To appear in the IEEE TCCA Newsletter (October 1997). (An earlier version appeared in WCAE-3, February 1997.)

RSIM: An Execution-Driven Simulator for ILP-Based
Shared-Memory Multiprocessors and Uniprocessors

Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve
Department of Electrical and Computer Engineering
Rice University
Houston, Texas
http://www-ece.rice.edu/~rsim

Abstract

This paper describes RSIM — the Rice Simulator
for ILP Multiprocessors — Version 1.0. RSIM sim-
ulates shared-memory multiprocessors (and unipro-
cessors) built from processors that aggressively ezx-
ploit instruction-level parallelism (ILP). RSIM is
execution-driven and models state-of-the-art ILP pro-
cessors, an aggressive memory system, and a multi-
processor coherence protocol and interconnect, includ-
ing contention at all resources. Although originally
designed as a research tool, RSIM s also being used
successfully in both undergraduate and graduate com-
puter architecture courses at Rice Unwversity. RSIM
version 1.0 is publicly available.

1 Introduction

This paper describes RSIM — the Rice Simulator for
ILP Multiprocessors — Version 1.0. RSIM is primar-
ily designed to study shared-memory multiprocessor
architectures built from processors that aggressively
exploit instruction-level parallelism (ILP). Tt models
state-of-the-art ILP processors, an aggressive memory
system, and a multiprocessor coherence protocol and
interconnect. Tt is execution-driven (vs. trace-driven)
and models contention at all resources. RSIM provides
the user with a number of configuration parameters to
simulate a variety of shared-memory multiprocessor
and uniprocessor configurations. RSIM, along with
a detailed RSIM Reference Manual, is available from
http://www-ece.rice.edu/~rsim/dist.html.

Compared to other shared-memory simulators pub-
licly available at this time, the key advantage of RSIM

*The development of RSIM was funded in part by the

National Science Foundation under Grant No. CCR-9410457,
CCR-9502500, CDA-9502791, and CDA-9617383, the Texas Ad-
vanced Technology Program under Grant No. 003604016, and
funds from Rice University. Vijay S. Pai is also supported by a
Fannie and John Hertz Foundation Fellowship.
Copyright 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must
be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445
Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

is that it supports a processor model that is more
representative of current and near-future processors.
Current publicly available shared-memory simulators
assume a much simpler processor model, which can
result in significant inaccuracies when used to study
shared-memory multiprocessors built from state-of-
the-art ILP processors [12]. A cost of the increased
accuracy of RSIM, however, is that it is slower than
simulators that do not include a detailed processor
model.

RSIM was originally designed for computer archi-
tecture research, but has also been used successfully at
Rice in undergraduate and graduate courses covering
both uniprocessor and multiprocessor architectures.

We next describe the architecture features sup-
ported by RSIM, RSIM internals (including supported
platforms), the RSIM applications interface, statistics
produced by RSIM, our experience with RSIM, related
work, and future work.

2 Architecture Features
2.1 The Processor Microarchitecture

RSIM models an aggressive ILP processor, incor-
porating features from a variety of current processors.
Key features include:

e Superscalar — multiple instruction issue per cycle
e Out-of-order (dynamic) scheduling

o Register renaming

e Static and dynamic branch prediction

e Non-blocking memory load and store operations

e Speculative issue of loads before address disam-
biguation of previous stores

e Support for multiple memory consistency models
and various implementations of these models [13]

o Software-controlled non-binding prefetching

To appear in the IEEE TCCA Newsletter (October 1997). (An earlier version appeared in WCAE-3, February 1997.)

l

Completion e
Graduation
Exception Handling

l

Floating-point
Register File

Instruction Register mapping

—

Data
{ Cache

Fetch [(renaming) Momory
Logic
9 Active List Queue

Integer || Addr. |
Register File Gen.

.| ALu/
Branch

Branch Prediction L

Figure 1: The RSIM processor

The processor microarchitecture modeled by RSIM
is closest to the MIPS R10000 [10] and is illustrated
in Figure 1. Specifically, RSIM models the R10000’s
active list (which holds the currently active instruc-
tions, corresponding to the reorder buffer or instruc-
tion window of other processors), register map table
(which holds the mapping from the logical to physical
registers), and shadow mappers (which allow single-
cycle state recovery on a mispredicted branch). The
pipeline parallels the Fetch, Decode, Issue, Erecute,
and Complete stages of the dynamically scheduled
R10000 pipeline.’ Instructions are graduated (i.e.,
retired, committed, or removed) from the active list
after passing through this pipeline. Instructions are
fetched, decoded, and graduated in program order;
instructions can issue, execute, and complete out-of-
order. In-order graduation enables precise interrupts.

The RSIM processor supports static branch predic-
tion, dynamic branch prediction using either a 2-bit
history scheme [17] or a 2-bit agree predictor [18], and
prediction of return instructions using a return ad-
dress stack [7]. Each hardware prediction scheme uses
only a single level of prediction hardware. The pro-
cessor may include multiple predicted branches at a
time, as long as there is at least one shadow mapper
for each outstanding branch. These branches may also
be resolved out-of-order.

Most processor parameters are user-configurable,
including the number of functional units, the latencies
and repeat rates of the functional units, the instruc-
tion issue width, the size of the active list, the number
of shadow mappers for branch speculation, and the
size of the branch prediction structures.

1 An option for static scheduling is provided with a straight-
forward modification to the dynamically scheduled pipeline, but
is not as thoroughly tested as the dynamic mode.

2.2 The Cache and Memory System

RSIM supports a two-level data cache hierarchy.
The first-level cache is multiported and pipelined, and
may be writethrough or writeback. The second-level
cache is pipelined and writeback. Systems with write-
through first-level caches include a coalescing write
buffer. Both caches are lockup-free. They store the
state of outstanding requests in miss status holding
registers (MSHRs), and coalesce requests to the same
line in these MSHRs [8]. Main memory is interleaved
and is accessed through a pipelined split-transaction
bus.

A variety of user-configurable parameters are pro-
vided, including number of ports of the L1 cache,
cache line sizes, cache sizes, associativities, number
of write buffer entries, number of MSHRs, bus speed,
bus width, bus arbitration delay, memory interleaving
factor, and latencies of the various modules.

RSIM currently does not support virtual memory
and also does not support an instruction cache (as-
suming a 100% instruction hit rate).

2.3 The Multiprocessor System

RSIM simulates several variations on a base
hardware directory-based cache-coherent non-uniform
memory access (CC-NUMA) shared-memory multi-
processor. Figure 2 shows the organization of the base
system. Each node consists of the processor and cache
hierarchy described above, along with a part of the
physical memory, its associated directory, and a net-
work interface. A split-transaction bus (mentioned in
Section 2.2) connects the secondary cache, the mem-
ory and directory module, and the network interface.

RSIM employs a full-mapped invalidation-based di-
rectory cache-coherence protocol, and can support
either a MESI protocol (with Modified, Exclusive,
Shared, and Invalid states) or an MSI protocol (with

To appear in the IEEE TCCA Newsletter (October 1997). (An earlier version appeared in WCAE-3, February 1997.)

Ui cache

U1 Cache

Network Interface
Network

Figure 2: The RSIM multiprocessor system

Modified, Shared, and Invalid states). Both protocols
support cache-to-cache transfers for requests for lines
held by another processor in Modified state.

For remote communication, RSIM supports a two-
dimensional wormhole-routed mesh network. For
deadlock avoidance, the system includes separate re-
quest and reply networks. The flit delay per network
hop, the width of the network, the buffer size at each
switch, and the length of each packet’s control header
are user-configurable parameters.

RSIM supports three memory consistency mod-
els — sequential consistency [9], processor consis-
tency [5], and release consistency [5], configurable at
compile-time. It also supports optimizations specific
to ILP processors for each model, including hardware-
controlled prefetching from the instruction window
and speculative load execution [4, 13, 16].

3 RSIM Internals

RSIM interprets application executables. The use
of application executables rather than traces allows
more accurate modeling of the effects of contention
and synchronization in simulations of multiprocessors,
and more accurate modeling of speculation in simu-
lations of multiprocessors and uniprocessors. We in-
terpret application executables rather than use direct
execution because modeling ILP processors accurately
with direct execution is currently an open problem.

Internally, RSIM is a discrete event-driven simula-
tor. The event-driven simulation subsystem is based
on the YACSIM library from the Rice Parallel Pro-
cessing Testbed (RPPT) [3, 6]. Other key subsys-
tems include the processor out-of-order engine, the
processor memory unit, the cache hierarchy, the mem-
ory/directory module, and the interconnection net-
work. Each of these subsystems acts as a largely
independent block, interacting with the other units
through a small number of predefined mechanisms.

Significant parts of the memory and network subsys-
tems are based on code from RPPT [3, 14]. Many
of the subsystems within RSIM are activated as sep-
arate events only when they have work to perform.
However, the processors and caches are simulated us-
ing a single event that is scheduled for execution on
every cycle, as these units are likely to have activity on
nearly every cycle. On every cycle, this event appro-
priately changes the state of each processor’s pipeline
and processes outstanding cache requests. The vari-
ous events faithfully model the processor pipelines, the
cache and memory system, and the network, including
contention at all resources.

RSIM is written in a modular fashion using C++
and C for extensibility and portability. Currently, it
has been tested on Sun systems running Solaris 2.5
or 2.6, a Convex Exemplar running HP-UX version
10, and an SGI Power Challenge running ITRIX 6.2.
Porting RSIM to the latter two systems from an initial
Sun version was straightforward. Porting RSIM to 64-
bit platforms or little-endian platforms may require
additional effort.

While designing RSIM, we have placed an empha-
sis on accuracy, a large architecture feature set, code
modularity to enable easy addition of new features,
and exhaustive statistics collection to better under-
stand performance bottlenecks. This emphasis has of-
ten required a sacrifice in simulation speed. Based on
our experience with RSIM, we are currently working
on various approximations to improve its speed with-
out significantly sacrificing accuracy.

4 Applications Interface
RSIM simulates applications compiled and linked
for SPARC V9/Solaris using ordinary SPARC com-
pilers and linkers, with the following exceptions.
First, although RSIM supports most important
user-mode SPARC V9 instructions, there are a few

To appear in the IEEE TCCA Newsletter (October 1997). (An earlier version appeared in WCAE-3, February 1997.)

unsupported instructions. More specifically, all in-
structions generated by current C compilers for the
UltraSPARC-I or UltraSPARC-II with Solaris 2.5 or
2.6 are supported. Unsupported instructions that may
be most important on other SPARC systems include
64-bit integer register instructions and quadruple-
precision floating-point instructions.

Second, the system trap convention supported by
RSIM differs from that of Solaris. Therefore, standard
libraries and functions that rely on such traps cannot
be directly used. We provide an RSIM applications
library to support such commonly used libraries and
functions; all applications must be linked with this li-
brary. Nevertheless, there are some unsupported traps
and related functions (e.g., strftime), and our library
has only been tested for C application programs.

For multiprocessor applications, the RSIM applica-
tions library includes support for synchronization with
locks, flags, and barriers, as well as support for these
primitives through PARMACS macros.

For speed and portability, RSIM actually interprets
applications in an expanded, loosely encoded instruc-
tion set format. A predecoder is provided to convert
SPARC application executables into this internal for-
mat, which is then fed to the simulator.

5 Statistics in RSIM

RSIM provides a variety of execution statistics. For
many metrics, RSIM provides the average value of the
metric, the standard deviation, and a histogram show-
ing the distribution of the values of the metric. We
also provide scripts that interface with a plotting util-
ity to graphically display statistics related to a run or
a set of runs.

Overall performance statistics. RSIM displays
the total execution time and the TPC (instructions per
cycle) achieved by the program on the system simu-
lated. The total execution time 1s further categorized
into processor busy time and stalls due to various
classes of instructions. These classes include ALU,
FPU, data reads, data writes, exceptions, branches,
synchronization, and up to nine user-defined classes.
Data read and write stalls are further split accord-
ing to the level of the memory hierarchy at which the
memory operations were resolved: L1 cache, L2 cache,
local memory, or remote memory.

Other processor statistics. RSIM provides
statistics on the usage of various functional units in
the processor, the branch prediction behavior, and the
occupancy of the instruction window. It also displays
the metrics of availability, efficiency, and utility [1] re-
lated to instruction fetching.

Cache, memory, and network statistics.
RSIM classifies memory operations into hits and
misses, and further classifies misses into cold, capacity,
conflict, and coherence misses. It also collects the av-
erage latency of various classes of memory operations,
MSHR occupancy, prefetch effectiveness, bus utiliza-
tion, write-buffer utilization, network contention, traf-
fic, and the usage of the network switch buffers.

6 Experience

We have used RSIM successfully for computer ar-
chitecture research [12, 13, 15, 16] and education.
RSIM is used in two computer architecture courses
at Rice — the first is a senior-level course primar-
ily on uniprocessor architecture and the second is a
graduate-level course primarily on parallel architec-
ture. RSIM is used for both short assignments and
semester-long course projects. The assignments sup-
plement material taught in class. For example, stu-
dents used RSIM in one assignment to pinpoint perfor-
mance bottlenecks in ILP processors. Students then
designed studies to determine the impact of various
processor configuration parameters and evaluated the
performance of these modified configurations.

Course projects using RSIM are done in groups of
two to four students and typically involve extensions
or validations of recent architecture studies in the liter-
ature. These projects often require students to imple-
ment additional modules to supplement the existing
features of RSIM. Course projects in Fall’96 included
studies of static vs. dynamic scheduling, aggressive
branch prediction strategies for out-of-order proces-
sors, tradeoffs between performance and die area, the
performance benefits of high-bandwidth DRAM archi-
tectures, and use of data stream buffers with out-of-
order processors.

7 Related Work

Numerous simulators exist for shared-memory mul-
tiprocessor systems, many of which are execution-
driven (vs. trace-driven). However, most of
these model previous-generation processors with static
scheduling and blocking loads. An exception is the
SimOS system when used with the MXS processor
model [11]. This simulator was developed concur-
rently with RSIM. Like RSIM, it models advanced
processor pipelines, including out-of-order issue and
non-blocking loads.

A large number of uniprocessor architecture stud-
ies have been based on trace-driven simulation.
Execution-driven ILP uniprocessor simulators include
the MXS [1] and SimpleScalar simulators [2].

To appear in the IEEE TCCA Newsletter (October 1997). (An earlier version appeared in WCAE-3, February 1997.)

8 Future Work

We are currently engaged in various additions to
the features supported by RSIM, including instruction
caches, TLBs, aggressive branch prediction strategies,
and performance visualization support. We are also
working on improving the performance of RSIM by
optimizing the current code, parallelization, and using
more novel approximations and modeling techniques.

9 Acknowledgments

We thank Hazim Abdel-Shafi, Murthy Durbhakula,
Jonathan Hall, and Tracy Harton for assistance in
various stages of the development of RSIM. We are
also grateful to the Rice Parallel Processing Testbed
(RPPT) group; significant parts of the RSIM memory
and network system are based on code from RPPT.

References
[1] J. E. Bennett and M. J. Flynn. Performance Fac-
tors for Superscalar Processors. Technical Report

CSL-TR-95-661, Stanford University, Feb. 1995.

[2] D.Burger, T. Austin, and S. Bennett. Evaluating
Future Microprocessors: the SimpleScalar Tool
Set. Technical Report CS-TR-96-1308, University
of Wisconsin, Madison, July 1996.

[3] R. G. Covington, S. Dwarkadas, J. R. Jump,
S. Madala, and J. B. Sinclair. The Efficient Sim-
ulation of Parallel Computer Systems. Intl. Jour-
nal of Computer Simulation, 1:31-58, Jan. 1991.

[4] K. Gharachorloo, A. Gupta, and J. Hennessy.
Two Techniques to Enhance the Performance of
Memory Consistency Models. In Proc. Intl. Conf.
on Parallel Processing, 1991.

[5] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gib-
bons, A. Gupta, and J. Hennessy. Memory Con-
sistency and Event Ordering in Scalable Shared-
Memory Multiprocessors. In Proc. 17th Intl
Symp. on Computer Architecture, 1990.

[6] J. R. Jump. YACSIM Reference Manual. Rice
University Electrical and Computer Engineering
Department, March 1993.

[7] D. R. Kaeli and P. G. Emma. Branch History
Table Prediction of Moving Target Branches Due
to Subroutine Returns. In Proc. 18th Intl. Symp.
on Computer Architecture, 1991.

[8] D. Kroft. Lockup-Free Instruction Fetch/
Prefetch Cache Organization. In Proc. 8th Intl.
Symp. on Computer Architecture, 1981.

[9] L. Lamport. How to Make a Multiprocessor Com-
puter That Correctly Executes Multiprocess Pro-
grams. IEEE Trans. on Computers, C-28(9):690—
691, Sept. 1979.

[10] MIPS Technologies, Inc. R10000 Microprocessor
User’s Manual, Version 2.0, Dec. 1996.

[11] B. A. Nayfeh, L. Hammond, and K. Olukotun.
Evaluation of Design Alternatives for a Multipro-
cessor Microprocessor. In Proc. 23rd Intl. Symp.
on Computer Architecture, 1996.

[12] V. S. Pai, P. Ranganathan, and S. V. Adve. The
Impact of Instruction Level Parallelism on Mul-
tiprocessor Performance and Simulation Method-
ology. In Proc. 3rd Intl. Symp. High Performance
Computer Architecture, 1997.

[13] V. S. Pai, P. Ranganathan, S. V. Adve, and
T. Harton. An Evaluation of Memory Consis-
tency Models for Shared-Memory Systems with
ILP Processors. In Proc. 7th Intl. Conf. on Ar-
chitectural Support for Programming Languages
and Operating Systems, 1996.

[14] U. Rajagopalan. The Effects of Interconnection
Networks on the Performance of Shared-Memory
Multiprocessors. Master’s thesis, Department of
Electrical and Computer Engineering, Rice Uni-
versity, Jan. 1995.

[15] P. Ranganathan, V. S. Pai, H. Abdel-Shafi, and
S. V. Adve. The Interaction of Software Prefetch-
ing with ILP Processors in Shared-Memory Sys-
tems. In Proc. 24th Intl. Symp. on Computer Ar-
chitecture, 1997.

[16] P. Ranganathan, V. S. Pai, and S. V. Adve. Us-
ing Speculative Retirement and Larger Instruc-
tion Windows to Narrow the Performance Gap
between Memory Consistency Models. In Proc.
9th Symp. on Parallel Algorithms and Architec-
tures, 1997.

[17] J. E. Smith. A study of branch prediction strate-
gies. In Proc. 8th Intl. Symp. on Computer Ar-
chitecture, 1981.

[18] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N.
Patt. The Agree Predictor: A Mechanism for Re-
ducing Negative Branch History Interference. In
Proc. 24th Intl. Symp. on Computer Architecture,
1997.

