Computer Architecture Education at the University of Illinois:
Current Status and Some Thoughts

Josep Torrellas
Center for Supercomputing Research and Development
and Computer Science Department
University of Illinois at Urbana-Champaign, IL 61801, USA
torrella@cs.uiuc.edu

February 1996

Abstract

The Unwersity of Illinois has traditionally been a ma-
jor center for computer architecture education and re-
search in the nation. This short paper briefly describes
the computer architecture curriculum at the Univer-
sity of Illinois and discusses a few tdeas for improving
the computer architecture education of our students.
In particular, to tmprove the education of undergradu-
ates, we suggest a higher emphasis on parallel architec-
tures and programming, and the provision of practical
experiences. For graduate students, we arque about the
need to develop close links with industry and educate
graduate students from other scientific and engineer-
ing disciplines.

1 The Computer Architecture
Curriculum

Computer architecture courses at the University of I1li-
nois are cross-listed in the Computer Science and the
Electrical and Computer Engineering departments.
They are often taught by both departments. We follow
a semester system. The major undergraduate courses
in computer architecture are:

e Logic Design. This course is taken at the sopho-
more or junior level. The major topics are com-
binational and sequential networks, ALU design,
and control unit design. The course includes lab-
oratory time that involves schematic capture and
simulation of circuits. One of the books used is
Mano’s [3].

e Basic Computer Architecture. This course,
often taken at the junior level, focuses on ba-
sic architecture concepts like assembly program-
ming, pipelining, and memory hierarchies. Books

that have been used include Patterson and Hen-
nessy’s [5] and Feldman and Retter’s [1].

e Hardware Laboratory. This course, which
comes in several flavors, is taken by both under-
graduate and graduate students. The work typi-
cally involves the use of field-programmable gate
arrays (FPGA) to design systems like memory or
cache controllers, processors, memory systems, or
network components.

e Computer Organization. This course is taken
by both seniors and first-year graduate students.
It is intended to give a solid base in architecture.
The main topics are pipelining, instruction level
parallelism, memory hierarchies, I/O, and multi-
processors. The book used is Hennessy and Pat-
terson’s [2].

e VLSI Design. This course is taken by both
graduate and undergraduate students. It covers
tools for design capture, simulation, verification,
logic minimization, timing analysis, etc. Students
design and simulate a large system. The book
used is Mead and Conway’s [4].

The major graduate courses in computer architec-
ture are:

e Parallel Programming. This course is taken by
graduate and advanced undergraduate students.
It teaches how to program the different types of
parallel machines. Students are required to write
significant programs for several classes of parallel
machines.

e Advanced Uniprocessor Architecture. This
course focuses on advanced uniprocessors, in-
cluding microarchitecture, instruction-level par-
allelism, and other compiler issues.

e Parallel Architectures. This course covers the
major architectural issues in current parallel ma-



chines. It focuses on distributed shared-memory
machines, multicomputers and, to a small extent,
data-parallel machines. The focus is on issues,
not on descriptions of specific machines.

¢ Performance Evaluation, Tuning, and De-
bugging of Parallel Systems. This course fo-
cuses on the performance of parallel systems. It
examines tools and techniques for performance
modeling, monitoring, evaluation, tuning, and de-
bugging of parallel machines.

e Special Topics. There is a wide variety of
courses on special topics in computer architec-
ture. They are not offered on a regular basis.

Finally, there are several other courses that comple-
ment the computer architecture education of graduate
students:

e Compilers: Intermediate and Advanced
Levels. These two courses include front- and
back-end issues, advanced code optimizations,
and transformations for the automatic paralleliza-
tion of codes.

¢ Operating Systems: Intermediate and Ad-
vanced Levels. These two courses cover tradi-
tional operating systems, as well as distributed
operating systems and networks.

e Programming Languages.

2 Improving
Education

Undergraduate

Undergraduate education in computer architecture
can be improved by emphasizing three issues: the
study of parallel computer architectures and program-
ming, the adoption of practical approaches, and the
provision of research and industrial experiences.

The first issue, namely the emphasis on parallel ar-
chitectures and programming, is a consequence of the
rapid advances in computer systems. Indeed, people
in industry who work with computers will increasingly
need to master the concepts of parallel systems. Un-
fortunately, this task is difficult without some back-
ground from school. This is because this field changes
rapidly and previously-accepted ideas often become
obsolete. An obvious example of this is the quick-
paced change of the hot keywords in the popular com-
puter press. Furthermore, the relevant information is
hard to find beyond specialized articles because there

are very few books that contain up to date informa-
tion. Consequently, an engineer can easily fail to de-
velop the critical mass of knowledge necessary to keep
up with the field and, as a result, feel discouraged.

Past experience indicates that, after undergraduate
students are taught the basics of parallel systems, they
show a high interest in pursuing the subject further.
Teaching them some intermediate concepts in parallel
systems prepares them to work with more advanced
material on their own if they need to later.

The second aspect, adopting practical approaches,
is key to motivating students. This means relating
the lecture material to the instructor’s own experience
building and debugging systems. It also means that,
as an architectural concept is introduced, it pays-off
to examine its implications on the operating system
or compiler. An obvious example is the TLB, which
has clear operating system and software implications.
Finally, a good way of increasing the practical com-
ponent of our computer architecture courses is to use
research tools developed in academia. In particular,
it would be nice to include the software of a multipro-
cessor tracing and simulation tool in the most popular
computer architecture textbooks.

Finally, research and industrial experiences for un-
dergraduates nicely complement classroom education.
Past experience giving research experiences to under-
graduates, however, produced mixed results. While
some instances worked and others did not, they all
required a lot of time from the professor. Industrial
experiences should always be encouraged.

3 Improving Graduate Educa-
tion

Graduate education in computer architecture can be
improved by developing closer links with industry and
by paying more attention to graduate students from
other scientific and engineering disciplines.

Most people agree that developing close links with
industry is crucial. Graduate students should be en-
couraged to spend one or more summers in industry.
Otherwise, they miss one crucial aspect of their educa-
tion: the experience of a real computer systems design
environment. In addition, of course, their interaction
with industry can be the source of new research ideas.

Finally, it is necessary to make computer architec-
ture education more accessible to graduate students
from other scientific and engineering disciplines. The
reason for this is that large parallel machines increas-



ingly require programmers to understand many details
of the architecture to run programs with acceptable
performance. This trend, already obvious, is likely to
become more marked in the future. Often, however,
the programmers of these machines are physicists or
chemists who have little background in computer ar-
chitecture. Consequently, we need a graduate course
that covers the most important topics of undergradu-
ate computer architecture courses. This course should
be designed for scientists or engineers who have no
background in computer architecture, are very moti-
vated, have extensive experience programming at least
one parallel machine, and want to get up-to-speed in
computer architecture very fast.

4 Conclusion

The next few years will be a time of change for com-
puter architecture education. There are at least two
important challenges to meet. The first one is the
need to put more emphasis on parallel architectures
and programming issues in undergraduate education.
The second one is the need to educate graduate stu-
dents from other scientific and engineering disciplines.
These challenges need to be addressed soon.

References

[1] J. M. Feldman and C. T. Retter. Computer Archi-
tecture: A Designer’s Text Based on a Generic RISC.
McGraw-Hill, New York, NY, 1994.

[2] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann
Publishers, San Francisco, CA, 1996.

[3] M. M. Mano. Computer Engineering Hardware Design.
Prentice Hall, Englewood Cliffs, New Jersey.

[4] C. Mead and L. Conway. Introduction to VLSI Sys-
tems. Addison-Wesley, New York, NY, 1980.

[5] D. A. Patterson and J. L. Hennessy. Computer Or-
ganization and Design: The Hardware / Software In-
terface. Morgan Kaufmann Publishers, San Francisco,
CA, 1994.



