
Interest in visualization has grown in recent years,
producing rapid advances in the diversity of research

and in the scope of proposed techniques. Much of the
initial focus in computer-based visualization concen-
trated on display algorithms, often for specific domains.
For example, volume, flow, and terrain visualization
techniques have generated significant insights into fun-
damental graphics and visualization theory, aiding the
application experts who use these techniques to
advance their own research. More recent work has
extended visualization to abstract data sets like network
intrusion detection, recommender systems, and data-
base query results.

Although display algorithms are a critical component
in the visualization process, they are not the only issue
to consider. More and more, we see visualization as a
path from data to understanding. From this perspective,
two obvious questions arise:

■ What should we do before we display the data? 
■ What can we do after the user views the data?

This is not a new idea, of course. Our work is moti-
vated by others in the community, including methods
to integrate data management into visualization, meta-
data generation and management, techniques to pre-
process data to extract and display critical details, and
intelligent systems that help users design effective visu-

alizations. This article describes our initial end-to-end
system that starts with data management and contin-
ues through assisted visualization design, display, nav-
igation, and user interaction (see Figure 1). The
purposes of this discussion are to

■ promote a more comprehensive visualization frame-
work;

■ describe how to apply expertise from human psy-
chophysics, databases, rational logic, and artificial
intelligence to visualization; and

■ illustrate the benefits of a more complete framework
using examples from our own experiences.

The goal of this article is not to advocate our particu-
lar framework or its components over existing systems
(such as SCIRun, GraphViz, or vtk). The examples we
describe could be modified or extended within the
framework, or replaced entirely with methods better
designed to handle specific data of interest to a user.
What we are proposing is that promising techniques
beyond the display of information be studied in the con-
text of visualization.

Data management
Visualization begins by considering the data and the

tasks users want to perform on the data. The need to man-
age raw data prior to visualization is recognized as an
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Raw data
User tasks

Data set management
• mesh simplification
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• summarization

Visualization  assistant
• mixed-initiative search
• perceptual evaluation

Display  algorithms
• multidimensional glyphs
• perceptual dot patterns
• nonphotorealistic visualization

Interaction
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• navigation
• preferences

User feedback

Z3

Z1= 
  z1,1 A1 + ... + z1,n An

Z2

u

v
w

êi

êi′= êi + (u, v, w)T

1 One possible visualization framework, including data set management, assisted visualization design, display, and interaction.



important problem. Even the most sophisticated display
technique can be overwhelmed by a sufficiently large data
set. Researchers might need basic data structures, data-
base management, and even optimized networking pro-
tocols, for example, in situations where the data set will
not fit in main memory. Properties of real-world data like
missing values, noise, uncertainty, and duplicates often
exist and must also be handled efficiently.1

Initial suggestions for managing data included the
use of consistent data models like the Common Data
Format, Hierarchical Data Format, ArcInfo shape files,
and so on. Using this approach would let us store, query,
and filter data using a common library of routines prior
to visualization. Researchers proposed different meth-
ods for performing these operations, including direct-
ed graphs where edges represent data flow and nodes
represent data processing, and spreadsheet-based sys-
tems that apply different operators to the data. A sepa-
rate set of investigations studied ways to combine
relational database engines and visualization systems
(such as Tioga-22). This allowed users to harness the
storage and query power of a relational database dur-
ing visualization.

We are conducting numerous studies to try to man-
age data prior to visualization. One project uses data
mining classification algorithms to compress a data set.1

These algorithms analyze a training set to build rules
that subdivide multidimensional data elements into dif-
ferent categories. The algorithms can then apply the
rules to assign membership to unclassified elements.
Users can select subsets of the data by category to reduce
the number of elements to visualize. The rules can also
help compress dimensionality, for example, by identi-
fying and combining dependent attributes into a single
composite value. Experimental results show that dif-
ferent classification algorithms perform differently in
the presence of errors, incomplete information, and
noise in the training set. These findings act as guidelines
to indicate when data mining classification might help,
and to identify which algorithms are best-suited to the
particular type of data being analyzed.

A separate investigation is studying the use of feature-
preserving mesh simplification for data compression.3

Multidimensional data is converted into a triangular
mesh where each vertex corresponds to a data element.
Attribute values are encoded as surface features stored
at each vertex. The system can then apply feature-pre-
serving simplification algorithms to reduce the mesh’s
size. Spatial regions with little variation in their attribute
values reduce to a few vertices, or data elements. Areas
with high variation remain intact (see Figure 2). 

Results from a multidimensional weather data set
showed that we could reduce the number of elements by
90 percent or more, while still guaranteeing less than a 1
percent error in the reconstructed results. Our data man-
agement technique is independent of the particular sim-
plification algorithm we used. This means that we can take
advantage of improved algorithms as they are proposed.

Assisted visualization design
Constructing effective visualizations is nontrivial,

even for visualization experts. We must consider the

data to be visualized, the user’s analysis tasks, and the
strengths and limitations of different display techniques
to arrive at a satisfactory result. Moreover, we often
want to build multiple visualizations for a given data set
because seeing the data from different perspectives can
highlight different aspects of its structure. We can ease
this burden by building a system that helps both design-
ers and users construct effective visualizations.

Researchers have proposed different ways to choose
visualizations automatically or semiautomatically, for
example, rule-based colormap selection4 or design gal-
leries.5 Our current solution to this problem is a mixed-
initiative software tool called ViA (short for Visuali-
zation Assistant).6 ViA uses rules of perception derived
from psychophysical experiments to build visualizations
that map individual data attributes to different visual
features (for example, hue, luminance, or size). This
data-feature mapping can then be applied to visualize
multidimensional data elements.

ViA uses artificial intelligence search algorithms to
rapidly identify high-quality data-feature mappings. It
designs and evaluates each mapping based on

■ data characteristics like attribute domain (continu-
ous or discrete, ordinal or nominal) and spatial fre-
quency;

■ viewer characteristics like the relative importance of
each attribute and the basic analysis tasks to be per-
formed on the different attributes; and

■ guidelines from human perception that define how
we perceive different properties of color, texture, and
motion in a visualization display.

The first two constraints represent application-inde-
pendent input about the data and the viewer’s analysis
needs. The third constraint ensures that the resulting
visualizations are perceptually sound.
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2 Multidimensional weather data over Europe and Asia reduced with our
feature-preserving simplification system. In this example we are applying
Hoppe’s quadric mesh simplification algorithm. Color represents tempera-
ture (blue for cold to red for hot), size represents pressure (larger for high-
er), and orientation represents precipitation (vertical for light to horizontal
for heavy). Dense glyph regions show areas with rapid spatial variation in
attribute or terrain values, sparse regions show areas of slow variation.



Researchers are compiling a large body of knowledge
on how the low-level human visual system sees basic
image features. These include properties of color like
hue and luminance; properties of texture like size, ori-
entation, and density; and properties of motion like
flicker, direction, and velocity.7 Results come from
numerous disciplines including cognitive psychology,
computer vision, and visualization.

We use controlled experiments to study these fea-
tures, first in isolation to determine their fundamental
ability to encode information, and then in combination
to identify visual interference patterns. Results form
guidelines for each feature, including the type of data
and tasks it can best support, its perceptual salience rel-
ative to other features, and so on.

ViA stores each feature’s strengths and weaknesses in
an evaluation engine. A data-feature mapping is decom-

posed into a set of data attribute-to-feature pairs (one
attribute mapped to hue, one attribute mapped to size,
and so on). Each evaluation engine can then determine
how well its visual feature supports the particular
attribute it maps to, returning a normalized evaluation
weight to summarize the analysis. For poor pairings, an
engine will also suggest hints on how its attribute could
be better visualized.

ViA’s search algorithm collects results for each
attribute-feature pair in a data-feature mapping.
Nonconflicting hints are chained together to produce
strategies on how to improve the current mapping. The
algorithm assigns each chain an expected improvement
weight, then places the chain on a priority queue. The
chain with the highest weight is removed from the queue
and applied to produce a new mapping. This mapping is
similarly evaluated. Prioritized hint chains let ViA restrict
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Success Stories
A critical step in our visualization design is the

application of a technique to real data. We have
collaborated with colleagues from areas like
oceanography, e-commerce, aviation, and
astrophysics. Results range from anecdotal reports
to statistical analyses of different performance
metrics during controlled validation experiments.
We briefly highlight two examples.

Salmon migration simulations
Marine biologists at the University of British

Columbia are studying the movement, feeding
patterns, and migration routes of salmon in the
northern Pacific Ocean. Salmon begin their life as
fry in freshwater streams and tributaries, spending
approximately one year feeding before swimming
downstream to the ocean. They spend two to four
years in the ocean, then return back to their exact
location of birth to spawn and die. Salmon use
smell to identify which rivers and tributaries to
follow to return to their spawning grounds. What
they do in the open ocean is less clear, however.
Temperature, salinity, currents, and the availability
of plankton food sources impact where the fish are
located. Readings for these properties are critical

when designing and testing migration models.
We can derive ocean temperatures and current

directions from satellite images. Plankton densities
are more difficult to obtain. The normal method for
recording plankton counts is through physical probes
set from ships. This makes it difficult to cover the
entire region of interest, particularly during winter
months when conditions are dangerous over much
of the northern Pacific Ocean. Previously, scientists
used bilinear interpolation of known plankton
densities to estimate missing values. Unfortunately,
this often produces poor results, particularly for
months where few known values are available. 

We applied our data mining algorithms to
estimate unknown plankton densities. Locations
with known values formed a training set with
independent variables of month, year, latitude,
longitude, sea surface temperature (SST), current
direction, current strength, and classification-
variable plankton density. Based on feedback from
our biology colleagues, we discretized continuous
values into interval ranges.

Our data mining algorithms identified month as
the most important classification attribute, followed
by current strength and SST. The other attributes
were not significant to determining plankton density.

The biologists concurred with these results;
plankton densities display a seasonal
variability, large current upwellings produce
larger plankton blooms and higher ocean
temperatures cause faster plankton
production and higher densities. The
classification rules allowed us to use a
sample point’s month, current strength, and
SST to estimate a plankton density range.
We fed these results into our perceptual
visualization system to display real and
estimated plankton densities, current
strengths, and SSTs for any month and year
of interest (see Figure A). Experimental
validation and domain expert feedback

A Visualization of ocean conditions for February 1956. Color 
represents plankton density (blue, green, brown, red, and
purple for lowest to highest), height represents current
strength, and density represents the sea surface temperature.



its search to paths that have the highest probability of
producing better mappings. Search continues until a pre-
defined stopping condition, at which time the top k map-
pings are presented. Viewers can select from the different
mappings to visualize their data in different ways. They
can modify the input conditions and ask ViA to continue
searching. Viewers can also lock attribute-feature pairs
in a mapping, then ask ViA to identify new results based
on these additional constraints. This lets viewers collab-
orate with ViA to iterate a final set of high-quality, per-
ceptually salient visualizations.

Display
Display algorithms for visualization is an area of sig-

nificant research (a comprehensive overview of visual-
ization display techniques is beyond the scope of this
article; see elsewhere7 for more information). The meth-

ods studied in our group are based on perception, either
through suggestions from ViA or from other models of
how we perceive visual information. The resulting visu-
alizations are optimized for a user’s data and tasks. They
also harness the capabilities of a low-level visual system
to guarantee rapid and accurate visual analysis. Data
exploration tasks can usually be completed in 200 mil-
liseconds per image or less. We present three separate
examples to demonstrate how we are applying this
knowledge to construct effective visualizations.

The first technique is common in visualization: the use
of multidimensional glyphs—simple 2D or 3D geometric
objects that can vary their visual appearance to encode
information. The visual features our glyphs support are
exactly the ones that we have studied during our psy-
chophysical experiments:  properties of color, texture,
and motion. For example, a square patch (a 2D glyph)
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confirmed that the data mining classification
produced better results than bilinear interpolation.
Salmon migration patterns simulated with the new
plankton fields were more accurate when compared
to historical records of migration distributions across
different approaches to the river entrance.

E-commerce auction agents
Researchers in artificial intelligence and e-

commerce are designing intelligent agents capable
of purchasing items for a human client through
online auctions. To bid effectively against human
and software competitors, an agent must adapt to
the specific rules that characterize different auctions.

The University of Michigan runs the Trading
Agent Competition (TAC), a simulated auction
environment that lets agents test their strategies
and compete against one another. Each agent is
tasked with building vacation packages of airline
tickets, hotel rooms, and entertainment tickets.
Different auctions have different rules. Airline
auctions have an unlimited number of seats for
each day, with prices fluctuating randomly. Hotel
auctions have a fixed number of rooms for each
day. The daily room price is set in a Dutch
auction fashion, where all winning bids pay the
lowest winning price. Hotel auctions close early
if a predetermined period of inactivity occurs.
Each agent is allocated a random selection of
entertainment tickets. Agents trade with one
another in stock market-type auctions to secure
the entertainment tickets they need.

We used ViA to search for TAC visualizations.
We chose x-position for a bid’s time, y-position
for its auction, color for the agent ID, height for
price, and width for quantity. A simulation forms
a rectangular grid of cells, with rows for different
auctions and columns for individual time steps.
Rectangular towers within a cell visualize a bid
made in the given auction at the given time,
with the tower’s color, height, and width

defining the agent making the bid, bid price, and
bid quantity (see Figure B). The visualization can run
in real time as the simulation unfolds, or it can be
used to postprocess simulation logs.

Each year an online competition is held to
identify the top TAC agents, who then compete at
an annual conference. Our visualizations were first
used during TAC competitions at the 4th
International Conference on Multi-Agent Systems
(ICMAS 2000). Although researchers were already
graphing activity and analyzing simulation logs, we
immediately highlighted a number of new insights
into agents’ strategies. Most agents deferred
purchasing airline and hotel tickets until the end of
the simulation, implying there is no advantage to
an early purchase. Agents ping hotel auctions with
low-cost bids to keep them alive. Finally, some
agents took advantage of the Dutch auction nature
of hotel auctions to bid in ways that guaranteed
securing hotel rooms, but with a high probability of
paying much less than their actual bid price. We
continue to update our visualizations for new
auction types being run through the TAC.

Hotel/airline activity

Penalty/cost tradeoff bids“Stay alive” bids

B Visualizing e-commerce agent activity: x-axis 
represents the time, y-axis represents the auction, color
represents the agent ID, height represents the price, and
width represents the quantity.



can change its hue, luminance, size, orientation, and posi-
tion. It can flicker on or off and move with a particular
direction and velocity. The spatial density of patches can
vary throughout the display. We have used this technique
to visualize both physical and abstract data( for example,
the weather conditions shown in Figure 3). Another sys-
tem animates glyphs to visualize correspondence
between queries on an underlying database (for exam-
ple, movie suggestions from the MovieLens recommender
system, third image in Figure 1).

A second algorithm uses our perception of orienta-
tion to visualize 2D flow fields. A small collection of dots
is seeded throughout the flow field. The dots are care-
fully positioned so that their locations relative to one
another generate perceived orientations that match the
flow directions in the flow field (see Figure 4). Ken
Stevens proposed the model that positioned the dots.8

He hypothesized that for any target dot, the dominant
orientation formed from pairs of neighboring dots will
be the orientation perceived at the target dot. Stevens
conducted experiments and designed a software system
to validate his ideas. Our visualization algorithm revers-
es this process. Rather than determining the perceived
orientations for a fixed dot pattern, we generate a col-
lection of dots to produce a set of orientations that
match an underlying flow field.

A third technique, motivated by nonphotorealism in
computer graphics, involves building aesthetic visual-
izations.9 We wanted to determine whether aesthetic
representations improve a visualization’s effectiveness.
Our interest is based in part on investigations of orien-
tation and engagement in human perception.
Orientation automatically attracts a viewer’s focus of
attention to a particular location in an image. Guidelines
on the use of low-level vision can help to control orien-
tation, allowing us to direct a viewer’s gaze to important
areas in a visualization. Following orientation, a view-
er’s attention can engage at a location, examining vari-

ous details of the image in more depth. We hypothesize
that an aesthetic representation will increase engage-
ment, encouraging the viewer to remain at the chosen
focus of attention. This might increase the amount of
detail viewers are able to remember and recall.

We designed a simple correspondence model to
match visual features in a glyph-based visualization to
brushstroke properties in a nonphotorealistic image.
This allows us to use a data-feature mapping to render
a set of brushstrokes that produce a painting of the data
elements stored in a multidimensional data set (see
Figure 3). We are conducting experiments to identify
the emotional and compositional image properties that
affect aesthetic judgment. We can then investigate
whether we can vary these properties to produce per-
ceptually effective and visually appealing visualizations.

Interaction and navigation
Most visualization systems let users perform standard

types of interaction with the data as it is displayed, for
example, dynamic camera positioning and the ability to
change the data-feature mapping as the data is ren-
dered. We hope to move beyond these basic operations
so that users can collaborate with our visualization sys-
tems. This allows the computer and the user to combine
their different strengths: the computer’s ability to rapid-
ly analyze, search, apply rules, and render data, and the
user’s ability to interpret patterns and relationships,
understand external details about the data being stud-
ied, and apply specialized domain knowledge.

Components in our framework include interfaces that
enable many default options to be changed. The indi-
vidual systems understand how to communicate with
one another to share information and results. The abil-
ity to program or script the framework has been pro-
posed as a useful option (such as in SCIRun or vtk), and
one that we plan to study further.

A related issue is the need to include application con-
text in a visualization. ViA tries to support this by allow-
ing a user to lock subsets of a data-feature mapping. For
example, the user could tell ViA, “In our visualizations
this attribute must be displayed with color.” ViA will
search for visualizations that satisfy the user’s con-
straints. ViA can also identify what penalties, if any, are
incurred by reporting differences in evaluation weights
between the best mappings both with and without the
constraints. This lets users make an informed decision
about how they want to proceed.

When visualizing a large data set, we can often dis-
play only a small fraction of its content in detail. This
problem is the focus of significant research in informa-
tion visualization. Researchers have proposed many
powerful methods to display both a high-level overview
and low-level detail simultaneously. Examples include
focus+context and overview+detail algorithms like the
fisheye lens or the hyperbolic tree, and hierarchical
level-of-detail techniques like treemaps. Our own dot-
based flow visualization algorithm uses a hierarchical
level-of-detail decomposition to visualize flow fields that
are too large to fit in a single screen.

Another project studies this issue in the context of
navigation.10 Users are often interested in a dynamical-
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3 Weather conditions over the eastern US visualized
with simulated paintbrush strokes. Color represents
temperature (purple/blue for cold to orange/red for
hot), density represents wind speed (denser for
stronger), orientation represents precipitation (tilted
for heavier), size represents pressure (larger for 
higher), and luminance represents clouds (brighter 
for heavier).



ly changing subset of the elements in a data set. These
elements are identified with Boolean logic rules pro-
vided by the user. Spatially neighboring elements of
interest are clustered into local groups, then connected
with a minimum-length graph. A global spanning tree
is constructed to bind the local graphs together. The
graph structure is presented in an inset map, allowing
users to decide where in the data set they want to
explore (fourth image in Figure 1). Animated camera
paths can be built and run on the local graphs and the
global spanning tree to tour through an area of interest,
or to see an overview of locations that users may want
to investigate in more detail.

Although effective, requiring users to explicitly define
the rules that identify elements of interest has its draw-
backs. It’s time consuming, and the rules are static. If a
user’s interests change during visualization, the rules
must be updated by hand to reflect these new discoveries.
It might also be difficult for a user to characterize the exact
properties of an element that make it interesting. We hope
to apply preference elicitation algorithms to augment the
user’s input by implicitly determining additional rules of
interest. Preference elicitation is an area of artificial intel-
ligence that studies how to structure and order different
scenarios based on a user’s preferences or interests.
Actions performed by the user provide evidence to order
different scenarios. Questions might be posed to the user
to clarify ambiguous situations, or to significantly improve
the current ordering. In our research, scenarios corre-
spond to different data-feature mappings (that is, differ-
ent visualizations). Possible sources of evidence include
watching where users move in the visualization, track-
ing the data-feature mappings they choose, and allow-
ing elements to be interactively selected on-screen, but
without specifying what makes the element interesting.

Future directions
Methods to compress and summarize data, to gener-

ate perceptually salient visualizations, and to navigate
within the data have helped our domain experts make
new discoveries that were not found with existing analy-
sis and display tools. The use of perceptual rules at var-
ious stages of the framework is particularly helpful for
presenting large amounts of data in ways that support
rapid and accurate comprehension.

Techniques from areas like data management, assist-
ed design, and user interaction can lead to more effec-
tive visualizations. We encourage the visualization
community to pursue research that further enhances
our knowledge and understanding of how these ideas
fit within a visualization context.

We continue to focus on preparing data for visualiza-
tion, displaying data effectively, and assisting users in
their explorations and interactions. We are currently
studying ways to mathematically compress, classify, and
summarize data prior to its visualization. We are inves-
tigating how to apply guidelines from art theory and art
history to produce better visualizations. Finally, we are
extending our visualization knowledge to new applica-
tion areas like gene and transcript exploration, analyz-
ing astronomical scans, terrain simplification, and
bioterrorism prevention. ■
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4 Visualizing flow in a simulated supernova collapse,
relative dot positions represent direction and color
represents magnitude (blue for low to red for high).


