
References

[1] C. Moura, \SuperDLX A Generic SuperScalar Simulator," ACAPS Technical Memo 64, School

of Computer Science, McGill University, May 1993.

[2] C. Young, N. Gloy, and M. D. Smith, \A Comparative Analysis of Schemes for Correlated

Branch Prediction," the 22nd International Symposium on Computer Architecture, June 1995.

pp. 276-286.

[3] T. A. Diep, C. Nelson, J. P. Shen, \Performance Evaluation of the PowerPC 620 Microarchitec-

ture," the 22nd International Symposium on Computer Architecture, June 1995. pp. 163-174.

[4] M. Tremblay, D. Greenley, and K. Normoyle, \The Design of the Microarchitecture of

UltraSPARC-1," Proceedings of the IEEE, VOL. 83, NO. 12, December 1995, pp.1653-1663.

[5] B. Calder, D. Grunwald, \Next Cache Line and Set Prediction," the 22nd International Sym-

posium on Computer Architecture, June 1995. pp. 287-296.

[6] D. Lee, J.-L. Baer, B. Calder, and D. Grunwald, \Instruction Cache Fetch Policies for Speculative

Execution," the 22nd International Symposium on Computer Architecture, June 1995. pp. 357-

367.

[7] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel, \Optimization of Instruction Fetch

Mechanisms for High Issue Rates," the 22nd International Symposium on Computer Architec-

ture, June 1995. pp. 333-344.

[8] K. C. Yeager, \The MIPS R10000 Superscalar Microprocessor," IEEE Micro, April 1996, pp.28-

40.

[9] J. H. Edmondson, P. Rubinfeld, R. Preston, and V. Rajagopalan, \Superscalar Instruction

Execution in the 21164 Alpha Microprocessor," IEEE Micro, April 1995, pp.33-43.

7



Table 1: Baseline Simulator Features.

Fetch Rate
User given.

I-Cache
KNL model.

Branch Prediction
User-speci�ed direct-mapped BHT with 2-bit damping counter.

In-Order Issue
Out-of-order execution model.

Out-of-Order Issue
Out-of-order execution model .

Functional Units
User given.

Functional Units
User given.

EXE latency

D-Cache
KNL model, write-back or write-through, write-allocate.

� Con�gurable functional units.

� A fully con�gurable KNL non-blocking cache structure incorporated in the simulator. (K: the

number of ways. N: the number of cache lines in a way. L: line size). Split versus uni�ed

option and c

m

+ �

m

L

D

memory latency model.

� More debugging functions that allow the interruption of the simulation, recon�guration,

restart in a cycle-by-cycle fashion, or run to the end.

� NT/Win95 platform ready.

Table 1 details the baseline features. The simulator supports both in-order and out-of-order

issue models. Data are queued in the store bu�er before writing into the memory and may be

forwarded to a latter load if the address is known.

3 Summary

We have developed a DLX-based superscalar simulator that runs more like a real processor. First,

it is instruction-driven and uses a realistic memory interface model. It models the external memory

design including bus width, memory access time, and per-bus transfer time. The added on-chip

cache structure is fully user-programmable. Modern out-of-order execution model is provided as

the baseline simulator structure. A user has a very high degree of freedom in determining how

the simulator is con�gured. The simulator provides richer debugging functions and allows the

interruption of the simulation, recon�guration, restart in a cycle-by-cycle fashion, or run to the

end.

6



Figure 2: The Simulation Environment.

2.4 System Modi�cation

In order for the simulator to run signi�cant programs like those in SPEC92, we build the required

run-time libraries and add trap handlers into the simulator. Figure 2 illustrates the simulation

environment. For system-dependent or operating system dependent functions, we add them via

traps. We add the functions needed to run the SPEC programs, such as mktemp(), getpid(),

getenv(), .. etc. All these traps can be found in traps.h/trap.c in our package. Also some routines

such as fread(), fwrite(), realloc() are provided in mytraps.c. After adding su�cient C-functions

into the system, the original SPEC92 programs need some small modi�cations. This includes the

following major issues: 1) Make sure that the main() does not use `argv' and `argc' to access

command line parameters and pass them via static string copy instead. 2) Open a stream �le `inf'

for `stdin' and rename all `stdin' in programs into `inf'. 3) Open a stream �le `outf' for `stdout'

and `stderr' and rename them in programs. 4) Rename all macro-de�ned functions in the original

program to what we de�ne. 5) Make sure that there are not any strongly system dependent functions

like fork(), signal(), kill(), etc. If found, alter the program ow to avoid using them.

So far, this instruction driven simulator is able to run non-toy programs to the end. This includes

1) FP benchmark: Alvinn, Ear, Clinpack, Whetstone, FFT, Flops, and 2) Integer benchmark:

Compress, Decompress, Eqntott, Espresso, Xlisp and etc.

2.5 Other Features

In addition to the built-in Tomasulo-based mechanism in the simulator, the following options and

functions are provided by the simulator.

� Central window versus distributed reservation stations.

5



time c

m

, per-bus transfer time �

m

, and bus width D. A small c

m

and �

m

correspond to the use of

a high-speed L2 cache with the processor.

2.2 Branch Prediction

For instruction accesses, two issues must be addressed: one is the prediction of the direction of

conditional branches, and the second is the instruction fetching strategy. To improve instruction

fetching bandwidth, branch target bu�ers or next cache line prediction have been used as the

mechanism for branch prediction so that the fetch unit can fetch instructions speculatively [2]. The

prediction mechanisms can be built with a branch target cache or a branch history table (BHT)

such as those used in PowerPC 620 [3]. Alternatively, the prediction mechanisms are incorporated

within the instruction caches [4, 5].

In addition to branch prediction, mechanisms for instruction extraction from the predicted paths

and fetching policies for instruction cache misses also constrain the performance of instruction

accesses [6, 7]. For instance, the fetch unit can always fetch from the speculative path or it may

wait until the branches are resolved. Many of the current processors have been able to speculate

more than one branch [3, 4, 8, 9]. As an example, the PowerPC 620 is able to fetch instructions

speculatively up to 4 branches [3] while the UltraSPARC-1 can speculate up to �ve branches [4].

The simulator implements the BHT and the branch target bu�er approach, and allows the users to

specify the number of BHT entries and the reservation station entries of the branch unit.

2.3 Non-Blocking Design

The use of out-of-order execution model complicates the design tradeo�s on the memory systems

because portion of the memory latency is hidden from the CPU execution time. For instance, a non-

blocking cache allows multiple caches misses and hit accesses while a miss is on progress. With the

use of reservation stations and load/store bu�ers, non-blocking memory accesses naturally become

part of the processor execution model. Many of the current processors allow a very high degree

of multiple L1 cache misses to tolerate memory latency. Load bu�ers are used to support these

non-blocking misses. Essentially, the maximum number of cache misses that can be posted equals

to the number of the load bu�ers associated with the load/store unit. On the other hand, the data

cache ports are usually limited to the number of 1 or 2. This limitation is mitigated by the use of

load/store bu�ers or store bu�ers associated with the load/store unit. The writes that are queued

in the store bu�er are not committed to the data cache until the store instructions can be retired

from the reorder bu�er. The simulator allows the users to specify the degree of non-blocking and

the number of store bu�ers used.

4



Figure 1: Block Diagram of a DLX-Based Superscalar Simulator.

3



1 Introduction

Modern microprocessors employ out-of-order execution model, aggressive branch prediction, dis-

tributed reservation stations, dynamic renaming for register �les, and support in-order completion

and precise interrupts. The processor prepares the instructions by loading them into the internal

queue usually associated with the fetch unit, thus allowing multiple instructions to be decoded.

Instruction fetching must be able to look ahead of the control instructions which alter the execution

sequence. Branch prediction is the mechanism used to guide the fetch unit for fetching instructions

across a basic block. Multiple instructions may be decoded and dispatched to the reservation sta-

tions associated with a functional unit for execution. Instructions that have obtained their source

operands can be issued for execution. A Tomasulo-based algorithm is used to support out-of-order

execution of the instructions. To support precise interrupt, results of the functional units are written

into a reorder bu�er and later committed to the processor register �le in program order.

We have developed a superscalar simulator that supports the functions and features of mod-

ern microprocessors mentioned above. This simulator is based on the DLX scalar processor. We

add many functions into the simulation system so that this instruction-driven simulator is able

to run many of the SPEC92 programs. The information about this simulator can be found at

http://com.el.yuntech.edu.tw. In the following, we address the added features of this simulation

system.

2 A DLX-Based Simulator

This instruction-driven simulator provides many more functions than its predecessors developed

elsewhere [1]. One of the most important enhancement is that it can run large programs such as

the SPEC92 benchmarks. We have added the trap functions and required C-libraries in the system.

Figure 1 shows a block diagram of this DLX superscalar simulator. We describe the simulation

system starting from its memory system interface.

2.1 Memory Interface Model

The external memory design determines how soon a cache line may be moved into the cache from

the outside memory system. This part of memory design relates to the processor interface control.

A general form of memory cycles reading a line of size L bytes in a burst transfer memory of bus

widthD bytes can be represented by c

m

+�

m

(

L

D

) where c

m

is a constant time and �

m

is the number

of clocks of per-bus transfer. Constant time c

m

is the clock cycles for the presentation of address to

the memory system and memory access latency. A processor may request a word on the line which

is being �lled during the c

m

+ �

m

(

L

D

) cycles. The simulator allows the users to specify the constant

2



An Enhanced DLX-Based Superscalar System Simulator

Chung-Ho Chen and Akida Wu

Institute of Information and Electronic Engineering

and Department of Electronic Engineering

National Yunlin Institute of Technology

Touliu, R.O.C. on Taiwan

fchen,akidag@el.yuntech.edu.tw

Abstract

We have designed a DLX-based superscalar processor simulator. This simulator provides

many more functions than its predecessors developed elsewhere. We have added trap handlers

and required C functions in the system so that most of the SPEC92 programs now run on the

simulator. In addition, this simulator is fully con�gurable and re-con�gurable. Speci�cally, the

following options and functions are provided by the simulator.

� Central window versus distributed reservation stations.

� Branch prediction mechanisms using static or dynamic schemes. The later provides branch

target bu�er and branch history table.

� Con�gurable functional units.

� A fully con�gurable KNL non-blocking cache structure incorporated in the simulator. (K:

the number of ways. N: the number of cache lines in a way. L: line size). Split versus

uni�ed option and c

m

+ �

m

L

D

memory latency model.

� Better debugging functions allowing the interruption of the simulation, recon�guration,

restart in a cycle-by-cycle fashion, or run to the end.

� NT/Win95 platform ready.

This DLX-based superscalar simulator is instruction-driven, which o�ers richer educational

features than most of the trace-driven simulators. For information about this simulator, please

refer to http://com.el.yuntech.edu.tw.

1


