Operating-System Level Tracing Tools for the DEC
AXP Architecture

Jason P. Casmira
John Fraser
David R. Kaeli

Dept. of Electrical and Computer Engineering
Northeastern University
Boston, MA

casmira,kaeli@ece.neu.edu

Abstract

Trace-driven simulation is commonly used by
the computer architecture community to an-
swer a wide range of design questions. Traces
taken from benchmark program execution
(commonly from the SPEC95 suite) have been
used extensively to study instruction schedul-
ing, branch prediction, and cache design. To-
day’s computer designs have been optimized

based on the workload characteristics of these

benchmarks.

One important issue which has been ignored
in these traces is the lack of operating system
activity. It has been acknowledged by a num-
ber of researchers that operating system inter-
action can severely affect the validity of any
trace-driven simulation study. The major rea-
son why most studies have elected to ignore
this fact is due to the difficulty of obtaining
such traces.

In this contribution we describe two tools
which have been developed at Digital Equip-
ment Corporation, in collaboration with
Northeastern University’s Computer Archi-
tecture Research Laboratory, which capture

operating-system rich traces. These tools can
be used for capturing trace information on an
DEC Alpha-based system, running either the
DEC Unix or Microsoft Windows NT operat-
ing system.

1 Introduction

Trace-driven simulation has been extensively
used to evaluate the merit of a wide range
of system design features. A trace provides
the modeler with a repeatable and representa-
tive sample of a program’s execution. An issue
which has frequently been ignored is the lack
of operating system execution in the traces
used. Excluding the overhead associated with
operating system execution can have a dra-
matic effect on performance [1, 3, 2]. Only re-
cently has this issue received attention [6, 9],
though most of these studies have used either
hardware-based tracers or simulated the ef-
fects of task switch using synthetic means to
capture the effects of the operating system in
an application trace.

For example, including the effects of the op-

-64—



erating system in a cache simulation can cause
the designer to rethink how to capture the
temporal and spatial locality present in a sys-
tem workload. By periodically interrupting
a program in order to allow other processes
to rum, the lifetime of a program footprint in
cache memory is severely reduced. Some mod-
elers have attempted to estimate this effect by
flushing the cache after a set number of trace
records have been recorded. It has been re-
ported that his is poor estimate of true pro-
gram behavior and more accurate measures
are needed [1].

2 Operating System Level
- Tracing With ATOM

In work previous to ours, Chen et al. captured
traces of applications and operating system us-
ing a modified version of the ATOM tool [4].
We have extended this work, providing the ca-
pability to capture multiple programs being
executed concurrently, along with operating
system interaction, all in a single trace. A
more detailed description of this work can be
found in [7].

ATOM was developed at DEC Western Re-
search Laboratories [10], and provides an ef-
ficient mechanism to instrument programs at
link time. Instrumentation is performed by
inserting procedure calls to analysis routines
at user defined instrumentation points. Var-
ious architectural features can be modeled in
these analysis routines, and the instrumenta-
tion granularity can be varied.

The current release of ATOM allows DEC
Unix to be instrumented, and provides a
means to monitor the execution of the operat-
ing system [5]. There are certain limitations
on tracing the kernel using this tool. Cer-
tain procedures can not be instrumented, but
these comprise a minor portion of the kernel.

Dynamic memory allocation within the kernel
can perturb the accurate modeling of differ-
ent memory allocation strategies in anrana.lysis
program. Besides these minor inconveniences,
we have been successful in instrumenting and
tracing programs on top of DEC Unix version
3.2A.

To be able to accommodate our instru-
mented kernel, we had to increase our root
partition to 85 MB, increase swap space to 323
MB, and expand the /usr partition to 694 MB.
Since we wanted to capture traces containing
both the kernel and user programs, and in-
put these to a common architectural model, a
method was established to map a portion of
memory to be shared by multiple programs.
Also, we had to deal with the issue of re-
entrant code, since the operating system may
need to be entered from the analysis routine.

Based on the size and complexity of our in-
strumented kernel, we had to run DEC Unix
in single user mode. While this will limit the
representativeness of our traces as captured in
this environment, we are more focused on the
application-dependent interaction with the op-
erating system. Because we are slowing down
our kernel by a factor of 10-100x, we also had
to scale real-time timers and interrupts.

To illustrate the utility of this toolset, we
show some program characteristics of a set of
benchmark programs. In Table 1 we show the
number of references generated for 5 bench-
mark programs (4 SPEC benchmarks and the
hello.c program). Frequencies for the appli-
cation alone, as well as the operating system
along, are presented. For a simple program
like hello.c (which also uses the operating sys-
tem), the operating system can dominate over-
all execution. The amount of operating system
overhead varies among programs, and depends
on the underlying OS requirements of the ap-
plication. :

Figures 1 and 2 plot the percentage of ref-
erences from the operating system and the in-

—-65-



[ Benchmark | Imstruction Fetches Data Reads | Data Writes Total Data | Total References
[ Hello World 1,247 207 135 342 1,589
| 08 337491 84,403 51,332 135,735 473,226
Total 338,738 84,610 51,467 136,077 474,815
Compress 87,045,969 22,412,010 8,521,661 30,933,671 117,979,640
0Ss 5,567,602 1,518,924 B02,242 2,321,166 7,888,768
Total 92,613,571 23,930,934 9,323,903 33,254,837 | 125,868,408
GCC 160,240,175 50,197,333 19,074,845 69,272,178 229,512,353
(o} ] 18,705,569 5,130,601 2,613,506 7,744,107 26,449,676
Total 178,945,744 55,327,934 21,688,351 77,016,285 255,962,029
Espresso 977,787,899 225,779,331 59,867,421 285,646,752 1,263,434,651
[o}:] 29,093,428 9,107,479 3,585,537 12,693,016 41,786,444
| Total 1,006,881,327 234,886,810 63,452,958 298,339,768 1,305,22 1,095
| Alvinn 5,233,222,045 | 1,415,013,630 487,428,474 | 1,902,442104 7,135,66 4,149
| 0§ 197,365,478 60,413,211 25,986,851 86,400,062 283,765,540
Total 5,430,587,523 | 1,475,426,841 513,415,325 | 1,988,842,166 7,4 19,429,689

Table 1: Benchmarks with Operating System References

crease in the number of references caused by
including the operating system, respectively.
We can see that for even simple benchmark
applications, that considering the operating
system can comprise a significant portion of
the overall trace (e.g., more than 10% of the
references for GCC). Figure 3 shows the rela-
tive distribution of each reference type within
the workload for both the program and its op-
erating system overhead. Both the program
and operating system references have about
the same distribution, with roughly 70% in-
struction fetches. This result is consistent with
those presented in [1].

While work is still in progress to improve
this toolset, we currently have the ability
to generate and distribute traces to research
groups.

2.1 PatchWrx

In present work we are developing a new ver-
sion of the PatchWrx toolset. This work is per-
formed in conjunction with DEC’s Advanced
Software Development Laboratory, and builds
upon the framework provided by Perl and

Sites[11]. The concept behind PatchWrx is to
develop a tool to study performance of a com-
mercial operating system, running commercial
applications. The PatchWrx tool is currently
implemented on Alpha Windows NT version
3.50, -and we are in the process of complet-
ing the necessary modifications for tracing NT
version 4.0.

PatchWrx allows for the capture of all in-
structions and memory references, while run-
ning a real operating system and real applica-
tions (e.g., NT executing MS Word, Lotus 123,
etc.). The PatchWrx tool provides the capa-
bility to capture low-level trace information,
without severely perturbing the system. While
tracing is performed, the system runs at 1/8
to 1/2 of its normal speed. This is a difficult
feat to accomplish while capturing content rich
instruction-level traces. Most trace-generation
systems introduce a 10-100x slowdown during
tracing.

PatchWrx follows similar concepts as de-
scribed in the ATUM work by Agarwal [1].
ATUM provided tracing via instrumenting us-
ing the microcode of the DEC VAX proces-
sor. PatchWrx accomplishes tracing by in-

—66—



serting PALcall instructions at various points
in the executable. PALcalls are architected
Alpha instructions, which trap to one of the
Privledged Architecture Library (PAL) sub-
routines, and do so without disturbing any
programmer-visible state.

In the PAL subroutine, trace information is
captured and execution is returned to the pro-
gram upon completion of recording the trace
record. These PAL calls incur about a 40-50
instruction overhead, but their effect is small
since we only need to instrument every 5-7
instructions on average (to collect instruction
traces).

In its present version, PatchWrx can capture
traces on Window NT 3.0. Both instruction
and memory accesses can be captured. Sites
et al. have reported on using this tool to cap-
ture traces of Microsoft’s SQL server database
engine running the TPC-B benchmark on an
Alpha Windows NT 3.50 platform [11]. Mul-
tiprocessor traces can also be captured on this
platform.

We are currently nearing the completion of
tracing capability on the Windows NT 4.0
platform. Once this toolset is fully functional,
the system will be ported to an MP platform.
Traces from this work will be made available
to the research community in the near future.

3 Conclusions

We have described two efforts underway at
Northeastern University’s Computer Architec-
ture Research Laboratory, which are focused
on studying the interaction of applications and

" operating systems. These project are in col-

laboration with researchers at DEC’s research
laboratories in Palo Alto. The outcome of
this collaboration will be to provide a set of
for the DEC Alpha architecture which can
capture operating-system rich traces. The
hope is that with the availability of improved

tracing tools and traces which the architec-
ture community can teach students to con-
sider the effects of the operating system inter-
action when evaluating architectural features
in a trace-driven study. For more informa-
tion, see the Northeastern University Com-
puter Architecture Research Laboratory URL:

http://www.ece.neu.edu/info/architecture/nucar.html.

References

(1] A. Agarwal, Analysis of Cache Perfor-
mance for Operating Systems and Multipro-
gramming, Kluwer,1989,

[2] J. Chen and B. Bershad, “The Impact
of Operating System Structure on Mem-
ory System Performance,” Proc. of the
14th ACM Symposium on Operating System
Principles, December 1993.

[3] D. Kaeli, “Issues in Trace-Driven Simula-
tion,” Lecture Notes in Computer Science
No. 729, Performance Evaluation of Com-
puter and Communication Systems, L. Do-
natiello and R. Nelson eds., Springer-Verlag,
1993, pp. 224-244.

[4] J. Chen and A. Eustace, “Kernel Instru-
mentation Tools and Techniques,” Techni-
cal Report 26-95, Center for Research in
Computing Technology, Harvard University,
Cambridge, MA, Nov. 1995.

[5] A. Eustace and B. Chen, “ATOM Kernel
Instrumentation Guide Version 0.4 ”, un-
published, Sep 1995.

[6] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest
and J. Emer, “Instruction Fetching: Coping
with Code Bloat,” Proc. of the 28th Inter-
national Symposium on Computer Architec-
ture, June 1995.

-67-



[7] 3. Fraser, Cache Analysis in a Multiprocess
Environment Using Ezecution Driven Sim-
ulation, MS Thesis, Department of Electri-
cal and Computer Engineering, Northeast-
ern University, Boston, MA, 1996.

[8] N. Gloy, C. Young, J.B. Chen, M. Smith,
“An Analysis of Dynamic Branch Predic-
tion Schemes on System Workloads,” Pro-
ceedings of the 23rd International Sympo-
sium on Computer Architecture, May 1996,
pp. 12-21.

[9] M. Evers, P.-Y. Chang and Y. Patt, “Us-
ing Hybrid Branch Predictors to Improve
Branch Prediction Accuracy in the Pres-
ence of Context Switches,” Proceedings of
the 23rd International Symposium on Com-
puter Architecture, May 1996, pp. 2-11.

[10] A. Srivastava and A. Eustace, “ATOM:
A system for Building Customized Program
Analysis Tools,” Proc. of PLDI’94, June
1994, pp. 196-206.

[11] S.E. Perl and R.L. Sites, “Studies of Win-
dows NT Performance Using Dynamic Exe-
cution Traces,” Proc. of the OSDI’96, Seat-
tle, October 1996.

—68-



s
(2]

I:i instruction fetches
- data reads
. damwrites... .| .

-
'S
I

-
n

-
[=]

% Increase in Number of References
[12]

GCC Espresso

Benchmarks

Compress

Figure 1: Percent of Total References From Operating System

14

D instruction fetches

12 - - - - - y-..-aé:t.é:-ry.e.éaé..............‘ o
data writes
g 10
€
»
=
2 s 2 . - -
o
vy
@
o
5
56 . . : ) )
=
[= =
R=]
= 4 -

Compress GCC Espresso Alvinn
Benchmarks

Figure 2: Percent Increase in Number of References by Including Operating System

-69-



Reference Distribution

100

20

80

70

60

50

40

30

20

10

Comprass GCC Esprasso Alvinn
Comprass w/OS GCC w05 Esp wiOS Alvinn w/iOSs

Benchmarks

Il instruction fetches 7] data reads [_] data writes

Figure 3: Distribution of Reference Types

-70-



