The SimpleScalar Tool Set as an
Instructional Tool:
Experiences and Future Directions

Todd M. Austin
Intel Microcomputer Research Labs
Oregon Graduate Institute
taustin@ichips.intel.com

[e
| SimpleScalar Tool Set W

Talk Overview

SimpleScalar Tool Set Overview
Initial Course Experiences
Release 2.0 Enhancements
Future Enhancements

Summary and Contact Information

[e
| SimpleScalar Tool Set W

A Taxonomy of Simulation Tools

|Architectura| Simulators |

Functiona | Performancel

| Trace-Driven | | Exec-Drivenl | Inst Schedulers| | O/cIeTimersl

Interpreters | Direct Execution |

* shaded tools are included in the SimpleScalar Tool Set

[e
I SimpleScalar Tool Set W

The SimpleScalar Tool Set

uniprocessor computer architecture test bed
+ compilers, assembler, linker, libraries, and simulators
« targeted to the virtual SimpleScalar architecture
+ hosted on most common platforms
developed during my dissertation work at UW-Madison
« third generation simulation tool (Sohi — Franklin — SimpleScalar)
+ in development since ‘94, release 1 in July ‘96, with Doug Burger
+ release 2 in January ‘97
backed by a growing community of users
+ researchers (40+ published papers) and instructors (10+ courses)
freely available with source and docs from UW-Madison

http://ww. cs.w sc. edu/ ~nscal ar/ si npl escal ar. htn

[e
I SimpleScalar Tool Set W

SimpleScalar Tool Set Overview

Fortran code C code

F2C GCC Assembly code
=
GAS

object files y Simulators
lipmaa GLD Executables
libca < —
Bin Utils

 compiler chain is GNU tools ported to SimpleScalar
* Fortran codes are compiled with AT&T’s 2¢
* libraries are GLIBC ported to SimpleScalar

[e
I SimpleScalar Tool Set W

Using the SimpleScalar Tool Set

¢ compiling a C program

sshig-na-sstrix-gcc -g -O -0 programfoo.c -Im
¢ compiling a Fortran program

ssbig-na-sstrix-f77 -g -O -0 programfoo.f -Im
* compiling a SimpleScalar assembly program

sshig-na-sstrix-gcc -g -O -0 programfoo.s -Im
* running a program

simsafe [-simopts] program [-program opts]

¢ debugging a program with DLite!

simsafe -i [-simopts] program[-program opts]
¢ disassembling a program
sshi g-na-sstrix-objdump -x -d -1 program

[e
I SimpleScalar Tool Set W

Simulation Suite Overview

Sim-Cache/
Sim-Fast Sim-Safe Sim-Profile | |Sim-Cheetah/| [Sim-Outorder
Sim-BPred
- 420 lines - 350 lines - 900 lines -< 1000 lines - 3900 lines
- functional - functional - functional - functional - performance
-4+ MIPS w/ checks -lotof stats - cache stats - Q00 issue
- pred stats - branch pred.
- Mis-spec.
- ALUs
- cache
-TLB
- 200+ KIPS
- Speed
Detail

.

[o
| SimpleScalar Tool Set lW

SIM-OUTORDER: Simulated Microarchitecture
¥ |

Fetch —>{Dispatch— ;ﬁge:jile; —> Exec —>\Writeback—> commit
Memory
Scheduler Mem
I-Cache D-Cache
(|L1_) I-TLB (DL1) D-TLB
I-Cache _ _IZ_):Cache
(IL2) (DL2)
Virtual Memory

* implemented in si m out or der. ¢ and components

[
I SimpleScalar Tool Set lm

Simulator S/W Architecture

User
Programs

froysm SimpleScalar 1SA POSIX System Calls
Functional
Core
Performance B
Core Resourcel Dlite!
Cache Loader Regs Memory

* most of performance core is optional
* most projects will enhance the “simulator core”

M
| SimpleScalar Tool Set lw

The SimpleScalar Instruction Set

¢ clean and simple instruction set architecture
+ MIPS/DLX + more addressing modes - delay slots
* bi-endian instruction set definition
« facilitates portability, build to match host endian
* 64-bit encoding facilitates instruction set research

+ 16-bit space for hints, new instructions, and annotations
+ four operand instruction format, up to 256 registers

16-imm
16-annote 16-opcode 8-ru 8t 8-rs 8-rd

63 48 32 24 16 8 0

M
| SimpleScalar Tool Set lm

SimpleScalar Architected State

Integer Reg File Virtual Memory
‘ 0x00000000

r0 - 0 source/sink

r1(32bits)| | PC | Unused

- [w]

il 0x00400000

' Text

% (code)

31 FCC

0x10000000

FP Reg File (SP and DP views) Data

0 (32 bits) 1 | (init)

f1 Y (bss)

f2 3 |

A
Stack
= 2] OX7fffc000
(AL oxfeef | oS & ENV
=
| SimpleScalar Tool Set |7Pagell

Simulator 1/0O via Proxy System Calls

Simulated Program Simulator
write(id, p, 4) reults ot s write(fd, p, 4)
1T} = [[TT]

* a useful simulator must implement some form of I/O
+ 1/O via SYSCALL instruction
+ subset of Ultrix system calls, proxied out to host

* Dbasic algorithm
+ decode system call
+ copy arguments (if any) into simulator memory
+ perform system call on host
+ copy results (if any) into simulated program memory

[e
| SimpleScalar Tool Set lm

Initial Course Experiences

we were surprised so many instructors used SimpleScalar

+ atthe time, the only detailed simulation tool widely available
+ portable code, could be built for most common platforms
+ simple transition from course project to research project

the tool set was used

« for “test drives” for undergraduate introductory courses
- fo introduce students to simulation tools and experiments

+ as a foundation for student projects in advanced graduate courses

. students pick appropriate simulator for project baseline

problems encountered (as evidenced by our mailboxes!):

« insufficient internal documentation
+ too difficult to install

I SimpleScalar Tool Set

Page 13

Release 2.0 Enhancements

many improvements to the internal documentation
+ code base grew by 40% due to comments added!
+ Hacker’s Guide written

+ second technical report includes details about S/W architecture

install process streamlined
+ SPEC’95 benchmark binary release made (with permission)
+ 8 new host ports added (including Windows NT)
+ self-hosting test suite added
other enhancements
+ pipeline visualization tools (pipe traces)

+ DLite! debugger, program profiling tools, more simulators, ...

I SimpleScalar Tool Set

Page 1

4

Future Enhancements

still working towards the ultimate “out-of-box” experience
+ more host ports being contributed by users

+ EIO (external I/0) traces

. asingle file captures entire experiment, including code, data,
arguments and extemnal 1/0

- atechnology-friendly trace format

+ SimpleScalar Tutorial
- many more internal details now documented
- limitations of the tool set succinctly specified

improving the applicability of the tool set
+ parallel system simulation support

[e
I SimpleScalar Tool Set lm

Summary and Contact Information

uniprocessor computer architecture test bed
+ easy to install for most platforms, with pre-packaged experiments
» well documented, user’s and hacker’s guides available
+ broad simulation suite applicable to research projects as well
role in instruction
+ students in introductory courses can “test drive” the simulators
+ advanced students can base their projects off existing infrastructure
freely available with source and docs from UW-Madison
http://ww. cs.w sc. edu/ ~nscal ar/ si npl escal ar. ht m

[e
I SimpleScalar Tool Set lm

Backups

[
| SimpleScalar Tool Set lm

The Zen of Simulator Design

Performance
Performance: speeds design cycle
Pick Flexibility: maximizes design scope
Two Detail: minimizes risk
Detail Flexibility

* design goals will drive which aspects are optimized

* the SimpleScalar Tool Set
+ optimizes performance and flexibility
+ in addition, provides portability and varied detail

.
I SimpleScalar Tool Set lm

Primary Advantages
extensible
+ source included for everything: compiler, libraries, simulators
+ widely encoded, user-extensible instruction format
portable
+ atthe host, virtual target runs on most Unix-like boxes
+ at the target, simulators can support multiple ISA’s
detailed
+ execution-driven simulators
+ supports wrong path exec, control and data speculation, etc...
+ many sample simulators included
performance (on P6-200)
+ Sim-Fast; 4+ MIPS, Sim-OutOrder: 150+ KIPS

I SimpleScalar Tool Set lm

SimpleScalar Instructions

Control: Load/Store: Integer Arithmetic:
j-jump Ib - load byte add - integer add
jal - jump and link Ibu - load byte unsigned addu - integer add unsigned
jr - jump register Ih - load half (short) sub - integer subtract
jalr - jump and link register Ihu - load half (short) unsigned subu - integer subtract unsigned
beq - branch==0 Iw - load word mult - integer multiply
bne - branch =0 dlw - load double word multu - integer multiply unsigned
blez - branch <=0 |.s - load single-precision FP div - integer divide
bgtz - branch > 0 |.d - load double-precision FP divu - integer divide unsigned
bltz - branch <0 sb - store byte and - logical AND
bgez - branch >=0 sbu - store byte unsigned or - logical OR
bct - branch FCC TRUE sh - store half (short) xor - logical XOR
bcf - branch FCC FALSE shu - store half (short) unsigned nor - logical NOR

sw - store word gl - shift left logical

dsw - store double word sl - shift right logical

s.s - store single-precision FP sra- shift right arithmetic

s.d - store double-precision FP dt - set less than

stu - set less than unsigned
addressing modes:
©
(reg+C) (w/ pre/post inc/dec)
(reg +reg) (w/ pre/post inc/dec)

I SimpleScalar Tool Set lm

10

SimpleScalar Instructions

Floating Point Arithmetic: ~ Miscellaneous:

add.s - single-precision add nop - no operation
add.d - double-precision add syscall - system call
sub.s - single-precision subtract break - declare program error

sub.d - double-precision subtract
mult.s - single-precision multiply
mult.d - double-precision multiply
div.s- single-precision divide

div.d - double-precision divide

abs.s - single-precision absolute value
abs.d - doubl e-precision absolute value
neg.s - single-precision negation

neg.d - double-precision negation
sqrt.s - single-precision square root
sgrt.d - double-precision square root
cvt - integer, single, double conversion
.S - single-precision compare

c.d - double-precision compare

I SimpleScalar Tool Set

Page 21

Simulator S/W Architecture

interface programming style
+ all“.c” files have an accompanying “.h” file with same base

“h” files define public interfaces “exported” by module
- mostly stable, documented with comments, studying these files

+ “.c” files implement the exported interfaces
- not as stable, study these if you need to hack the functionality
simulator modules
+ sim-*.c files, each implements a complete simulator core

reusable S/W components facilitate “rolling your own”
+ system components

+ simulation components

+ “really useful” components

I SimpleScalar Tool Set

Page 22

11

SIM-OUTORDER Pipetraces

* produces detailed history of all insts executed, including:
+ instruction fetch, retirement. and pipeline stage transitions
+ supported by sim-outorder
» enabled via the “ptrace” option: - ptrace <file> <range>
« useful for pipeline visualization, micro-validation, debugging

* example usage:

-ptrace FOO. trc - trace everything to file FOO.trc
-ptrace BAR trc 100:5000 - trace from inst 100 to 5000
-ptrace UXXE.trc :10000 - trace until instruction 10000

¢ view with the pipeview.pl Perl script
« it displays the pipeline for each cycle of execution traced
¢ usage: pi pevi ew. pl <ptrace_file>

I SimpleScalar Tool Set lm

Displaying Pipetraces

* example session:

simoutorder -ptrace FOO trc :1000 test-math
pi pevi ew. pl FOO.trc

* example output:

new cycle _>{ @610

indicator ‘ . i ’
new inst gf = *0x0040d098: addiu r2,r4,-1
definitions gg = ‘0x0040d0a0: beq r3,r5, 0x30’
current [IF] [DA] [EX] [V] [CT
pipdine ——>»J gf gb fy fr\ fq
state ag gc fz fs
gd/ ga+ ft pipeline event:
ge fu (mis-prediction
detected), see output
T T T header for event defs
insi(s) being insi(s) being insi(s) insi(s) inwback inst(s) retiring
fetched, or in decoded, or executing or awaiting resultsto
fetch queue awaiting issue retirement register file

I SimpleScalar Tool Set lm

PC-Based Statistical Profiles

* produces a text segment profile for any integer statistical
counter
+ supported on sim-cache, sim-profile, and sim-outorder
+ specify counter to be monitored using “-pcstat” option

+ €., -pcstat simnum.insn

* example applications:

-pcstat si m.num.insn - execution profile
-pcstat simnumrefs - reference profile
-pestat il 1. misses - L1 I-cache miss profile

-pcstat bpred_bi mod. ni sses - branch pred miss profile

* view with the textprof.pl Perl script
+ it displays pc-based statistics with program disassembly

* usage:textprof.pl <dis_file> <simoutput> <stat_nane>

I SimpleScalar Tool Set lm

PC-Based Statistical Profiles (cont.)
* example session:

simprofile -pcstat simnum.insn test-math >& test-math. out

obj dunp -dl test-math >! test-math.dis
textprof.pl test-math.dis test-math.out simnum.insn_by_pc

* example output:

exeated g0401210: (13, 0.01): <strtod+220> addiu $al[5], $zero[0], 1

13 times

strtod.c: 79

00401a18: (13, 0.01): <strtod+228> bclf 00401a30 <strtod+240>

strtod. c: 87

00401a20: : <strtod+230> addiu $s1[17], $s1[17],1
never 00401a28: . <strtod+238> j 00401a58 <strtod+268>
execut strtod. c: 89

00401a30: (13, 0.01): <strtod+240> nul.d $f 2, $f 20, $f 4
00401a38: (13, 0.01): <strtod+248> addiu $v0[2], $v1[3],-48
00401a40: (13, 0.01): <strtod+250> ntcl $vO[2], $f0

* works on any integer counter registered with the stats package,
including those added by users!

I SimpleScalar Tool Set lm

13

DLite!, the Lite Debugger

a very lightweight symbolic debugger
supported by all simulators (except sim-fast)
designed for easily integration into new simulators
+ requires addition of only four function calls (see dl i te. h)
to use DLite!, start simulator with “- i ” option
* use the “hel p” command for complete documentation
program symbols and expressions may be used in most

contexts
+ 6.4, “break mai n+8”

[e
I SimpleScalar Tool Set lm

DLite! Commands

* main features:
. break, dbreak, r br eak:
. settext, data, and range breakpoints
. regs,iregs,fregs:
- display all, integer, and FP register state
. dunp <addr> <count >:
+ dump <count > bytes of memory at <addr >
. di s <addr> <count >:
. disassemble <count > insts starting at <addr >
. print <expr>,display <expr>:
- display expression or memory
- mst at e: display machine-specific state
. nmstate alone displays options, if any

[e
I SimpleScalar Tool Set lm

14

DLite!, Breakpoints and Expressions

* breakpoints:
+ code:
.- break <addr>, €.g., break main,break 0x400148

+ data:
. dbreak <addr> {r|w x}

. r=read, w = write, x = execute, e.¢., dbreak stdin w,dbreak
sys_count wr

+ range:
. rbreak <range>, €.0.,rbreak @min:+279,rbreak 2000: 3500
* DLite! expressions, may include:
+ operators: +, -, /, *
« literals: 10, Oxff, 077
+ symbols: main, vfprintf
« registers: e.g., $r1, $f4, $pc, $lo

[e
I SimpleScalar Tool Set lm

Annotating SimpleScalar Instructions

* useful for adding
« hints, new instructions, text markers, etc...
+ no need to hack the assembler
* bit annotations:
+ la-/p,setbit0-15
. eqg, ld/a $r6,4(%$r7)
+ field annotations:

+ /s:e(v), set bits s->e with value v
. eg, | d/ 6:4(7) $r6,4(%r7)

[e
I SimpleScalar Tool Set lm

15

The Register Update Unit (RUU)

V|Tag Value| ", ﬁ Results
V|Tag|Value | nputs| Network

5]
Op |[Flags Input/Result Network Control %%

\ NEDEREERERTT -
From egister Update Unit [B''S =
Dispatch))

tail head

* RUU handles register synchronization/communication
+ unifies reorder buffer and reservation stations
.+ managed as a circular queue
. entries allocated at Dispatch, deallocated at Commit
« out-of-order issue, when register and memory deps satisfied
- memory dependencies resolved by load/store queue (LSQ)

[e
I SimpleScalar Tool Set lm

The Load/Store Queue (LSQ)

\V|Tag|Value|", Addrs Data Load
*\ (from RUU) Cache Results
V|TagAddr | . Addrs Network| > @
Op |Flags | Store Fwd/D-Cache Network | Control % .§
\ JITITTT] vao s
Bits
From oy L oad/Store Queue > To Commit
Dispatch))
tail head

* LSQ handles memory synchronization/communication
» contains all loads and stores in program order
. load/store primitives really, address calculation is separate op
. effective address calculations reside in RUU (as ADD insts)
+ loads issue out-of-order, when memory deps known satisfied
- load addr known, source data identified, no unknown store address

[e
I SimpleScalar Tool Set lm

16

Machine Definition File (ss.def)

* asingle file describes all aspects of the architecture

+ used to generate decoders, dependency analyzers, functional
components, disassemblers, appendices, etc.

+ e.g., machine definition + ~30 line main = functional sim
+ generates fast and reliable codes with minimum effort

* instruction definition example:

opcode
DEFI NST(ADDI , 0x41, inst flags
disassembly “addi”, “t,s, 1", /
template IntALU, F_ICOMP |F_IMM,
/ DGPR (RT) , NA, DGPR (RS) , NA, NA

FUreq’s / SET_GPR(RT, GPR(RS)+IMM)) _
output deps / input deps

semantics

[e
I SimpleScalar Tool Set lm

17

