
Online Submission ID: 1020

Yarn: Generating Storyline Visualizations Using HTN Planning

Figure 1: Yarn visualization depicting both actual (reality) and alternate (diegetic) narrative timelines. Colored lines trace the path
of the main characters as a narrative progresses over time. Solid and dashed lines connect events on the reality and diegetic
timelines, respectively. Nodes on the y-axis represent character sub-goals, and vertical node clusters represent events

ABSTRACT

Existing storyline visualization techniques represent narratives as a
node-link graph where a sequence of links shows the evolution of
causal and temporal relationships between characters in the narra-
tive. These techniques make a number of simplifying assumptions
about the narrative structure, however. They assume that all narra-
tives progress linearly in time, with a well defined beginning, mid-
dle, and end. They assume that at least two participants interact
at every event. Finally, they assume that all events in the narrative
occur along a single timeline. Thus, while existing techniques are
suitable for visualizing linear narratives, they are not well suited for
visualizing narratives with multiple timelines, nor for narratives that
contain events with only one participant. In this paper we present
Yarn, a system for generating and visualizing narratives with multi-
ple timelines. Along with multi-participant events, Yarn can also vi-
sualize single-participant events in the narrative. Additionally, Yarn
enables pairwise comparison of the multiple narrative timelines.

Keywords: HTN Planning, Narratives, Storyline Visualization.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques; Human-centered computing—Visualization—
Visualization application domains—Information Visualization

1 INTRODUCTION

A story or a narrative is an ordered sequence of connected events
in which one or more characters (or entities) participate [19]. The
events in the narrative take place at various locations, and together
with the entities define the relationships that shape the course of the
narrative. Understanding the evolution of these entity relationships
is key to comprehending and analyzing how the narrative unfolds.
To this end, storyline visualizations have been developed to repre-
sent a narrative based on the causal and temporal patterns of the
entity relationships.

Existing storyline visualization techniques, inspired by
Munroe’s movie narrative charts [22], represent narratives as
node-link graphs. These techniques lay out narrative events
chronologically, from left to right, with each entity represented as a
line running from one event to another. Events are shown as nodes
in the storyline, and a link between a pair of nodes represents an
entity that participates chronologically in both events.

Initial storyline visualization techniques [23,24,34] produced an
aesthetically pleasing visualization, but at the expense of time. Liu
et al. [19] described an optimization strategy, called StoryFlow, for

fast generation of storyline visualizations. StoryFlow creates a visu-
alization using a four stage pipeline that generates an initial layout,
then performs ordering and alignment of nodes, and compaction of
the overall layout to improve its appearance.

While these techniques can produce aesthetically pleasing and
legible storylines, they do so by making simplifying assumptions
about the structure of the narrative. Because of this they may not
support more complex, real-world storytelling and analysis tasks.
First, existing techniques assume that at least two entities partici-
pate at every event in the timeline. However, many real world nar-
ratives involve situations where the entities generate events without
interaction, or by interacting with entities that are not present at the
same location. This creates single-entity events in the narrative that
are not supported by existing techniques. Second, many narratives
involve character entities making choices. These choices directly
influence the evolution of the causal relationships that shape the out-
come of the narrative. For many real-world analysis tasks, it is im-
portant to not only visualize the narrative as it unfolds (reality time-
line) but to also include alternative choices that can lead to alternate
outcomes (diegetic timelines). Existing techniques visualize only
reality timelines. They provide no support for diegetic narratives.
Third, existing techniques assume that the narrative progresses lin-
early in time and has a well defined beginning, middle and end.
While this makes them suitable for visualizing traditional, linear
narratives such as a movie’s plot, they cannot visualize non-linear
narratives such as narratives with flashbacks or flash forwards, nar-
ratives with parallel distinctive plot lines, or narratives that present
events from their characters’ point of view.

In this work we present Yarn, a new system for automatic narra-
tive construction and visualization. In our approach we use hierar-
chical task network (HTN) planning for automatic generation of all
possible narrative timelines. Compared with existing HTN-based
narrative generation systems like Cavazza et al. [5], no user interac-
tion is required for generation of diegetic timelines. Our approach
also visualizes the generated timelines using a storyline layout that
represents all events in the timeline. To achieve this, we:

1. Represent the narrative HTN as a collection of entity HTNs,
one for each character in the narrative.

2. Use a WebWorker-based HTN planner for decomposing the
entity HTNs in parallel to evaluate all possible choices avail-
able to the entities and their corresponding outcomes identify-
ing the reality timeline and possible diegetic timelines in the
narrative. This is efficient and allows representation of both

1

Online Submission ID: 1020

single and multi-entity events. Our HTN planner also sup-
ports causal events in the narrative, where past actions affect
future outcomes.

3. Visualize each timeline by creating a storyline layout with
minimal line crossings.

4. Allow pairwise comparison of narrative timelines for bet-
ter comprehension of a timeline’s progression and event out-
comes.

Based on the above, our work makes the following novel contri-
butions:

1. An efficient method for generating all possible timelines in a
narrative using HTN planning.

2. A storyline layout for visually depicting and comparing mul-
tiple timelines in a narrative.

3. A storyline layout for visually depicting non-linear point-of-
view narratives.

Unlike existing HTN-based systems like Cavazza et al. [5], our
system generates all possible narratives, rather than constructing
individual alternative narratives “on demand” based on user interac-
tion with an initial reality timeline. This provides three advantages:
(1) diegetic timelines are available for a user to examine, select
from, and visualize immediately; (2) reality and diegetic timelines
can be visually compared to search for similarities and differences;
and (3) support for non-linear point-of-view narratives. Finally,
our use of the new WebWorker-based parallelism significantly im-
proves overall performance during the narrative generation stage.
Our HTNs were specifically designed to take advantage of this ca-
pability.

2 RELATED WORK

In this paper we discuss a new system for narrative generation and
visualization. Here we present some of the related work in these
fields.

2.1 Automated Narrative Construction

Researchers in the field of narrative theory draw ideas from vari-
ous fields, including literary theory, linguistics, cognitive science,
folklore, and gender theory to define what constitutes a narrative
and how it is different from other kinds of discourse, such as lyric
poems, arguments, and descriptions [3, 7, 14, 26, 29]. They have
studied narratives using numerous approaches such as rhetoric (dis-
courses that inform, argue with, convince or motivate audiences),
pragmatic (discourses that convey, request or perform social actions
such as complaints, suggestions, compliments, requests, apologies,
refusals, and warning), and antimimetic (discourses that are ex-
pressed or conveyed in non-traditional forms) to define narratives
in multiple ways. All definitions, however, agree that a narrative or-
ganizes spatial and temporal data into a cause-effect chain of events
with a beginning, middle and end. Each narrative has two parts. The
first is the fabula or story comprising a chain of events and its ex-
istents, defined as characters and settings. The second is sjuz̆et or
discourse, defined as an expression or means by which the story is
communicated. While fabula deals with the organization of the con-
tent of a narrative, sjuz̆et deals with the manifestation—appearance
in a specific material form: oral, written, musical, cinematic, and
visual—and transmission of the narrative.

In recent years narrative theory has generated significant inter-
est among computer scientists, especially in the field of artificial
intelligence (AI), computational linguistics, and game design. Re-
searchers have proposed numerous systems for automatic gener-
ation of narratives, such as Tale-Spin [21], Minstrel [37], Mex-
ica [25], Virtual Storyteller [36], Fabulist [27], and Suspenser [8].

Figure 2: A hierarchical task network decomposing the task “Build
House”. Rectangular nodes represent primitive actions, and circular
nodes represent (sub-)tasks in the decomposition. Red lines show
decomposition for an OR node, while blue lines show decomposition
for an AND node

These systems identify a thematic pattern in a pre-existing corpus
of fabula to generate narrative text, by selecting and ordering fabula
events to create a linear progression of the story.

Significant research efforts have also been directed towards
developing narrative engines which can automatically generate
sjuz̆het (and thus, the narrative) based on the end goals specified
in the fabula [9, 20, 28]. These systems represent the fabula as a
collection of state spaces that are searched to find a sequence that
satisfies the end goal. The system models fabula semantics such
as timelines, states, events, characters, and goals as data objects.
These objects can be queried, manipulated, and arranged using user-
defined sjuz̆het assertions to generate the narrative text.

Two approaches are commonly used to represent fabula in such
automatic narrative generation systems. In the first approach, a
STRIPS-like [11] formalism is adopted to represent the fabula as
a collection of world models for all possible scenarios in the nar-
rative. A world model is constructed as a set of well-formed for-
mulas using first-order predicate calculus. A well-formed formula
is also used to state the goal condition. A set of operators enumer-
ate possible actions and their effect on the world models. Various
AI planning techniques apply these operators to the world model
collection to find a model that achieves the stated goal condition .
The sequence of events described in the solution model generate a
narrative that achieves the goal condition.

In the second approach, the fabula is represented using a hier-
archical task network (HTN) formalism. HTNs are networks that
represent ordered task decomposition, based on the idea that many
tasks in real life have a built-in hierarchical structure. The top-level
task in an HTN is typically the main goal. Each task can be decom-
posed into sub-tasks, which can be further decomposed into smaller
tasks until all tasks are represented as primitive actions. HTNs are
commonly built using AND/OR graphs. When a task can have sev-
eral possible decompositions, it is represented using an OR node.
Each sub-task is a valid decomposition for the parent task. When a
task has several decompositions that can be ordered in some fashion
to complete the task, it is represented as an AND node. Thus, an
HTN can be seen as an implicit representation for the set of possible
solutions for a task [10]. Fig. 2 shows an HTN for the task “Build
House”. Rectangular nodes represent primitive actions, and circular
nodes represent sub-tasks in the decomposition. Red lines show de-
composition for an OR node, while blue lines show decomposition
for an AND node. The final decomposition for the goal task con-
tains all primitive actions, returned from a depth-first search of the
HTN. As narrative descriptions can be naturally represented as task
decompositions [6,17], they are well suited for representation using
HTNs. Based on this idea, a number of techniques [1,5,6,35] have
been developed that employ HTN planning to generate a narrative.
These techniques start by defining a narrative goal, then decompose
it to find a sequence of primitive actions that describe events in

2

Online Submission ID: 1020

a narrative timeline. Existing techniques, however, generate only
one such timeline even when the narrative goal could have multi-
ple possible decompositions, each representing a possible alternate
timeline.

Our approach builds on these techniques, improving them to sup-
port efficient generation of all possible narrative timelines, provide
a method to visualize multiple timelines simultaneously and sup-
porting a subset of non-linear narratives.

2.2 Visualizing Narratives

Static visualizations have long been used to support storytelling,
usually in the form of diagrams and charts embedded in a larger
body of text. In this format, the text conveys the story, and the im-
age typically provides supporting evidence or related details. More
recently, visualizations have been designed with the purpose of con-
veying a “data story,” and guiding the viewer through the narrative
generated from analysis of the data [18]. These visualizations have
been termed “narrative visualizations” [31], and have been exten-
sively studied to explore how elements of narrative theory can be
applied to identify patterns in visual layout to provide recommen-
dations, or to evaluate the effectiveness of the visuals in the presen-
tation and analysis [15, 30, 31].

Recently, another technique has also emerged to help users bet-
ter understand and analyze a complex story by presenting them
visually. This technique, storyline visualization, is inspired by
Munroe’s Movie Narrative Charts [22], and represents narratives
as node-link graphs. Events in the narrative are visualized as nodes,
and are laid out chronologically from left to right. Each character,
or entity, is shown as a line running from one event to another. A
link between a pair of nodes represents an entity that participates
chronologically in both events. Interactions among the entities dur-
ing different events define entity relationships.

Storyline visualizations differ from narrative visualizations in im-
portant ways. As noted before, narrative visualizations emphasize
combining a data story with graphics. They present related content,
in blocks, to provide clear and logical transitions without regard for
temporal ordering of events. Storyline visualizations, on the other
hand, are designed as an alternative manifestation of a narrative’s
sjuz̆et. They present narrative events on a temporal timeline that
follows the narrative’s progression. This allows users to better un-
derstand the evolution of entity relationships from the beginning to
the end of a story. This can be very important in many applica-
tions such as information exploration and understanding, interper-
sonal communication and storytelling, and media analysis [4, 13].
Narrative visualizations, therefore, are “visual data stories”, while
storyline visualizations are “visual narrative summaries.”

When visualizing a real-world narrative, storyline visualiza-
tions are generally simplified by imposing application-specific con-
straints, thereby achieving success at the cost of loss of general-
ity [19]. More recent research efforts have focused on developing a
generic storyline visualization tool. Tanahashi and Ma presented a
storyline layout technique [34] based on a genetic algorithm. They
also presented an extension of their technique to generate storyline
visualization for evolving narratives [33]. While their techniques
create an aesthetically appealing and legible storyline visualization,
they take considerable time to create the layout. Liu et al. [19] pre-
sented a strategy called StoryFlow that formulates the difficult prob-
lem of creating an effective storyline layout as an optimization prob-
lem, creating an aesthetically appealing visualization significantly
faster than Tanahashi and Ma.

These techniques, however, still make simplifying assumptions
about the structure of the narrative. The techniques assume that
at least two entities participate at every event in the timeline, so
they are not suited for visualizing real world narratives that contain
single-entity events. Further, these techniques provide no support
for narratives with multiple timelines (diegetic narratives).

Additional techniques have been developed for visualizing nar-
ratives with multiple timelines. SemTime [16] is a temporal visual-
ization technique that uses distinct types of directed edges and time
independent stacking of multiple timelines to show relationships be-
tween events. However, it is not well suited for visualizing large nar-
ratives due to the amount of visual clutter created by line crossings.
World Lines [38] is a technique for visualizing different narrative
timelines generated by performing a “what-if” analysis on the nar-
rative. It uses a combination of simulation techniques to generate
multiple timelines, then visualizes them in a “horizontal tree-like
visualization” that depicts the causal relationships between differ-
ent timelines. However, the lack of a representation of individual
entities means it is difficult to identify interactions between entities
within a timeline. This makes the technique better suited for visual-
izing how the narrative timelines branch from each other rather than
visually summarizing and comparing events within the timelines.

3 YARN OVERVIEW

We have developed Yarn for automatic construction and visualiza-
tion of multiple narrative timelines. Fig. 3 shows the overview of
Yarn’s pipeline. Yarn is designed to run within a web browser, and
each stage is fully implemented using JavaScript.

The input to Yarn is the codified representation of an HTN for
each character entity in the narrative. An entity’s HTN goal node
is represented using a task function, AND/OR nodes using method
functions, and action/leaf nodes as operator functions. We describe
each of these in more detail in the following section.

Yarn’s pipeline consists of four stages: HTN generation, plan-
ning, layout and ordering, and visualization. In the first stage, Yarn
generates an in-memory HTN representation of the narrative from
the input functions. Next, a multi-threaded HTN planner concur-
rently generates plans for each entity in the narrative. An initial
node-link graph layout is generated from these plans in the Layout
and Ordering stage. An ordering algorithm is then run to compute
a final layout with minimum line crossings. The output from this
stage represents one narrative timeline. These two stages are re-
peated to generate all possible timelines in the narrative. Finally,
the timelines are sent to the Visualization stage where each time-
line is drawn inside a web browser, on demand. Two timelines can
be displayed to enable visual comparison of the events in each time-
line.

4 NARRATIVE GENERATION AND VISUALIZATION

As illustrated in Fig. 3, Yarn begins by generating an HTN for nar-
rative entities, followed by narrative planning, timeline generation,
and visualization.

4.1 HTN Generation

In our system, we represent a narrative as a collection of HTNs,
one for each entity in the narrative. In order to use these graphs
for timeline generation, we need to first convert them into alternate
representations that our JavaScript HTN planner can use.

We start by expressing the narrative’s fabula—domain descrip-
tion and initial state information—using a JavaScript map. Each
object in the map is a key–value pair where the key is any entity,
prop or trigger condition, and the value represents its state at the
beginning of the narrative. A complete map with all initial state
information represents a narrative state map which can be accessed,
modified and updated by the operator functions during the planning
stage.

Next, we express the task (end-goal), sub-tasks and primitive ac-
tions in each entity HTN using JavaScript functions. We categorize
these functions into three types.

1. Operator functions: Each primitive action in the HTN, when
executed, represents an event in the narrative. An action may

3

Online Submission ID: 1020

Figure 3: Overview of Yarn’s four stage pipeline: (1) generate Hierarchical Task Networks for each of the character entities in the narrative; (2)
HTN planning to generate timelines; (3) compute the layout and ordering of the entities in each timeline; and (4) create visualizations inside a
browser window

also have certain pre-requisites which must be met for the
action to return successfully after execution. Both success-
ful and unsuccessful executions of the primitive action create
events in the narrative.

We define operator functions as JavaScript functions that are a
manifestation of primitive actions, complete with conditional
checks to detect fulfillment of pre-requisites, and if required
wait loops to wait for pre-requisite fulfillment. Execution af-
fects the narrative state by creating an event upon completion.

2. Method functions: Each AND/OR node in the HTN repre-
sents a sub-task. AND sub-tasks can be completed in exactly
one way by performing all of the sub-tasks/primitive actions
directly beneath it. OR sub-tasks can be performed in more
than one way, since execution of any sub-task/primitive action
directly beneath an OR node is a valid decomposition for the
sub-task.

We define method functions as JavaScript functions that are
a collection of AND/OR nodes in the HTN. When a method
function represents an AND node, it calls subordinate method
or operator functions in a specific order as specified by the
HTN. Each of the functions must return successfully for the
method function to return success. When a method function
represents an OR node, it calls each subordinate method func-
tion or operator function specified by the HTN. If a function
returns successfully, the method function itself returns suc-
cess. If all functions return unsuccessfully, the method func-
tion returns a failure to find a (sub)plan.

In our implementation of method functions for OR nodes, we
use a random order to call subordinate functions. This allows
us to implement both causal relationships as well as proba-
bilistic occurrence of narrative events. Normally each subor-
dinate function is assigned an equal probability, and a random
number r, 0 ≤ r ≤ 1, governs which of the functions is se-
lected for execution. We could, however, assign the functions
different probabilities to simulate the probabilistic occurrence
of narrative events. Additionally, by affecting the probabil-
ity of execution of the possible subordinate functions, we can
implement causal relationships in the narrative.

3. Task functions: Each goal node in the HTN is an AND/OR
node that represents the task we are trying to decompose. We
define task functions as special method functions that only call
other method or operator functions and cannot be called by
any other function. A task function serves as the entry point
for our planner, and is the first function that will be called
when finding a plan decomposition for an HTN. A plan is
identified successfully only if all functions called by a task
function return successfully.

After representing nodes in each HTN using the functions de-
scribed above, we create a task list as a JavaScript array of task
functions, one for each entity in the narrative. This task list, along
with the narrative state map and the operator and method functions
serve as input for the planning stage.

4.2 Planning

Character entities in real-world narratives follow unique paths to
accomplish their individual goals. Along the way they participate
in events with other entities (multi-entity events), or create events
independently. To mimic this method of event creation, we run
our HTN planner concurrently for each task in the task list. In our
implementation, the planner finds the decomposition of a task by
performing a left-to-right depth-first search of the associated HTN,
further decomposing any sub-tasks encountered, and executing any
primitive actions in the process. If a primitive action fails, the al-
gorithm backtracks to find a suitable alternative. The complete de-
composition of a task contains an ordered sequence of execution for
primitive actions where a primitive action on the left sub-tree of a
node in the HTN appears before a primitive action on its right sub-
tree. Each unique sequence represents an alternate decomposition
for the task. For example, one of the four possible plan decompo-
sitions for the task “Build House” HTN shown in Fig. 2 is made
up of the primitive actions: Obtain Permit, Check Directory, Build
Foundation, Concrete Frame, Build Interior and Pay Builder.

In order to perform concurrent planning of tasks in the task
list, we use JavaScript WebWorkers to create background worker
threads that do not interfere with the main program thread. We cre-
ate as many threads as there are task functions in the task list. Each
thread is responsible for calling the planner for exactly one task
function. These threads, however, do not have access to global or
shared variables. This is a problematic because during task decom-
position operator functions must update the state map to generate
narrative events.

To solve this, we use IndexedDB, a type of browser storage that
is accessible by WebWorkers. IndexedDB allows us to store both
local and session related data within a browser session. In our im-
plementation, we use it to store the state map. An operator function
called by one thread can change the state map in a way that is visible
to operator functions in other threads. To store narrative events we
create an event list record in IndexedDB. After updating the state
map, the operator functions store an event ID, entity name, event
label and optional text to describe the narrative event, in the event
list record. In order to ensure atomicity of all operations we im-
plement mutex locks for reading and writing the IndexedDB using
JavaScript Promises.

After all threads finish their execution, the state map and the
event list record are the final output of the planner representing one
narrative timeline.

To calculate the time complexity for our planner, let G= (S,A,L)
be the graph representation of an HTN for an entity, where S is the
set of (sub-)task nodes represented as AND/OR nodes in the graph,
A is the set of primitive action nodes in the graph, and L is the set
of links in the graph. Let n be the number of fabula elements that
are represented as keys in the key–value pairs stored in the narrative
state map.

In the worst-case we perform a recursive depth-first traversal of
the entire HTN graph to generate a plan decomposition. In this case,
we visit every node in S and A, and execute the associated functions
for each node. Visiting a node in S or A is the same as traversing

4

Online Submission ID: 1020

(a) Initial layout generated using matrices created from the

output of the planning stage.

(b) Layout generated after running barycentric graph layout

algorithm to re-order events vertically along the y-axis.

(c) Layout generated after removing dummy nodes from the

event layout generated in the previous step.

(d) Final layout after introducing entities in the event layout

from previous step and performing entity ordering.

Figure 4: Illustration of various steps of the layout and ordering stage applied to a timeline for the example narrative in Sect. 5.1

an edge in the graph and can be performed in O(1) for each edge,
since it only involves calling the associated function. Visiting all
nodes, therefore, can be performed in O(1)∗ |L|= O(|L|).

Executing a function for a node in S involves removing it from
the stack of functions to be called and adding a subordinate method
or operator function. Both these operations can be performed in
O(1) allowing the function itself to be performed in O(1). Exe-
cuting functions for all nodes in S, therefore, can be performed in
O(1)∗ |S|= O(|S|).

Executing a function for a node in A involves updating the narra-
tive state map stored in IndexedDB to create a new event. This can
be performed in O(log(n)). Executing functions for all nodes in A,
therefore, can be performed in O(log(n))∗ |A|= O(|A| · log(n)).

The time complexity for generating a plan decomposition, then,
is O(|L|)+O(|S|)+O(|A| · log(n)) = O(|L|+ |S|+ |A| · log(n)).

4.3 Layout and Ordering

After running the planner we obtain a narrative timeline as a list
of events (both single-entity and multi-entity events) in chronolog-
ical order and a list of associated entities. During the layout and
ordering stage, we first use the event and entity lists to create an ini-
tial arrangement where events are positioned chronologically along
the x-axis with entity lines moving from one event to another, and
events sharing the same time step are positioned vertically along the
y-axis.

Next, we order the events and entities at each time step to min-
imize the number of line crossings. To do so, we convert the con-
nections between event nodes at each pair of successive time steps
into a matrix, creating a list of matrices. If there is a connection
between event nodes in a pair of non-successive time steps ti and
t j, we introduce dummy event connections in the matrices for each
pair of successive time steps between ti and t j, preserving the con-
nection between the events. Fig. 4(a) shows the layout created us-
ing this matrix representation. Events in the planner output from
the previous stage are shown as nodes labeled with the names of
participating entities. Dummy events are shown as nodes without

labels. Links between a pair of nodes represent the participation of
entities between the two events.

We next implement a well-known barycentric graph layout al-
gorithm by Sugiyama et al. [32] to rearrange the matrices, starting
with the first, flipping rows/columns of the matrices as required. We
then perform the same rearrangement of matrices starting from the
last. This is repeated until the number of line crossings is mini-
mized, or a set number of iterations is reached. In our implementa-
tion we iterate up to ten times. This process creates a layout with
minimum line crossings between event nodes as shown in Fig. 4(b).

Following this we remove all dummy nodes from the layout
(Fig. 4(c)) before modifying the matrices to include entity connec-
tions between event nodes. We repeat the process of rearranging
matrices to re-order the entities. This further reduces line crossings
between entity lines. Fig. 4(d) shows the layout created at the end
of this step. Event are represented as clusters of nodes along the
y-axis and colored lines trace the path of entities between nodes.

A final layout is then created using the rearranged matrices as a
list of event nodes. Each node in the layout list contains an (x,y) lo-
cation, entity name, an event tag, an event label, and a list of target
nodes, where a target node is a node for an event that occurs after
the current node and is connected to the current node. This lay-
out list is used in the final stage to visualize the narrative timelines
created from the event nodes.

The time complexity of the algorithm we are using for rearrang-
ing matrices is O(|V | · |E|) [12] where V is the number of nodes
in the graph being optimized, and E is the number of edges in that
graph. Creating the final layout list from the rearranged matrices
requires examining every element in each matrix to identify links
in the final layout. This also has a time complexity of O(|V | · |E|).
The overall time complexity for generating the final layout for a
timeline, then, is O(|V | · |E|)+O(|V | · |E|) = O(|V | · |E|)

Each iteration of the planning, layout, and ordering stages gen-
erates one narrative timeline. The output of each iteration is com-
pared against output from previous iterations to ensure that we store
unique timelines only. To compare the output of an iteration with
previous iterations, we compare their event lists. If two layout lists

5

Online Submission ID: 1020

have the same list of event nodes with the same entities and target
nodes, they are identical. This process is repeated until we generate
all possible timelines in the narrative.

4.4 Visualization

Once we have iteratively identified all narrative timelines, we pass
the layout lists to the final stage in our pipeline to create a visual-
ization using D3.js [2]. We first draw event nodes at the locations
specified in the layout list, then draw lines from the nodes to all their
target nodes to indicate participation of the entity in both events.
Lines for each entity are colored uniquely, with the same color used
for their event nodes and event labels.

When creating the visualization, one layout list is identified as
the reality timeline and is drawn automatically. The diegetic time-
lines are drawn on-demand by selecting from a drop-down menu
(Fig. 1). At any point the user can choose to draw either a real-
ity timeline, a diegetic timeline, or both. This not only visualizes
each timeline independently, but also enables a visual comparison
of timelines. Any timeline can be chosen to represent the reality
timeline, using the drop-down menu in the interface, automatically
categorizing other timelines as diegetic. When visualizing only the
reality timeline, we depict entity links using solid lines at 100%
opacity. When visualizing only the diegetic timelines, we depict en-
tity links using dashed lines at 100% opacity. When both reality and
diegetic timelines are visualized, we depict entity links from the re-
ality timeline using solid lines at 50% opacity, and overlay the entity
links from the diegetic timeline using dashed lines at 100% opacity.
This allows us to efficiently visualize and compare both timelines
simultaneously. More than two timelines could be visualized but
only at the expense of additional visual clutter and line crossings.

5 EXAMPLES

In this section we show how our system can be used to visualize and
compare multiple narrative timelines, first, in a choice-based role
playing video game, and second, in a fictional narrative scenario.

5.1 Example: Witcher

For our first example we use a narrative adapted from the video
game Witcher 2 to show the capabilities of Yarn.

In our example narrative, the hero, Geralt of Rivia needs to res-
cue his friend, Triss Merigold, who has mysteriously disappeared.
On his journey to find her he must first determine where she was
seen last, talk to multiple friends, and resolve a conflict between a
troll couple before he can meet her.

There are two choice points in this narrative: first, Margot can ei-
ther choose to help Geralt or refuse to provide help; second, the troll
couple can either accept or reject Geralt’s solution to their conflict.
Each of these choices affects the outcome of the narrative creating
three possible timelines.

The first timeline contains events favorable to Geralt. In this
timeline, Margot agrees to help Geralt and the troll couple accept
Geralt’s solution leading him to find Triss. Fig. 5 shows a visualiza-
tion of this outcome as the reality timeline for our narrative. We can
see that Geralt was able to successfully track Triss’s last known lo-
cation, gather information from friends, resolve a conflict between
the trolls, and meet Triss. Note that in this visualization we are
showing the default, reality timeline and all links are drawn with
100% opacity. We can also observe all single-entity events in the
narrative in this visualization.

In the second timeline, the trolls reject Geralt’s solution to their
conflict. Fig. 6 shows a visualization of this unfavorable outcome
as diegetic timeline overlaid on top of the reality timeline. While
most of the events are same in both timelines, the diegetic timeline
ends at the event “Speak to She-Troll.” The reduced opacity of the
reality timeline allows the user to compare common sections of the
two timelines, even when one of them is smaller than the other.

Table 1: Average execution time for the planning, and layout and
ordering stages for timelines of various lengths.

Timelines Average Time (s)

Narrative Events Nodes Number Planning Layout

4 6 1 1.8169 0.0048

Witcher 7 12 1 6.4473 0.0051

8 14 1 6.5692 0.0059

Friends 9 13 18 1.3614 0.0055

10 15 6 1.7737 0.0062

In the third timeline, Margot refuses to help Geralt preventing
him from progressing further on his quest. This is the shortest time-
line in our narrative.

5.2 Example: Friends

For our second example we use a fictional narrative scenario based
on the popular sitcom Friends.

In this narrative, Ross’s plan is to take Rachel on a date. To do
so, he must acquire more information about her, find some way of
talking to her, ensure she is positively disposed towards him, and
eventually ask her out. He can acquire more information about her
in a number of ways including calling her mother, or asking Phoebe
about her by either call or text. To ensure she is in a positive mood,
he can either give her a gift or say nice things to her, and finally he
can either ask her out himself or ask for Phoebe’s help. To illustrate
causality of events in the narrative timeline, we have set up the oper-
ator functions for Rachel such that she is more inclined to say yes to
Ross if he talks to her mother rather than requesting Phoebe’s help.
Additionally, Rachel’s probability of accepting Ross’s proposal is
also dependent on how impressed she is by him when he asks her.

There are four choice points in this narrative: three for Ross, and
one for Rachel. The choices made by Ross create 12 alternate time-
lines, each illustrating a different way in which he can ask Rachel
out. Towards the end of each timeline Rachel can decide to either
reply yes to Ross, or reply no, creating a total of 24 timelines.

Fig. 7 shows a visualization where Rachel agrees to go out with
Ross in both timelines. While the timelines result in the same out-
come, and visually look the same, we can inspect the labels on top
of the events in Ross’s timeline to identify the differences. Lighter
labels correspond to the reality timeline, while darker labels cor-
respond to the diegetic timeline. In the reality timeline, Ross de-
cided to give a gift to Rachel after talking to her mom, while in the
diegetic timeline he decided to act friendly with her.

Fig. 8 shows another visualization for the same narrative. In this
example we can see the effect of causal conditions set in the opera-
tor functions for Rachel. In the reality timeline, Rachel decided not
to go out with Ross because he asked Phoebe for help by messaging
her. On the other hand, she agreed to go out with him in the diegetic
timeline because in this case Ross decided to talk to her mother.

5.3 Runtime Performance

Table 1 shows time required to execute Yarn on each of our example
narratives. Since the timeline generation phase (Fig. 3) is computa-
tionally the most expensive phase in Yarn’s pipeline, we only record
the runtime for this phase. We ran our tests on a Macbook Pro with
Intel Core i7-4850HQ CPU (2.3 GHz) and 16GB of RAM. Each ex-
ample narrative was constructed and visualized five times, and the
execution times were averaged to produce the results shown.

For each narrative, we calculate the average execution time for
generating a timeline of a specific length. While each of the
three Witcher timelines are of different lengths, 18 timelines in the
Friends narrative consist of 13 entity nodes, and 6 timelines consist
of 15 nodes. From the results, we can observe that as the number of
nodes in each timeline increases, the time required to compute the
layout also increases, as expected.

6

Online Submission ID: 1020

Figure 5: Visualization of Witcher narrative using Yarn, depicting the favorable outcome as the reality timeline.

Figure 6: Visualization of Witcher narrative using Yarn, depicting the favorable outcome as the reality timeline, and the unfavorable outcome as
the diegetic timeline. Note the diegetic timeline represented using dashed lines overlaid on reality timeline in 50% opacity.

Figure 7: Visualization of Friends narrative using Yarn where Rachel agrees to go out with Ross in both reality timeline as well as the diegetic
timeline.

Figure 8: Visualization of Friends narrative using Yarn where Rachel agrees to go out with Ross in the diegetic timeline but not the reality timeline.

7

Online Submission ID: 1020

From Table 1 we can also see that while the time required for
planning increases with the number of nodes in the timeline, it is in-
fluenced heavily by the narrative structure. If an action in an HTN
requires the output of an action in another HTN as a pre-requisite,
the planning for the first HTN is suspended until the pre-requisite is
satisfied. Although this preserves the chronological order of events
in the timeline, it increases the runtime because fewer plans can be
generated concurrently. The Witcher timelines, individually, take
longer to execute because most actions in Geralt’s HTN serve as
pre-requisites for other entities. Also, they have slightly more fab-
ula elements in the narrative state map than the Friends narrative,
making it slightly more expensive to execute each action.

Overall, execution takes ∼1.4 seconds per timeline in the Friends
narrative and ∼5 seconds per timeline in the Witcher narrative.
Based on times reported by Liu et al. [19], our system runs
significantly faster than the original work of Tanahashi and Ma
(∼150 seconds per timeline), and somewhat slower than Liu et al.
(∼0.16 seconds per timeline).

6 CONCLUSIONS AND FUTURE WORK

We have presented Yarn, a new system for automatic narrative con-
struction and visualization. Through iterative application of HTN
planning we generate all possible timelines in a narrative. These
timelines are visualized using a storyline-like technique to make it
easier for a user to summarize the events in the narrative. We also
support visual comparison of pairs of narrative timelines.

While we have illustrated the usefulness of Yarn using example
narratives from a choice-based video game and a fictional situation
in a sitcom, Yarn can visualize other types of temporal relationships
with one or more timelines, such as simulation results, news stories,
historical events, and so on. As part of our future work we would
like to demonstrate the application of Yarn for visualizing news sto-
ries in a document corpus, non-linear narratives with flashbacks and
flash forwards, and evaluate the performance of Yarn when visual-
izing large narratives such as those with a few dozen entities and
hundreds of timelines.

Currently Yarn generates all possible timelines in the narrative
before it visualizes them. This could limit its scalability in scenar-
ios with hundreds of timelines. We would like to improve Yarn’s
pipeline to make the visualization of a timeline available as soon as
its layout is ready. Finally, we would like to extend Yarn to support
visualization of streaming/evolving narratives.

REFERENCES

[1] N. Avradinis, R. Aylett, and T. Panayiotopoulos. Using motivation-

driven continuous planning to control the behaviour of virtual agents.

In Virtual Storytelling. Using Virtual RealityTechnologies for Story-

telling, pp. 159–162. Springer, 2003.

[2] M. Bostock, O. Ogievetsky, and J. Heer. D3 data driven documents.

TVCG, 17(12):2301–2309, 2011.

[3] E. Branigan. Narrative Comprehension and Film. Sightlines. Rout-

ledge, 2013.

[4] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel

edge splatting for scalable dynamic graph visualization. IEEE Trans-

actions on Visualization and Computer Graphics, 17(12):2344–2353,

2011.

[5] M. Cavazza, F. Charles, and S. J. Mead. Interacting with virtual char-

acters in interactive storytelling. In Proceedings of the first interna-

tional joint conference on Autonomous agents and multiagent systems:

part 1, pp. 318–325. ACM, 2002.

[6] M. Cavazza, F. Charles, and S. J. Mead. Planning characters’ be-

haviour in interactive storytelling. The Journal of Visualization and

Computer Animation, 13(2):121–131, 2002.

[7] S. B. Chatman. Story and discourse: Narrative structure in fiction and

film. Cornell University Press, 1980.

[8] Y.-G. Cheong and R. M. Young. Suspenser: A story generation sys-

tem for suspense. Computational Intelligence and AI in Games, IEEE

Transactions on, 7(1):39–52, 2015.

[9] D. K. Elson and K. R. McKeown. A platform for symbolically encod-

ing human narratives. In AAAI Fall Symposium on Intelligent Narra-

tive Technologies, 2007.

[10] K. Erol, J. Hendler, D. S. Nau, and R. Tsuneto. A critical look at

critics in htn planning. In In Proc. IJCAI-95. Citeseer, 1995.

[11] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the appli-

cation of theorem proving to problem solving. Artificial intelligence,

2(3):189–208, 1972.

[12] A. Frick. Upper bounds on the number of hidden nodes in Sugiyama’s

algorithm, pp. 169–183. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 1997. doi: 10.1007/3-540-62495-3 46

[13] Y. Frishman and A. Tal. Online dynamic graph drawing. IEEE

Transactions on Visualization and Computer Graphics, 14(4):727–

740, 2008.

[14] D. Herman, J. Phelan, P. J. Rabinowitz, B. Richardson, and R. Warhol.

Narrative Theory: Core Concepts and Critical Debates. Ohio State

University Press, 2012.

[15] J. Hullman and N. Diakopoulos. Visualization rhetoric: Framing ef-

fects in narrative visualization. IEEE transactions on visualization

and computer graphics, 17(12):2231–2240, 2011.

[16] M. Jensen. Visualizing complex semantic timelines. Derived from the

World Wide Web: http://newsblip. com/tr, 2003.

[17] S. Kambhampati and J. A. Hendler. A validation-structure-based the-

ory of plan modification and reuse. Artificial Intelligence, 55(2):193–

258, 1992.

[18] B. Lee, N. H. Riche, P. Isenberg, and S. Carpendale. More than telling

a story: Transforming data into visually shared stories. IEEE com-

puter graphics and applications, 35(5):84–90, 2015.

[19] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu. Storyflow: Tracking the

evolution of stories. IEEE Transactions on Visualization and Com-

puter Graphics, 19(12):2436–2445, Dec. 2013. doi: 10.1109/TVCG.

2013.196

[20] B. Magerko, J. Laird, M. Assanie, A. Kerfoot, and D. Stokes. AI

characters and directors for interactive computer games. Ann Arbor,

1001(48):109–2110, 2004.

[21] J. Meehan. Tale-Spin, an interactive program that writes stories. In

Proceedings of the Fifth International Joint Conference on Artificial

Intelligence, pp. 91–98, 1977.

[22] R. Munroe. Xkcd# 657: Movie narrative charts, 2009.

[23] M. Ogawa and K.-L. Ma. Software evolution storylines. In Proceed-

ings of the 5th International Symposium on Software Visualization,

SOFTVIS ’10, pp. 35–42. ACM, New York, NY, USA, 2010. doi: 10.

1145/1879211.1879219

[24] V. Ogievetsky. Plotweaver xkcd/657 creation tool, 2009.

[25] R. Pérez y Pérez. MEXICA: A Computer Model of Creativity in Writ-

ing. PhD thesis, The University of Sussex, Falmer, UK, 1999.

[26] V. Propp. Morphology of the Folktale. University of Texas Press,

1968.

[27] M. Riedl. Narrative Planning: Balancing Plot and Character. PhD

thesis, North Carolina State University, Raleigh, NC, 2004.

[28] M. O. Riedl and R. M. Young. An intent-driven planner for multi-

agent story generation. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems-Volume 1,

pp. 186–193. IEEE Computer Society, 2004.

[29] S. Rimmon-Kenan. Narrative fiction: Contemporary poetics. Rout-

ledge, 2003.

[30] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. Effec-

tiveness of animation in trend visualization. IEEE Transactions on

Visualization and Computer Graphics, 14(6), 2008.

[31] E. Segel and J. Heer. Narrative visualization: Telling stories with

data. IEEE transactions on visualization and computer graphics,

16(6):1139–1148, 2010.

[32] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understand-

ing of hierarchical system structures. Systems, Man and Cybernetics,

IEEE Transactions on, 11(2):109–125, Feb 1981. doi: 10.1109/TSMC

.1981.4308636

[33] Y. Tanahashi, C.-H. Hsueh, and K.-L. Ma. An efficient framework for

8

Online Submission ID: 1020

generating storyline visualizations from streaming data. IEEE transac-

tions on visualization and computer graphics, 21(6):730–742, 2015.

[34] Y. Tanahashi and K.-L. Ma. Design considerations for optimizing

storyline visualizations. Visualization and Computer Graphics, IEEE

Transactions on, 18(12):2679–2688, Dec 2012. doi: 10.1109/TVCG.

2012.212

[35] R. Thawonmas, K. Tanaka, and H. Hassaku. Extended hierarchical

task network planning for interactive comedy. In Intelligent Agents

and Multi-Agent Systems, pp. 205–213. Springer, 2003.

[36] M. Theune, E. Faas, A. Nijholt, and D. Heylen. The virtual storyteller:

Story creation by intelligent agents. In Proceedings of the Technolo-

gies for Interactive Digital Storytelling and Entertainment, pp. 204–

215. Springer, Berlin, 2003.

[37] S. R. Turner. Minstrel: A Computer Model of Creativity and Story-

telling. PhD thesis, University of California at Los Angeles, Los An-

geles, CA, 1993.

[38] J. Waser, R. Fuchs, H. Ribicic, B. Schindler, G. Bloschl, and E. Groller.

World lines. IEEE transactions on visualization and computer graph-

ics, 16(6):1458–1467, 2010.

9

	Introduction
	Related Work
	Automated Narrative Construction
	Visualizing Narratives

	Yarn Overview
	Narrative Generation and Visualization
	HTN Generation
	Planning
	Layout and Ordering
	Visualization

	Examples
	Example: Witcher
	Example: Friends
	Runtime Performance

	Conclusions and Future Work

