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ABSTRACT

Effective visualization of high-likelihood regions of parameter space is severely hampered by the large
number of parameter dimensions that many models have. We present a novel technique, Optimal
Percentile Region Projection, to visualize a high-dimensional likelihood density function that enables the
viewer to understand the shape of the high-likelihood region. Optimal Percentile Region Projection has
three novel components: first, we select the region of high likelihood in the high-dimensional space
before projecting its shadow into a lower-dimensional projected space. Second, we analyze features on
the surface of the region in the projected space to select the projection direction that shows the most
interesting parameter dependencies. Finally, we use a three-dimensional projection space to show
features that are not salient in only two dimensions. The viewer can also choose sets of axes to project
along to explore subsets of the parameter space, using either the original parameter axes or principal-
component axes. The technique was evaluated by our domain-science collaborators, who found it to be
superior to their existing workflow both when there were interesting dependencies between parameters
and when there were not.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A basic question in any field of science is how to choose the
theory that best fits the evidence. Given a set of experimental
observations, how does one find the model that best fits the data?
And after choosing a model, how does one quantify the level of
confidence in that model?

This research addresses the specific case of comparing the
explanatory power of variations on a single model where those
variations can be described by a list of model parameters that can
vary continuously. In statistics, the term likelihood (£) is used to
refer to the probability of a set of parameter values given a set of
observations. The likelihood of a set of parameter values is
calculated by comparing a set of model outputs with observed
quantities.

We refer to the set of possible parameter values as parameter
space. Because the integral of finite values within a zero-radius
sphere is zero, the probability that any particular point in parameter
space is correct—even the location with maximum likelihood—is
zero. Thus, our collaborators are interested in identifying the shape
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of the high-likelihood region of parameter space, which tells them
how the parameters interact in the region of highest likelihood.

We collaborate with researchers studying galaxy formation and
relativistic particle collisions who run large ensemble simulations
to try and determine the most-likely parameter values for models
of the fundamental behavior of the universe.

The models under study by our collaborators have between
5 and 20 parameters. For the larger models, uniform sampling of
the entire parameter space with a grid fine enough to reveal
important details is not feasible given the memory sizes and
computational power available to them. Even if it were, direct
visualization of n-D results cannot be done on a 2D or 3D display
without some sort of projection. This research presents novel
visualization tools that display the shape and extent of high-
likelihood regions of parameter space. These tools make features
salient that could not be seen using previous techniques.

2. Background and related work

We first describe the background mathematics used by our
technique to project likelihood from the high-dimensional para-
meter space into a lower-dimensional visualization space, and then
describe existing techniques for doing this projection and display.
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2.1. Likelihood density function

Many problems in both the natural and social sciences now
involve large scale models characterized by numerous parameters.
These models are then often compared to experimental data sets,
which in some cases are distilled from peta-scale observations.
This results in a high-dimensional scalar field (one dimension per
parameter) that describes how likely it is that the parameters
associated with each point match experimental results. It is this
scalar field whose properties we display.

Perhaps the most common method for determining the opti-
mal values of the set X of p model parameters X1...Xp Is using
comparison to a set y of measurements ¥q...yy to calculate the
implausibility, 2, as a function of X where )(2(7) >0 describes
the “poorness” of the fit for a specific point in parameter space and
is zero for a perfect fit,

(mod)(Y) _y(aexp))z
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where ae 1...M sums over all measurements. yi™% refers to the
ath measurement computed by the model, and y&*P to the
corresponding experimental measurement. ¢, is a measure of
the uncertainty for comparing the model to the experiment, and
can come from uncertainties in the model or from expected
experiment measurement errors. As ¢, approaches zero, the
implausibility approaches infinity for model measurements that
differ at all from the experiment.

If the uncertainty involved in comparing the model to the data
is normally distributed, and if there is no prior information about
the parameters (a flat prior distribution), Bayes theorem tells us
that the likelihood that the point in parameter space could
reproduce the data is given by the likelihood density function £:

27
£(7|7)~exp{ —%} @

In some cases, one is interested in only the point of minimum
x* (maximum likelihood), but a much more appropriate goal is to
understand the entire distribution £(3 | %), so that one knows not
only the most likely point, but understands the range and
distribution of likely values of X.

2.2. Markov chain Monte-Carlo sampling

The standard method of computing marginal probability from a
likelihood density function is to use a Markov chain Monte-Carlo
(MCMC) sampling of that function. MCMC algorithms have the
property that they produce point samples whose equilibrium
spatial density is proportional to the local likelihood density. This
has proven to be an effective way to approximate integrals over
the multidimensional domain [1].

This produces a large set of points in parameter space, each of
which has an associated likelihood value, whose spatial density is
proportional to local likelihood. The point density can be used to
integrate the likelihood by counting the number of points that fall
within each bin in a spatial lattice; these counts are proportional
to the integrated likelihood within each bin. These points can be
projected into a lower-dimensional visualization space before
being binned.

Formally, let R” be the p-dimensional space of real numbers.
Let £ : RP >R be the likelihood density function over a domain
with p continuous parameters (the likelihood density at the
specified coordinate). If T: RP - R" is a projection function from
the p-dimensional parameter space to an r-dimensional subspace
with p >r, the MCMC samples can be analyzed to estimate the
integral of likelihood within the subspace. This calculation is

performed by applying T to each of the MCMC samples, and then
approximating the density in R" by binning the results.

For the likelihood density functions that we received from our
collaborators, a few million samples were enough to approach the
equilibrium distribution with a resolution finer than the scale of
the features of interest.

2.3. Related work

There are a number of existing dimension-reduction techni-
ques including projection-based methods, dimension selection,
stress-based optimization methods, multidimensional scaling and
others [2]. Experimental comparison among several techniques is
provided in [3]. We present these techniques below and show how
our approach builds on and extends them to address our
collaborators' needs.

2.4. Orthographic all-point projections

The left side of Fig. 1 shows two standard projections: histo-
grams and the scatter-plot matrix.

One example of such a projection function is T(X) = (x;). The
output values of this projection are plotted in a histogram that
shows the relative likelihood of each value of the ith parameter.

Another example of a projection function is T(Y):(xi,xj),
which will produce a scatter plot matrix when all combinations
of i#j are considered. When the number of points is large, the
scatter plots can be replaced with density plots to avoid over-
plotting, as is done in Fig. 1.

A limitation of such projections that send all points into the
subspace, integrating the likelihood during projection, is that they
provide only independent statistical information about the pro-
jected parameters and lose information about how the parameters
are related to each other in the original space. To demonstrate this,
consider the H function shown in Fig. 2,

exp{ —x}}exp( — (27mx; exp{ —x3})*}
if |x1] < \/-7?

H(x1,x2) = 0

if %11 > V7,

a two-dimensional function with a clear maximum at (0, 0) in the
original 2D space. When projected onto the x;-axis, each value of
the x; parameter within the range [—./7, /7] has equal prob-
ability:

Hproj.(xl) = / H(XLXZ) dX2

1 .
_ m if |X1|S\/}E
0 if |X1|>ﬁ

If one is only interested in the possible values of x;, indepen-
dently of x,, then this projection will effectively answer that
question. However, our collaborators are also interested in under-
standing which combinations of model parameters are most likely.
That is, we are tasked with communicating facts about the original
function in its original domain, using a representation in a
projected space.

This problem can also occur in 2D projections of higher-
dimensional objects. Some relationships between parameters are
much easier to discern in 3D than in 2D projections. For example,
the cup function in Fig. 1,

C(x1,%2,X3) = eXP{ — X3 — X3 — X3 —100(x3 +X3 —x3)*},
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Fig. 2. z=H(x.y).

has a maximum region that looks like a cup or bowl. If we project
and plot the samples in a scatterplot matrix, we do not see the cup
shape, only a crescent. Seeing this shape requires a 3D (rather than
2D) projection.

Of course, this problem continues all the way up to the
dimension of the original space. However, with each increase in
display dimension, the viewer can immediately see more complex
dependencies among parameters.

These examples hint at the information lost when projecting all
points from high-dimensional spaces down to a 2D space and
displaying the scatter-plot matrix of all pairs. After using such
plots, our collaborators asked explicitly for help with the issue of
locating “banana shapes” in high dimension caused by unexpected
dependencies among parameters. After several rounds of discus-
sions and exploration of potential mathematical descriptions for a
“banana shape”, we developed the approach described here.

2.5. Other projection approaches

One possible approach is to perform n-dimensional clustering to
identify regions of high probability points in n-D space, assuming the
standard issues with this type of clustering could be overcome (e.g. all
points are far form one another along the majority of their dimensions,

producing poor distance discrimination). For example, recent advances
in multidimensional scaling (MDS) enable the projection and inter-
active display of data sets with millions of points, such as the ones
generated by our collaborators [4]. This approach enables the visual
detection of clusters in the data, keeping nearby points in the high-
dimensional space nearby in the projection. The resulting projections
do not attempt to maintain relationships among individual dimen-
sions, however, so they can produce severe shape distortions in the
projected region.

Perhaps more importantly, in this project our collaborators are
not asking specifically about cluster locations and relationships
between them. Instead, they need to understand the shape of the
high probability regions in n-D space, and locating interesting
shape features. We initially developed MDS-based techniques to
allow our collaborators to study the early phase of the MCMC
process as it searches for equilibrium, but they were not well
suited to the analysis phase where our collaborators are looking
for relationships among multiple dimensions.

Another possibility is the Dimstiller system [5], which provides
flexible, interactive, multi-window displays for exploration of
high-dimensional parameter spaces. They found that 2D projec-
tions along principal-component directions produced display of
structure not seen in projections done using multidimensional
scaling and original-axis directions. Our approach automatically
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Fig. 3. Comparison of the normalized shape index Z for four common shapes.
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searches a broader set of projection directions to guide the user to
regions of interest, in addition to providing 3D display of the
selected axes. These techniques could be readily added to Dim-
stiller and other such systems as an additional workflow and
display type. It is not clear how one would implement high-
dimensional region selection in Dimstiller, but it could be a
preprocess.

Projection Pursuit [6] selects an axis of projection given an
“interestingness” function; our approach extends this to a 3D
multi-index pursuit with an “interestingness” function appropriate
to detecting parameter dependencies.

2.6. n-Dimensional visualization techniques

We and others have used Parallel Coordinates (PC) techniques
to display relationships among large sets of parameters [7,8]. PC
places pairs of axes representing individual data attributes in
spatial proximity to one another [9]. A data sample is positioned
at its attribute value location on each axis. Connecting these
locations produces a line that visualizes the sample. Viewers can
identify common polylines, which correspond to clusters of data
samples with similar attribute values. One possibility would be to
select high probability points, then plot them in PC where each
axis corresponds to one hyper-dimension. This could enable a
viewer to identify points with common polylines, indicating a set
of high probability points in a common hyper-region. The detec-
tion of relationships in such displays relies heavily on the axis
ordering, however, and tracing curves across several intervening
axes make it difficult to recognize these relationships. Because PC
performs clustering, it also suffers from the fact that clusters do
not necessarily answer our collaborators' questions about shape
understanding and feature detection. Indeed, we initially tried a
PC-based approach. Issues our collaborators encountered within
that approach motivated us to pursue the projection technique
discussed in this paper.

Topology-based approaches such as Landscape Profiles [10] and
Topological Spines [11] are very effective for the display of the
relative sizes and symmetries between different high-likelihood
regions in the high-dimensional parameter space. When we
implemented these approaches and ran them on our collaborators

data sets, we found that there was a single region of high likelihood.
Again, these methods do not attempt to maintain between-axis
consistency in the projection, so they were not directly usable to
explore the questions our collaborators had with respect to the
shape of the high-likelihood region and how that informed para-
meter dependencies.

The XGobi system [12] provides a flexible, interactive environ-
ment to explore high-dimensional data sets. It includes the ability
to explore principal-component and custom mixtures of the
original parameter dimensions, and it allows selection of pairs
and triples of dimensions for visualization. Our work fits into their
“finding Gestalt” task; it provides an automatic way for our
collaborators to estimate useful projection directions and aug-
ments it with a pre-filtering of the data in high-dimensional space
that removes irrelevant points prior to projection. These techni-
ques could be easily added to XGobi or similar systems, and they
would benefit from such systems' ability to animate the transition
from one projection to another.

Glyphs are often used for multivariate visualization [13]. In a
dataset with high spatial dimensionality, however, even multi-
variate glyph approaches need to project data elements into the
display space (e.g. onto a 2D place or into a 3D volume). Glyphs are
normally used to visualize multiple attribute values, and usually
after a spatial embedding has been defined. For example, a
common approach would use properties of color, texture, and
motion to visualize multiple attribute values attached to each data
element [14,15]. Although our data elements have only a single
likelihood attribute, if more attributes were provided, a multi-
variate glyph approach could be considered to represent these
multiple values. This would still require a way to project the n-D
elements into 3D, however.

3. Methodology

Our method does three things beyond the standard all-points
2D projections that are common in our collaborators' workflow.
We summarize the approach here and provide details in the
following sections.

First, we select a high-likelihood region in the original high-
dimensional space prior to projection into the lower-dimensional
space. This avoids the information loss incurred when projecting
first and then selecting a high-likelihood region, enabling our
method to display important parameter relationships in the
original space.

Second, we project into 3D rather than 2D to preserve as much
information about dependencies as can be effectively compre-
hended by the human visual system. Because the human visual
system is attuned to perceiving surfaces rather than volumetric
data, we designed a visualization that produces a surface in three
dimensions. (Volume display provides the ability to see inside the
volume but hampers shape perception due to a lack of occlusion,
causing inability to clearly perceive relative depths.)

Third, we select an initial projection by maximizing a metric that
prefers axis sets that have more interesting dependencies between
the parameters. Rather than seeking any particular shape
(“banana”), this metric penalizes simpler shapes that can be
explained purely in terms of covariance and selects the ones whose
relationships are not simple to describe (“not an orange”). This
results in the detection of the most-interesting shape, whether it is
an apple or a pear or a strawberry. The scientist is free to explore all
sets of three parameter axes, and we provide an interface for them
to select among them. Additionally, the axis-selection procedure
can explore the space of orthogonal linear combinations of axes,
locating interesting parameter dependencies that are not present
along any axis-aligned or principal-component projection.
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3.1. Percentile region selection

Although it can be used in other ways, we will describe our
algorithm within the context of our collaborators' workflow to
provide a concrete example. We are provided by each collaborator
with a function F(X) which, given a point X in parameter space,
computes the likelihood density value, £, of the model at that
point. When the simulation is fast enough, it is used directly. For
slower simulations, a Gaussian mixture model is used as a rapidly
computable emulator.

We first apply a Metropolis—-Hastings [16,17] approach to per-
form MCMC-based integration in the parameter space. We run
MCMC integration for one million steps, each step calling F, to
produce one million points in parameter space (each of which is
annotated by its likelihood density). This step takes about 20 min
on a single processor for the emulator used in the galaxy-
formation study, but can be linearly parallelized; it is a pre-
process that is run once for each model.

We then sub-sample the points down to ten thousand for the
purpose of analysis and visualization. (We cannot simply use the
first 10,000 MCMC steps because the process will not have
converged.) Because of the properties of MCMC integration, the
local density of points is proportional to the local likelihood
density £. Each point remains annotated with its actual value of L.

We first select the region of parameter space containing the
95% of sample points with highest values (R c RP). (The particular
percentile found is a user-selectable level that defaults to 95%.)
The pointwise labeling with £ lets us select points within the 95th
percentile without having to estimate local point densities in high
dimensional parameter space.

To select the points, we first find the 5% order statistic on
likelihood, which is the likelihood threshold above which 95% of
the points in our sample lie. This threshold value is the greatest
lower bound of likelihood density function values within R. After
discarding the points below the threshold, we project the remain-
ing samples into three dimensions using a linear orthonormal
projection. Around these points we compute and display a tight-
fitting surface as described in the next section.

3.2. Finding the boundary surface

The Bounpary portion of the PerceNTILEREGIONPROJECTION algorithm
can use any method that returns a tight-fitting surface around
Xproj» @ set of points in space. We initially convolved the points
with a Gaussian to produce a smooth volumetric density distribu-
tion and then computed an iso-surface of the resulting density
field. This method was very computationally expensive for the
large number of sample points and a Gaussian that is the size of
the expected features in the data. It also depended on the
specification of a threshold value for the iso-surface that changes
the tightness of fit. Finally, the resulting surface did not pass
through the boundary of the points.

An alternative method that was used to produce the figures in
this paper calculates the three-dimensional Delaunay triangula-
tion of Xp;. This results in a set of tetrahedra, the outside surface
of which is the convex hull of X ;. Because we want a tight-fitting
surface rather than the convex hull, we remove tetrahedra whose
largest edge is longer than the scale set by the user as the smallest
feature of interest in the resulting surface. After removing these
tetrahedra, the surface is the boundary of the resulting simplicial
complex.

PercenTiLEREGIONPROJECTION (£, N, ¢, T).

|| £=the likelihood function to be visualized.
/| N=the number of samples needed to sample L.
//c €0, 1]=the percentile to be visualized.

/| T € R**P =projection matrix.

X = MetroPOLIS — HASTINGS(L,N) [[ X C RP,|X| =N
vV = FINDORDERSTATISTIC({L(X) : X € X}, (1 —C)N)

X ={xeX:Lx)>Vv} || X cR

Xproj ={Tx:x EX/}

S = BouNDARY(X o)

return S

DUl W=

The parameter ranges of the model may have very different
scales. To make them visually similar and prevent any dimension
from being visually imperceptible, we linearly scale the x, y, and z
coordinates prior to calculating the boundary. There are two
candidate mappings: rescaling the values onto the unit interval
or using the standard score (shift the mean to zero and scale by
the standard deviation). Either map makes the scale of all
projected dimensions approximately the same. We carry along
the original parameter values at each projected point, enabling the
viewer to query the original values and ranges.

3.3. Choosing the optimal axis-aligned projection

The surface generated by PercenTiLEREGIONPROJECTION is the bound-
ary of the projection into R? of the 95th percentile region in RP. If
we limit ourselves to axis-aligned orthonormal projections, there
are p-choose-3 possible projections. We let the user select any
three axes and display the resulting projection, enabling them to
visually explore all three-way interactions among parameters.

Our scientist collaborators expressed particular interest in projec-
tion directions that exhibit complex features that cannot be described
simply in terms of covariance among sample points. They expect
these projections to contain the most scientifically interesting fea-
tures. Our statistician collaborators refer to distributions with complex
features as “banana distributions” because a common such distribu-
tion of points in two dimensions resembles a banana. The previously
mentioned cup function also exhibits non-simple dependence.

After several incomplete attempts to positively describe what
was meant by the term “banana distribution”, we changed our
approach and instead found a metric that measures the extent to
which a shape is uninteresting — we then look for surfaces that are
the least uninteresting. The most uninteresting shape is an
ellipsoid, indicating independent parameters, in which case the
underlying distributions are well described by their mean value
and covariance so that no interesting dependencies between
parameters are present. The least interesting ellipsoid is a sphere,
where all of the variances match. We also want the metric to
locate surfaces that are not homotopic to a sphere because those
shapes are certainly interesting. So, rather than seeking “banana”
shapes, our metric seeks “non-orange” shapes.

To measure how un-sphere-like a shape is, we measure the
membrane energy [ 18] of the surface. Because this is proportional
to the surface area, we normalize by computing the ratio of the
square root of the surface area to the cube-root of the volume (the
normalized shape index 7):

1 +Area
&/367 </Volume

Figure 3 shows the value of the normalized shape index for
several shapes. Because the surface is generated from a discrete
sampling, it tends to have small-scale noise on its surface that is
not a result of the underlying distribution. To remove this noise,
we apply a smoothing step before calculating the shape index. (We
do not include this smoothing in the final visualization, which
shows the raw underlying surface.) The scale of the smoothing
depends on the user-specified minimum interesting feature size
that was used to cull tetrahedra above.
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Our selection algorithm projects the points in each of the p-
choose-3 different directions and measures the un-sphere-ness
of the resulting surfaces. We select the least sphere-like surface
and present to the user the three parameters that were used to
project the points as well as the surface and the set of projected
points. The user can also select any other sets of axes and see
the interactions among them to further explore parameter
dependencies.

OprTIMALSURFACEPROJECTION (£, N, C).

1 X = MEetropoLis — HasTiNGs(Z, N) [/ X Cc RP

2 vV = FINDORDERSTATISTIC({L(X) : X € X}, (1 —C)N)
3 X ={xeX: LX) >V}

4 T',w =None, —co

5 foreach T € the p-choose-3 axis-aligned projections
6 Xproj = {Tx : x € X'}

7 Xproj = RESCALE(X 1)

8 S = BounDARY(Xpro))

9 S = SMooTH(S)

10 w=1Z(S)

11 if w>w

12 T, WwW=T,w

13 S = BoUNDARY(RESCALE({T'X : X € X'}))
14  return S, T

3.4. Optimal non-axis-aligned projections

It is possible that the parameters chosen by the scientists are
not the fundamental parameters of the phenomenon. To search for
these more-fundamental axes, and to more concisely represent the
parameter space, our collaborators sometimes use principal com-
ponent analysis to search for combinations that are particularly
expressive.

To enable similar searches for the most interesting dependen-
cies between parameters, a variation on our technique rotates the
projection direction to consider many randomly chosen non-axis-
aligned projections into R3. The user can specify how many such
directions to sample, providing the capability to explore a much
broader range of directions than are considered in the original-axis
and principal-component directions. This can reveal interesting
parameter dependencies in directions that were not previously
being investigated by our collaborators.

OPTIMALSURFACEPROJECTIONZ (£, N, ¢, 1n).

X = MEeTrOPOLIS — HASTINGS(L, N) [| X € RP
v = FINDORDERSTATISTIC({L(X) : X € X}, (1 —C)N)
X ={xeX: LX) >V}
X' = RescaLe(X')
T',w' = None, —co
foreach T € GENERATERANDOMPROJECTIONS(11)
S =BounparY({Tx : x € X'})
S = SmMooTH(S)
w=1Z(S)
if w>w
T, w=T,w
S"=BounparY({T'x : x € X'})
return S, T’

O oo NOUL A WN =

— e
w N = O

This variation has the advantage that it may find combinations
of parameters with interesting relationships. It has the disadvan-
tage that the displayed space is more difficult for the viewer to
interpret.

4. Applications

We implemented our approach in an open-source visualization
toolkit, inserted it into an open-source application, and tested it on
real parameter-space searches from two different science domains.

4.1. Implementation in VTK

We implemented OprTIMALSURFACEPROJECTION and PERCENTILEREGION-
ProjectioN as filters for the Visualization Toolkit (VTK) [19]. The first
advantage of using this framework is that it is easy to integrate our
algorithms into Visualization programs that rely on VTK, such as
ParaView [20]. The second advantage is that it makes available
implementation of many useful algorithms. We used vtkThre-
sholdpPoints for the percentile filter, vtkDelaunay3D and
vtkDataSetSurfaceFilter to create a surface from points in
space, vtkSmoothPolyDataFilter to smooth the surface, and
vtkMassProperties to calculate the normalized shape index.

We also implemented the algorithm within an extended Visua-
lization Workbench that we developed [21]. This open-source tool
extends the ParaView visualization program and makes the tech-
nique directly available to our collaborators and to the broader
scientific community.

Fig. 4 shows that when run on a single processor for ten
thousand points, the optimal-projection code takes less than a
minute to select the optimal three dimensions from nine. On our
collaborators' 5- and 6-D data sets, it takes less than 15 s. To search
PCA coordinates requires another 8-12 s, and up to five additional
random projections can be tested every 8-12s. This search is
linearly parallelizable because each projection is independent. This
turn-around time enables our collaborators to interactively test
different thresholds on their laptops.

Our implementation can be found packaged with our custom
version of ParaView, the MADAI Visualization Workbench [21].

4.2. Application to the galaxy formation model

The first science domain tested was a model of galaxy forma-
tion [22]. This model starts with an interaction tree that describes
how dark-matter particles combined over time to finally form a
Milky-Way-like dark-matter halo, the invisible scaffolding of the
galaxy. Subsequently, it uses this tree to simulate the time
evolution of the baryonic matter that lies within different clumps
of dark matter. There are a number of parameters that control the
evolution of the baryons in these simulations.

We list the model parameters here by name and function
(of meaning to the scientist, just names for the purpose of this
paper): Z,, how massive a dark-matter halo must be soon after the

60

50 Z

o /
. e
) o

</

0 T T T T d
4 5 6 7 8 9

Fig. 4. Seconds taken to compute optimal axes for 10,000 points on a single
processor vs. number of axes considered.
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big bang to form stars; f},,, the mass fraction of baryons assigned to
each dark-matter halo; f,, the escape factor of metals; yfe, the
amount of iron released in Super Novae (type II); and sfe, the
specified star formation efficiency.

When our collaborator looked at the surface created by
PercenTILEREGIONPROJECTION, he found it to be more effective than
the scatterplot matrix for visualizing and exploring his data. The
first important thing he noticed was that, as expected, the optimal
axis-aligned projection automatically selected the parameters that
show the most complicated interactions. Through use of color (as
seen in Fig. 5), he was able to visualize at once relations between
four parameters. For this particular problem, exposing and visua-
lizing nonlinear coupling between parameters of the physical
processes being considered is of key importance. This is because
multiple combinations of different parameters could reproduce
equally well the observational data. This is very important as it
gives information about what physical process can be better
constrained with a given observational data set.

This goal was quickly achieved by our collaborator with optimal
projection, avoiding the burden of exploring multiple scatter-plot
matrices that only show two parameters at a time. (Scatter-plot
exploration also requires mental reconstruction from ambiguous
projections.) The projected 95 percentile surface tightly encloses
the region where the scientists' model is likely to reproduce
reasonably well the observational data. Thus, the observed inter-
actions between parameters were meaningful to him. For example,
it became instantly very clear that, while parameters Z and f
are strongly non-linearly coupled, parameters f},, and sfe have a
more linear relationship. A second important feature reported by
the scientist was the ease with which he was able to explore more
restrictive iso-likelihood optimally projected surfaces. Simply by
modifying the value of the percentile for the region selection, he
could quickly explore whether the previously observed couplings
were preserved as he selected more restrictive cuts. He reports
that the insight he gained using our method is not easily achieved
by looking at the 2D scatter plots. The regions of interest and
observed couplings showed the scientist where to further explore
the data by running the models, thus probing them more closely.

4.3. Application to the RHIC collision model

The second science domain model tested was a simulation of
collisions between sets of gold nuclei at the Relativistic Heavy lon
Collider (RHIC) [23]. The version of the model we tested has six
parameters.

The parameters of this model (again, just names for the
purpose of this technique but with meaning to our collaborators)
are the following: (dE/dy),,, the initial energy per rapidity in the
diffuse limit compared to measured value in pp collision; g,
which controls how saturation sets in as a function of areal density
of the target or projectile; f,,,, the relative weight of the wounded-
nucleon and saturation formulas for the initial energy density;
Fow, the strength of the initial flow; #/s|T., the viscosity to
entropy ratio for a temperature T=170 MeV; and «, the tempera-
ture dependence of #/s for temperatures above 170 MeV/c.

When the RHIC model's likelihood density function was plotted
using a scatterplot matrix, it revealed no interesting pairwise
relationships that lie along the initial parameter axes. When
viewing these, our collaborators were left with a nagging doubt
that perhaps there was an undiscovered dependency lying along
some other projection direction. They tried to address this by
running principal-component analysis on the parameters and then
viewing the pairwise projections in those spaces. In this way, they
sampled two sets of linear combinations of the axes to try and
discover hidden features.

Optimal Percentile Region Projection also showed a relatively
compact three-dimensional shape without interesting features.
Because it had sampled a large space of potential axis combina-
tions (the user can let the algorithm run as long as they like),
because it displays relationships between three axes, and because
it directly shows the most-interesting projection direction of all
those that have been found, it provided more compelling evidence
that the parameter space is well-explained by the statistical
correlation values.

Even when Optimal Percentile Region Projection reveals that
there are no interesting three-dimensional features, Percentile
Region Projection can still be used along with a scalar color map
to visualize the relationship between four parameters at a time
(see Fig. 6), or between three parameters and a model output
scalar field. Our collaborators found that these visualizations
rapidly express information about these relationships that two-
dimensional scatterplots do not.

5. Conclusion

It is difficult to understand the potentially complex relation-
ships among parameters in scientific models when there are many
parameters. Optimal Percentile Region Projection makes salient
features of the high-likelihood regions of parameter space that
cannot be seen using other methods and more clearly shows that
there are no interesting three-way relationships when there
are not.

By displaying the projection of only the region of high like-
lihood in the high-dimensional space, rather than the region of
high likelihood in the lower-dimensional projected space, we
directly address statistical questions about the original parameter
space. By choosing the projection that is most different from
simple correlation, we save scientists the time and frustration of
searching all p-choose-3 possible projections.

This technique extends the display of parameter dependencies
from the standard two dimensions up to three geometric dimen-
sions, with an overlaid fourth dimension (input or output) shown
using color. It uses orthographic projection, which avoids adding
perspective or other more complicated distortions in the
projection step.

6. Limitations and future work

As with all projection techniques, the presented work hides
information. Future work will be needed to address features that
cannot be visualized in three dimensions. The addition of layered
surface textures or glyphs may be able to extend beyond the four
dimensions shown here.

The choice of displaying the boundary of the projected region
as an opaque surface hides any interior holes in the region when
shown in 3D. Revealing these interior voids will require the
addition of cutaway slices or other techniques to display nested
surfaces [24-26].

Our method is targeted at likelihood density functions that
have a single region of high value. We focused on this case because
the real-world examples from our scientists behaved in this
manner. An example of a method that can extract topological
information about multiple high-value regions of a scalar function
is Topological Spines [11]. Future work could combine these
techniques, using Topological spines to show the distribution of
local maxima and our projection technique to display each local
region.
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