent high dimensional data el-
ements; the orientation of each limb encodes a value for one
particular attribute. Ware and and Knight[Ware and Knight,
1995] displayed Gabor filters that modified their orientation,
size, and contrast based on the values of three independent
data attributes. Healey and Enns[Healey and Enns, 1999]
constructed perceptual texture elements (or pexels) that var-
ied in height, density, and regularity; their results showed that
both height and density were perceptually salient, but regu-
larity was not. More recent work[Weigleet al., 2000] found
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that an orientation difference of15◦ is sufficient to rapidly
distinguish visual elements.

4.3 Feature Hierarchy

A third factor that must be considered is visual interference,
that is, a situation where one visual feature masks another.
Although the need to rank each brush stroke style’s percep-
tual strength is not necessary in a painting, this information is
critical for effective visualization design. The most important
data attributes (as defined by the viewer) should be displayed
using the most salient features. Secondary data should never
be visualized in a way that masks the information a viewer is
most interested in seeing.

Perceptual features are ordered in a hierarchy by the low-
level visual system. Results reported in both the psychophys-
ical and visualization literature have confirmed a luminance–
hue–texture interference pattern. Variations in luminance
can slow a viewer’s ability to identify the presence of in-
dividual hues or the spatial patterns they form[Callaghan,
1990]. The interference is asymmetric: random variations
in hue have no effect on a viewer’s ability to see lumi-
nance patterns. A similar asymmetric hue on texture inter-
ference has also been shown to exist[Healey and Enns, 1999;
Triesman, 1985]; random variations in hue interfere with the
identification of texture patterns, but not vice-versa. These
results suggest that luminance, then hue, then various texture
properties should be used to display attributes in order of im-
portance.

5 Painterly Visualization

Based on the perception guidelines discussed above, and on
our formal correspondence between visualization techniques
and painterly images, we decided to build a system that var-
ied brush stroke color, size, spatial density, and orientation
to encode up to four independent data attributes (in addition
to the two spatial values used to position each stroke). The
presence of feature hierarchies suggest color should be used
to represent the most important attribute, followed by the tex-
ture properties. The results of[Healey and Enns, 1999] fur-
ther refine this to applying color, size, density, and orientation
in order of attribute importance.

The brush strokes in our current prototype are constructed
using a simple texture mapping scheme. A real painted stroke
was digitized and converted into a texture map. This tex-
ture map is attached to a polygon to produce a reasonable
approximation of a generic brush stroke. The stroke’s posi-
tion, color, size, and orientation are controlled by modifying
the texture map and transforming the polygon. Density is var-
ied by changing the number of strokes rendered in a unit area
of screen space. Fig. 1 shows an example of brush strokes
with four different colors, sizes, densities, and orientations.

5.1 Practical Applications

One of the application testbeds for our visualization tech-
niques is a dataset of monthly environmental and weather
conditions collected and recorded by the Intergovernmen-
tal Panel on Climate Change. This dataset contains mean

Figure 1: Examples of texture mapped brush strokes with
different orientations (top row), densities (second row), sizes
(third row), and colors (fourth row)

monthly surface climate readings in12
◦

latitude and longi-
tude steps for the years 1961 to 1990 (e.g.,readings for Jan-
uary averaged over the years 1961-1990, readings for Febru-
ary averaged over the years 1961-1990, and so on). We chose
to visualize temperature, precipitation, pressure, and wind-
speed. Based on this order of importance, we built a data-
feature mappingM that assigns brush stroke color, size (or
coverage), density, and orientation, respectively, to our four
attributes. Temperature is represented by colors selected uni-
formly from a perceptually balanced color path. This path
runs from dark blue (for cold temperatures) to bright pink (for
hot temperatures). Precipitation is represented size (i.e., the
amount of an element’s spatial region its brush stroke covers).
Sizes range exponentially from very small coverage (for little
or no precipitation) to full coverage (for heavy precipitation).
Windspeed is represented by orientations ranging from 0◦ or
upright (for weak winds) to 90◦ or flat (for strong winds).
Finally, pressure is represented by four increasingly dense ar-
rays of brush strokes: a single stroke, a2×2 array of strokes,
a 3 × 3 array, and a4 × 4 array; continuous pressure values
are discritized into four uniform ranges, then mapped to the
appropriate density (sparse for low pressure, dense for high
pressure).

Fig. 2 shows a visualization of data for February in the east-
ern half of the continental United States. Although unlikely to
be mistaken for a real Impressionist painting, we feel the im-
age contains important aesthetic qualities that make it stand
out from a traditional visualization. The top four images (the
top row of Fig. 2) use a perceptual color ramp to show the in-
dividual variation in temperature, precipitation, pressure, and
windspeed.M was used to construct the painterly visualiza-
tion of all four attributes shown in the bottom image of Fig. 2.
Various luminance and texture patterns representing different
weather phenomena are noted in this image.

We have applied our painterly visualizations to a number of
additional real-world environments including scientific simu-
lations, e-commerce activity logs, and medical scans. Anec-
dotal feedback from domain experts collaborating on our ef-
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temperature precipitation pressure windspeed

hot (light)

cold (dark)

weak winds
(low coverage)

strong winds
(high coverage)

pressure gradients
(density gradients)

light rain
(upright strokes)

heavy rain
(tilted strokes)

Figure 2: A painterly visualization of environment conditions for February over the eastern United States: (top row) color
ramps (dark blue for small values to bright pink for large values) of temperature in isolation, precipitation in isolation, pressure
in isolation, and windspeed in isolation; (bottom image) a painterly visualization of all four attributes represented with the brush
stroke properties color, size (or coverage), density, and orientation
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forts suggests that our technique achieves its goal of produc-
ing images that: (1) represent multidimensional datasets in a
clear and effective manner, and (2) contain many of the aes-
thetic and visually engaging properties of a real painting.

6 Conclusions and Future Work
This paper describes a new method of visualization that uses
painted brush strokes to represent multidimensional data ele-
ments. Our strokes support the variation of visual properties
based in large part on styles from the Impressionist school of
painting. Each attribute in a dataset is mapped to a specific
painterly style; a data element’s attribute values can then be
used to vary the visual appearance of its brush stroke. The
styles we chose are closely related to perceptual features de-
tected by the low-level human visual system. Research study-
ing the use of these features during visualization allows us to
optimize the selection and application of the corresponding
painterly styles. The result is a “painted image” whose color
and texture patterns are used to explore, analyze, verify, and
discover information stored in a multidimensional dataset.

One important area of future work is the construction of
new brush stroke models. Texture maps are common in most
graphics APIs, and are often rendered using hardware accel-
eration. Unfortunately, certain styles (e.g.,stroke coarseness
or weight) are not easy to manipulate using texture maps. It
may also be difficult to animate textured brush strokes during
real-time visualization. We are currently investigating three
potential solutions to this problem: (1) building a library of
texture maps that explicitly differ across certain styles; (2) us-
ing mathematical spline surfaces to model more sophisticated
brush stroke properties, and (3) using a physical simulation
system to construct realistic strokes. Early results suggest a
combination of models (e.g.,a texture map library whose en-
tries are precomputed or dynamically updated) may be most
appropriate.

We are also working to identify new painterly styles, and
to integrate them into our stroke models. Two promising can-
didates we have already discussed are coarseness and weight.
We are reviewing literature on technical and artistic properties
in Impressionism, while at the same time searching for per-
ceptual features that may correspond to new painterly styles.
Increasing the number of styles we can encode in each brush
stroke will allow us to represent larger datasets with higher
dimensionality.

We note one final advantage we can derive from the corre-
spondence between perceptual features and painterly styles.
We measure the perceptual salience of a visual feature us-
ing controlled psychophysical experiments. Exactly the same
technique can be used to investigate the strengths and limi-
tations of new painterly styles. Just as research in perception
helps us to identify and control brush stroke properties during
painterly visualization, work on new styles may offer insight
into how the low-level visual system “sees” certain combina-
tions of visual properties.
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