
An Interactive, Visual Simulator for the DLX Pipeline 1

Yinong Zhang and George B. Adams III
School of Electrical and Computer Engineering

Purdue University
West Lafayette, Indiana 47907

Abstract

We have built an interactive, visual pipeline simulator, called dlxview, for the DLX instruction
set and pipeline described in Computer Architecture A Quantitative Approach by Hennessy and
Patterson [1]. This software provides animated versions of key �gures and tables from the text and
allows the user to readily follow details of pipeline activity as a code is simulated, to vary pipeline
implementation, and to compare performance across di�erent pipeline designs.

The software package requires a system running Unix and X11, with Tcl/Tk installed, and using
the GNU gcc compiler is recommended. A 256 color display with 1024x768 pixels is best for display,
due to the detailed diagrams of the DLX pipeline. The software has been designed to run on a variety
of platforms and has been tested on Solaris 2.3, SunOS 4.1.1, HP-UX 9.0, DEC OSF/1 4.0, and
Linux kernel 1.2.1. DLXview is available at http://yara.ecn.purdue.edu/~teamaaa/dlxview/

1 Introduction

We have built an interactive, visual pipeline simulator, dlxview, for the DLX instruction set and
pipeline described in Computer Architecture A Quantitative Approach by Hennessy and Patterson
[1]. This software provides animated versions of key �gures and tables from the text and allows the
user to readily follow details of pipeline activity as a code is simulated, to vary pipeline implemen-
tation, and to compare performance across di�erent pipeline designs. This complements the text
and allows the user to explore DLX behavior more rapidly and extensively than possible otherwise.

DLXview is one component of a larger project in computer system education, the CASLE

project, standing for Compiler/Architecture Simulation for Learning and Experimenting. CASLE
provides an HTML forms-interface tool set that automatically produces an optimizing compiler,
assembler, and architectural simulator based upon user speci�cations. Thus, users can exper-
iment with the total-system e�ect of, say, changing the number of registers, instruction laten-
cies, and compiler optimizations used, exploring the performance issues spanning compiler to
hardware. CASLE software requires a system with a good C compiler (e.g., gcc) and that is
capable of running the CASLE CGI scripts that constitute the user interface, for example, a
UNIX workstation with httpd or PC hardware running Linux. More information is available at
http://purcell.ecn.purdue.edu/~casle/ .

2 DLXview Description

DLXview is based on DLXsim, a basic DLX pipeline simulator that is part of the software distribu-
tion supporting the Hennessy and Patterson text. Major dlxview capabilities include: step forward

1Supported by NSF Grant No. CDA-9312649.

1



or backward by clock cycle, step forward or backward by instruction, and run.
Three versions of the DLX pipeline may be studied: basic, scoreboard, and Tomasulo. For each

version, parameters such as the number of function units, their latencies, and whether they are
pipelined can be varied. Memory load and store latency can be controlled as well. The graphical
depiction of the DLX pipeline is customized to re
ect the speci�c DLX con�guration chosen. For
example, if the user chooses Tomasulo with three 
oating point multiplier reservation stations and
no 
oating point divide unit, then the animated depiction of the CPU will show exactly that.

Once the user has selected a DLX con�guration and a code sequence along with any input
data and register value initialization, simulation and animation of the pipeline depiction may be-
gin. Simulation can start with any instruction in the code; the default is the beginning. The code
appears in a window with the memory address, machine language, assembly code, and comments
shown for each line of the program; the active instruction is highlighted. The user clicks buttons
to move through time in the simulation, make adjustments, or exit. As the user proceeds inter-
actively the pipeline display presents detailed information relevant to the program and particular
pipeline con�guration. Each instruction and animation related to it are displayed in a unique color.
The displays closely follow the relevant �gures and tables from the Hennessy and Patterson text.
Figure 1 shows an example of the screen presentation for the basic DLX pipeline.

The basic pipeline animation includes the following information: (1) the traditional pipeline
time line table showing clock cycles, the instructions in the pipeline and their progress over time,
and any stall cycles; (2) the pipeline schematic of either the integer data paths or the 
oating
point data paths with active stages colored to match their resident instructions; and (3) for integer
instructions, the speci�c active data paths (including forwarding) highlighted and color-coded, with
the names of active registers appearing in the register �le block.

The scoreboarding animation includes: (1) a scrolling table of instruction status with the clock
cycle at which issue, read operands, execution complete, and write result occur, (2) highlighted
active scoreboard entries, register �le entries, data paths, and function units, (3) scoreboard with
contents, and (4) current instruction status or bookkeeping for each scoreboard entry with book-
keeping showing the speci�c Boolean expressions controlling that entry.

The Tomasulo animation shows and makes available a like amount of information.

3 DLXview Additional Capabilities

DLXview provides a number of capabilities beyond those necessary to a basic interactive simulation
of a given code to facilitate exploration.

During a simulation session, the con�guration of the pipeline can be checked and can be changed
by �rst aborting the current state.

Once con�gured, assembly code, data, and initial register values for the pipeline may be loaded
from �les. The output of dlxcc may be used as input for simulation or assembly may be written by
hand. A register initialization �le is valuable for situations such as examining the execution of a
loop in which some instructions have pre-speci�ed operands, and to avoid starting the interesting
portion of a code segment at other than clock cycle one due to cycles spent on instructions to
initialize register values.

At any time during a simulation session the DLX assembly code may be edited in a pop-
up window. When editing is complete, the new �le can be immediately loaded to start a new
simulation. New data may also be loaded at this time, or data �le used currently in use is loaded.

2



Figure 1: Example screen display (dithered black and white rather than color)

If no instruction has entered the pipeline yet, the step forward function request the starting
address. Otherwise, simulation resumes from where previously stopped to execute the next in-
struction. The clock cycle count will advance to that when the next instruction reaches the �rst
pipeline stage. The next cycle function will also request the starting address if no instruction has
yet entered the pipeline. Otherwise, simulation advances by one clock cycle. Using next cycle
continuously will show every detail in the simulated pipeline.

The go function begins simulation and continues until the execution terminates naturally via a
trap instruction.

The step back function allows the user to return to the pipeline state of the previous instruction.
Stepping forward and back supports close examination of the state changes taking place throughout
the pipeline. The previous cycle function allows single cycle retreats in time.

The trace function allows for output of an instruction trace or memory reference trace. Traces are
in a format suitable for available cache simulators such as tycho and dineroIII [2]. Trace collection
can begin at any time during a simulation session and will start from the current instruction.
The trace �le is not available until the current simulation session ends; i.e., the simulation stops
naturally or is interrupted by a reset command from the user. To avoid producing a garbled trace,

3



the tracing process is stopped automatically when either the step back or previous cycle functions
are used.

4 Conclusions

We have provided a brief introduction to the capabilities and system requirements of dlxview, an
interactive, con�gurable, highly detailed, visual simulator for the DLX instruction set and DLX
pipeline variants, including scoreboard and Tomasulo. The software package requires a system
running Unix and X11, with Tcl/Tk installed, and using the GNU gcc compiler is recommended.
It has been designed to run on a variety of platforms and has been tested on Solaris 2.3, SunOS
4.1.1, HP-UX 9.0, DEC OSF/1 4.0, and Linux kernel 1.2.1.

Further development will be guided by feedback from users. More information and a brief tour
of a Tomasulo simulation is available at http://yara.ecn.purdue.edu/~teamaaa/dlxview/

References

[1] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., 1990 and 1996 (either edition).

[2] Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU Caches. IEEE Transactions

on Computers, C-38:1612{1630, Dec. 1989.

4


