

Using Rapid Prototyping in Computer Architecture
Design Laboratories

James 0. Hamblen, Henry Owen, Sudhakar Yalamanchili, and Binh Dao

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332-0250

Abstract
This paper describes the undergraduate computer

architecture courses and laboratories introduced at
Georgia Tech during the past two years. A core
sequence of six required courses for computer
engineering students has been developed. In this
paper, emphasis is placed upon the new core
laboratories which utilize commercial CAD tools,
FPGAs, hardware emulators, and a VHDL based
rapid prototyping approach to simulate, synthesize,
and implement prototype computer hardware.

1 Introduction

The Bachelor of Computer Engineering degree has
been offered at Georgia Tech by the School of
Electrical and Computer Engineering since 1986.
Three years ago, the undergraduate computer
engineering curriculum was revised. A total of 203
quarter hours is required for the BCmpE degree. In
addition to the CmpE classes, twenty three hours of
electrical engineering courses and seventeen hours of
computer science courses are required. Students must
select one of three areas of concentration, Software
and Applications, Systems and Architectures, or
Devices and Circuits. Each area of concentration has
a different list of courses from which students select
eighteen additional hours of EE, CS, or CmpE
courses.

A new required core sequence of six CmpE
classes with parallel laboratories was developed for
the new curriculum. The required core sequence is a
total of twenty-six quarter hours of lecture and
laboratories. The first two courses in the sequence are
also required for electrical engineering students. A
host of new CAD tools were introduced into the core
sequence laboratories. VHDL was chosen to enable
modeling, simulation, and synthesis of digital logic
and computer systems throughout the core sequence.
This paper describes the core sequence of required
computer architecture courses.

2 Digital Computation I and II

Digital Computation I and II, Computer
Engineering 2500 and 3500, are required four hour,
one quarter, courses taken in sequence by computer
and electrical engineering students. This course
sequence is an updated digital logic course sequence
which reflects many of the recent advances in VLSI.
The first course in the sequence covers basic gates and
simple state machines. The final design example is a

very simple computer. Annual enrollment is around
five hundred students per year. The second course
covers more complex state machine design examples
and provides an introduction to technology, timing,
and testing issues. A required textbook[1] and a
laboratory manual developed at Georgia Tech are used
for these courses. Laboratory work requires the
construction of digital circuits using TTL gates, PALs,
and FPGAs. CAD tools including Logiworks,
Espresso, AMD Mach, and Viewlogic are used in the
laboratories. Simple VHDL programs are introduced
to students and VHDL models are used for gate level
timing simulations.

3 Computer Architecture I and II

Computer Architecture I and II, Computer
Engineering 2510 and 3510, are required four hour,
one quarter, courses taken in sequence by computer
and electrical engineering students. The goals of this
course sequence are to introduce students to assembly
language programming, computer arithmetic,
computer architecture and to provide an introduction
to modern digital CAD tools. At the end of the
sequence, students should have a basic understanding
of computer operations from the high level language
programming level to the gate level implementation of
the computer system. Students are already familiar
with digital design, computer programming in a high
level language, Field Programmable Gate Arrays, and
VHDL based modeling and simulation of simple
digital logic circuits from prerequisite courses.
Introduction of modern VHDL based CAD tools into
the curriculum allows more realistic evaluation
through system implementation and simulation than
has been previously possible.

Enrollment in Computer Architecture I and II is
approximately 350 students per year. Lectures are
held three hours a week and three hours of laboratory
work per week are required. An overview of the
complete design process developed for this laboratory
and the associated CAD tools are shown in Fig. 1.
These tools were collected from a variety of sources
and many are available free of charge to educational
users via the Internet.

 2

Retargetable C Compiler
configured for

MIPS architecture

MIPS Assembler

Text Editor

Automatic VHDL
Synthesis CAD Tool

Computer System
 Simulation using

Gate Level Logic & Timing

Instruction Level Testing
using Timing Diagram

Figure. 1 Design Process and Associated CAD Tools

VHDL Source
Code File

Assembly
Language

Machine
Language

Gate Level
Schematic

Timing
Diagram

Silicon Compiler

Standard Cell
Layout for
VLSI
Fabrication

 The lecture and laboratory outline for Computer
Architecture I and II is shown in Table 1. The MIPS
32-bit RISC assembly language, integer and floating
point computer arithmetic, and several hardware
implementations of the MIPS processor are contained
in the course textbook [2]. In Computer Engineering
2510, Computer Architecture I, students complete
three assembly language programming laboratory
assignments using SPIM, a MIPS assembler and
instruction level simulator. SPIM is a public domain
program available free via anonymous ftp for UNIX,
PC and MAC platforms [2,3,4]. The first two
assembly language program assignments demonstrate
integer operations, control structures, stack operations,
and subroutine linkage.

In the second assembly language program,
students compare their hand written assembly code to
the code generated by a C compiler that has compiled
a program to perform the same operation. Lcc, a
public domain retargetable C compiler, available free
for UNIX workstations and PCs, is used for this step
[5]. One of the target machines already supported by
this compiler is the MIPS. MIPS assembly language
source files generated by the compiler are then used
by students to demonstrate compiler code generation.

In the final assembly language program, students
implement a floating point function such as square
root. The SPIM MIPS simulator supports floating
point instructions and operations. IEEE Standard 754
floating point format is used in the MIPS processor
[2,3,4].
After completing MIPS assembly language laboratory
assignments, students have two laboratory
assignments in which they modify a VHDL model of a

MIPS RISC processor. A synthesizable VHDL model
of the MIPS was developed at Georgia Tech for use in
this laboratory. It should be noted that existing
synthesis tools impose a number of restrictions upon
the VHDL source code and require the use of a subset
of standard VHDL.

TABLE 1 Outline of Lecture and Laboratory Topics

Week Computer Architecture I
 Laboratory Assignment

Computer Architecture I
 Lecture Topic

1 SPIM tutorial RISC architecture
2 First assembly lang. program MIPS instruction Set
3 “ SPIM assembly language
4 Second assembly lang. program Stacks and subroutines
5 MIPS C compiler Integer computer arithmetic
6 MIPS floating point program Floating point arithmetic
7 VHDL CAD tool tutorial Overview of VHDL
8 VHDL synthesis and simulation

running a new test program
MIPS processor hardware
implementation and VHDL model

9 VHDL synthesis and simulation
adding a new instruction

Modifying hardware and VHDL to
add new instructions and features

10 “ Alternative microcoded MIPS
Week Computer Architecture II

Laboratory Assignment
Computer Architecture II
 Lecture Topic

1 VHDL CAD tool tutorial Overview of pipelining
2 Pipelining the MIPS design Pipelining the MIPS hardware
3 “ Pipeline control problems
4 Adding a hazard unit to the MIPS MIPS hazard detection hardware
5 “ MIPS forwarding unit
6 Adding forwarding to the MIPS “
7 “ MIPS branch flushing
8 Add branch flushing to the MIPS I/O devices and busses
9 “ Caches and virtual memory
10 Compile MIPS chip design Introduction to parallel computers

In addition to a Pascal or ADA based syntax,

VHDL includes several features which make it useful
for modeling of digital circuits [6]. VHDL processes
and modules execute in parallel. The WAIT statement
suspends a process until the specified condition is
true. A WAIT statement which waits for the clock
signal to change is used to model and synthesize
latches and flip-flops. Another VHDL feature is the
AFTER keyword. The keyword, AFTER, followed by
a time delay can be used to model the physical time
delays present in digital circuits. These features
permit VHDL to model the parallel operation of
digital hardware even including physical time delays,
if so desired. Behavioral VHDL based modeling of
digital systems has been in use for several years.
VHDL based logic synthesis is a newer development.

A simple VHDL synthesis example using the
MIPS control unit is shown in Figs. 2 and 3. The
VHDL source code is shown in Fig. 2 and the
schematic automatically generated by the synthesis
tool is shown in Fig. 3. The input to this module is
the 6-bit instruction opcode, OP(5-0). The language
support for bit vectors or arrays of bits, such as OP,
greatly simplifies coding of the VHDL model. All
busses and register values use the bit vector data type.
It is possible to change the entire value of a bit vector
with one assignment statement or to access smaller bit
fields when needed. The outputs of this VHDL
module are the various control signals used in the
processor. The synthesis tool automatically performs
logic minimization and multi-level logic synthesis. As
an example, many of the intermediate level gate
outputs are shared between the various output circuits
shown in the schematic in Fig. 3. The original VHDL

 3

code had logic equations with six inputs for the
opcode bits. More than two levels of gating are
required for implementation, since the logic
technology used for synthesis allows a maximum of
four inputs per gate.

 -- control module (VHDL model of MIPS control unit)
library synth;
use synth.stdsynth.ALL;
ent ity control is
port(signal Op : in vlbit_1D(5 dow nto 0);

signal RegDst : out vlbit ;
signal ALUSrc : out vlbit ;
signal MemtoReg : out vlbit ;
signal RegWrite : out vlbit ;
signal MemRead : out vlbit ;
signal MemWrite : out vlbit ;
signal Branch : out vlbit ;
signal ALUop0 : out vlbit ;
signal ALUop1 : out vlbit);

end control;
architecture behavior of control is
 signal Rformat, Lw , Sw, Beq : vlbit ;
begin -- behavior of MIPS control

Rformat< = ((NOT Op(5))AND(NOT Op(4))AND(NOT Op(3))
AND(NOT Op(2)) AND (NOT Op(1)) AND (NOT Op(0)));

Lw < = (Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND
(NOT Op(2)) AND (Op(1)) AND (Op(0));

Sw < = (Op(5)) AND (NOT Op(4)) AND (Op(3)) AND
(NOT Op(2)) AND (Op(1)) AND (Op(0));

Beq < = (NOT Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND
(Op(2)) AND (NOT Op(1)) AND (NOT Op(0));

 RegDst < = Rformat;
ALUSrc < = Lw or Sw ;
MemtoReg < = Lw ;
RegWrite < = Rformat or Lw;
MemRead < = Lw ;
MemWrite < = Sw ;
Branch < = Beq ;
ALUOp1 < = Rformat ;
ALUOp0 < = Beq ;

end behavior;

Figure. 2 VHDL Source Code for MIPS Control Unit

Figure. 3 Control Unit Schematic Produced by VHDL Synthesis

In the two VHDL based laboratory assignments,

new instructions and features are added to the VHDL
model of the MIPS processor. Detailed block
diagrams of the MIPS processor architecture are
presented in the course textbook [2]. Changes and
additions to the block diagram are made as new
instructions are added to the processor. Students
determine the hardware changes or additions needed
and modify the appropriate source code in the MIPS
VHDL model. Typical assignments have included the
addition of unconditional branch instructions and
unsigned add operations. The entire design is
resynthesized to a gate level schematic, and a gate
level timing simulation running a short machine

language test program is used to verify correct
operation of the new instructions. The timing diagram
from a gate level simulation of a short MIPS machine
language program is shown in Fig. 4. Tutorial and
batch command files are included to make the process
simple enough for first time users of the CAD tools.

Figure. 4 Timing Diagram from Gate Level Simulation

Student’s VHDL models are automatically
synthesized into gate level logic and simulated using a
popular commercial CAD tool, Viewlogic. Several
other VHDL based CAD synthesis tools could also be
used such as Synopsys[7], Mentor, or Cadence;
however, these are available only for UNIX platforms.
Viewlogic’s VHDL synthesis and simulation tools are
currently available for UNIX or PC platforms at a
substantial educational discount. For PC based
Viewlogic, an 80486 based or faster PC with at least
16 megabytes of memory and 100 megabytes of
available disk space is recommended. We currently
have forty such machines available for student use in
this laboratory. In addition to class handouts, several
VHDL references are provided and a full set of CD-
ROM on-line documentation for the VHDL CAD tool
is available via a shared network drive [8,9]. The
Xlilinx 4000 ASIC, Application Specific Integrated
Circuit, technology library is used for gate level
synthesis and timing information [9]. With minor
changes it is possible to resynthesize using other ASIC
technologies. Gate count and timing information is
automatically reported by the synthesis tool.

The VHDL synthesis tool has predefined VHDL
based implementations of adders, subtractors, and flip-
flops making the design process easier. Hardware for
addition, subtraction, and register storage operations
can be automatically generated by function calls in the
VHDL code. Unfortunately, with current VHDL
synthesis tools there is no universal industry standard
for these functions. Since there is no VHDL synthesis
standard these portions of the VHDL model would
need to be modified if a different VHDL synthesis
CAD tool is used.

It is possible for students to examine the
synthesized schematics and to experiment with
different hardware design tradeoffs such as time and
area. When running simulations, a timing diagram can
be produced and it is also possible to back annotate

 4

the schematics with simulation values to aid in
debugging.

A full 32-bit version of the MIPS requires several
hours to synthesize on the PC platform. A smaller
version with an 8-bit data path with full 32-bit
instructions and control was developed to permit the
design to synthesize and simulate quickly for student
laboratory assignments. This version has minimal
VHDL source level modifications from the 32-bit
version. Changes are limited to the bit vector array
size declarations for variables and signals in the data
path. The smaller model requires machine language
test programs that use 8-bit integer values. Since the
hardware test programs in the textbook are just a few
instructions long and relatively simple, this has not
affected the pedagogical value of the MIPS VHDL
model.

Machine language test programs can be hand
assembled, assembled using the SPIM assembler, or
even produced using the C compiler. This machine
language file is then read into the VHDL model’s
memory with a read command or hardcoded into a
VHDL synthesized ROM used to simulate instruction
memory. On current generation PCs, the entire
synthesis process for the smaller model requires
several minutes of computer time. Approximately
3,500 gates are used to implement the basic MIPS
VHDL model. After student modifications that add
new features, the improved pipelined MIPS processor
uses approximately 6,000 gates.

In Computer Engineering 3510, Computer
Architecture II, students study pipelining techniques,
caches, virtual memory, and I/O hardware. In
laboratory assignments, students modify the
synthesizable VHDL model to create an improved
MIPS RISC processor with pipelining. In the first
laboratory assignment, students pipeline the existing
MIPS VHDL model. The VHDL model contains
separate modules for each of the five MIPS pipeline
stages making the student pipelining process much
easier. In this assignment, students add the pipeline
registers to each stage or module and modify the
control unit. A top-level VHDL structural model is
used to connect the five stages together. This
structure generates two levels of hierarchy in the
design. Breaking up the model into different pipeline
stages makes the model much easier to understand and
to synthesize. The textbook contains detailed block
diagrams of the pipelined MIPS processor[2].
Instructions are traced one clock cycle at a time as
they move through the pipeline stages and the value of
all busses and control signals are shown in a detailed
set of diagrams. Short machine language test
programs identical to those presented in the course
textbook are run in the simulator to verify correct
operation. Using the simulation output, a timing
diagram with bus values indicated in hexadecimal,
students can check the computer’s operation against
the textbook’s diagrams to verify correct operation.
On the PC platform, the VHDL gate level timing

simulator can execute the MIPS test programs in a few
seconds.

In the second laboratory assignment, automatic
pipeline stalling using a hazard detection unit is added
to the pipelined MIPS VHDL model. The textbook
modifies the control unit to detect a data hazard
between instructions in the pipeline and to stall or wait
a clock cycle. An example data hazard would be an
instruction in the pipeline that writes a register that is
then read by the instruction that immediately follows
it. The pipelined register write occurs after the read
operation for the next instruction and the incorrect
register data value would be used. This problem is
solved by stalling and later by forwarding. These
problems are carefully avoided by the MIPS machine
language test programs until they are discussed in the
textbook and corrected by adding additional hardware.

In the third laboratory assignment, forwarding is
added between the pipeline stages to reduce the
number of stalls. As outlined in the textbook, two
forwarding multiplexers are added to the ALU inputs
along with a more complex control unit that selects the
appropriate input when it detects a data hazard. In the
case of a register data hazard, the new value of the
register is supplied to the ALU by the forwarding
multiplexer before it is written back to the register file.

In the fourth assignment, branch flushing is added
to the pipelined MIPS VHDL model. When a branch
is taken several instructions after the branch are
already in the pipeline and they must be automatically
cleared out of the pipeline or flushed. The control
unit and pipeline registers are modified to detect a
branch flush operation and to clear the appropriate
pipeline registers to avoid executing unwanted
instructions already in the pipeline.

In the final assignment, additional features such as
a cache, exception handling hardware, or a different
branch instruction scheme are added to the pipelined
MIPS VHDL model. On the MIPS processor
exceptions, such as overflow, save the current PC in a
special register and jump to a trap address. In each
laboratory assignment, complete synthesis of the
design to gate level, followed by a full gate level
timing simulation is used to execute short machine
language test programs.

Over the two quarter sequence, most students have
encountered timing problems present in their VHDL
models that cause errors in the VHDL gate level
timing simulation. In every case, it was a real timing
problem traced back to VHDL coding errors. They
were able to detect and diagnose the problem using
the simulation, modify the VHDL model, resynthesize,
and eliminate the timing problems. Problems included
uninitialized values in flip-flops, combinatorial loops,
gating signals with the clock, and logic hazards on
critical write control lines. These real world problems
familiar to most experienced digital designers are not
detected by most RTL or VHDL behavioral
simulations.

Actual VLSI chip designs with higher clock rates
could be automatically produced using the VHDL

 5

synthesis generated schematic or netlist as the input to
a silicon compiler [10]. The Lager silicon compiler
automatically generates a standard cell layout.
Interfaces to this tool have been developed for
synthesized designs using Viewlogic VHDL. This
tool is available upon request for UNIX platforms free
of charge to educational users. In theory, a MIPS
VLSI processor chip could then be fabricated using a
VLSI fabrication service. The actual fabrication
process would be costly and would add a substantial
delay due to VLSI fabrication times. Actual
fabrication of the chip would make design turnarounds
difficult, if not impossible, in a one quarter course. It
would also be possible to fit the entire MIPS VHDL
synthesized design into a large Xilinx FPGA. In
future offerings of Computer Architecture II, for the
final laboratory project, MIPS processor designs will
be compiled into a VLSI standard cell layout and then
simulated to examine the resulting timing and area
information.

4 Computer Engineering Design I and II

CmpE 4500 and 4510 are required five hour
design courses taken in sequence by computer
engineering seniors at the Georgia Institute of
Technology. Students are already familiar with digital
design, FPGAs, VHDL modeling and synthesis,
assembly language, C programming, operating
systems, and computer architecture from earlier
required coursework. Many of the students have also
taken VLSI courses and a compiler class. Students
work together in teams of two to four on the six month
computer design project. In the first regular offering
of this new sequence, students were assigned the task
of developing hardware and software for a pipelined
RISC processor of their own design. A total of
fourteen teams worked on a wide variety of designs
the majority of which were successfully implemented.
The designs included several modified MIPS
processors and two 2-way superscalar pipelined RISC
processors.

This required two quarter course sequence is
structured to enable students to apply all they have
learned towards designing, documenting, and building
a complete computing system. The sequence was
developed with active feedback from industry, and is
quite aggressive in its goals. The designs are
sponsored by Intel Corporation which provides awards
for the top two designs. Organizational,
communication, presentation, and engineering skills
are all required to be successful in this class. The
introduction of this set of classes into the curriculum
allows more realistic evaluation through actual system
implementation than has been previously possible.
Example projects, student feedback, and results from
the first two offerings of this sequence are included in
this paper as well as recommendations for broadening
the design experience to include other
implementations such as board level designs, custom
chips, and real-time hardware interfaces.

 5 Laboratory Tools for Rapid Prototyping
The rapid prototyping methodology used in the

design process in this laboratory is shown in fig. 5.
VHDL synthesis [7] and a 30,000 gate hardware
emulation device with automatic partitioning software
are used to develop a working prototype on
approximately thirty large FPGAs. A meta assembler
is configured by students to produce machine
language test programs. Lcc, a retargetable C
compiler [5] with a code generator generator, lburg, is
used to develop a cross compiler for the student
processor design.

Retargetable C Compiler
configured for

prototype architecture

Meta Assembler
configured for
instruction set

VHDL Logic Synthesis and
Simulation CAD Tool

Automatic FPGA
Partitioning and

Compilation CAD Tool

Computer System
Prototype using

hardware emulation
on multiple FPGAs

System Level Testing
using

Logic Analyzer

Figure 5. Rapid Prototyping Course Methodology

Gate Level
Schematic

Assembly
Language

Machine
Language

FPGA
files

Captured
Data

After VHDL synthesis, the resulting schematic or

netlist is then implemented on the hardware emulation
device using commercial software, ZyCAD’s Concept
Silicon and Xilinx’s FPGA tools. This software
automatically splits the design, a gate level netlist at
this point, into multiple logic array chips. The
hardware emulation system, a ZyCAD Paradigm RP,
contains sixteen Xilinx 4010 10,000 gate FPGAs and
eighteen Xilinx 3090s used to automatically
interconnect the 4010 chips. A PC is used as the host
machine to configure and download the hardware
emulator. In theory over 200,000 gates are available
for a prototype design; however, due to routing and
pin out constraints designs of up to 30,000 gates are
typical. On large emulation systems, it is not
uncommon to obtain only ten to fifteen percent
utilization of the total FPGA gate resources. The
automatic interconnection using FPGAs eliminates the
need for any manual wiring on the prototype system.
This automatic interconnection feature makes this
approach ideal for classroom projects. A number of
companies produce such emulation hardware and a
few have software for automatic partitioning of the
design [11]. Automatic generation of the data files to

 6

produce the prototype systems requires two to three
hours of workstation time for each design. Designs
can be downloaded to the hardware emulator in few
minutes. Prototype digital designs of 10,000 to
30,000 gates are possible with clock rates of several
megahertz. For larger designs, multiple hardware
emulators can be connected together. This type of
technology is widely used in industry to prototype
ASICs, Application Specific Integrated Circuits, and
recent microprocessor designs such as Intel’s Pentium
and AMD’s K5 processor chips.

6 Computer Engineering Design Laboratory

In the first offering of CmpE 4500 and 4510 there
were 30 students. Class met twice a week and the
laboratory was open sixty hours a week. Remote
access to workstations was available via the campus
network. Students were assigned the task of designing
a 32-bit RISC processor, developing a VHDL
synthesizable model and simulation, prototyping the
design on a hardware emulator, and developing an
assembler and a compiler

TABLE 2 Outline of Lecture and Laboratory Topics

Week Computer Engineering Design I
Laboratory Assignment

Computer Engineering Design I
Lecture Topic

1 VHDL Tutorial Overview of Design Process
2 Design and Select Instruction Set Designing an Instruction Set
3 Retarget Meta Assembler Retargeting the Meta Assembler
4 Design Data Path Design of Data Path Architecture
5 Develop VHDL model

of Processor
Assembly of Benchmark
Programs and Design Review

6 “ VHDL CAD Tools for Synthesis
 and Simulation

7 VHDL simulations VHDL Instruction Level Test
 Simulation

8 VHDL instruction level test VHDL Benchmark Program
 Simulation

9 Assembled benchmark program
 VHDL simulation

VHDL Synthesis of Design and
 Timing/Area Analysis

10 VHDL synthesis of processor
timing and area reports

Design Presentation and Final
 Report

Week Computer Engineering Design II
Laboratory Assignment

Computer Engineering Design II
Lecture Topic

1 Emulation Software Tutorial Overview of Emulation Hardware
2 Logic Analyzer Tutorial Overview of C Compiler
3 Compiler Retargeting and

Hardware Emulation
Hardware Emulation CAD Tools

4 “ Retargeting the C Compiler
5 “ Compiler Test and Design Review
6 “ Emulation System Test and

Debug
7 Hardware Emulation of

 Benchmark Program
Emulation System Test and
Debug

8 Compilation of Benchmark
Programs

Compiler Benchmarks

9 Simulation and Hardware
Emulation of Compiled Programs

Running C Programs on the
 Hardware Emulator

10 Demonstration of Prototype
Computer System

Design Presentation and Final
 Report

A benchmark program was proposed to compare
functional designs. Metrics for the design included
gate count and total execution time. Several possible
instruction sets and architectures were suggested as a
starting point [4,12-15].

Most students selected a MIPS instruction set and
architecture since it had been studied in earlier
coursework. Two groups developed their own
instruction set and worked on superscalar designs.
The lecture and laboratory outline for CmpE 4500 and
4510 is shown in Table 2.

In CmpE 4500, the first course in the sequence,
students designed a synthesizable VHDL model of a
pipelined RISC processor. Their VHDL design was
then automatically synthesized into gate level logic
and simulated using a popular commercial CAD tool,
Synopsys. This tool has predefined VHDL based
implementations of ALUs, multiplexers, and registers
making the design process easier. Hardware for add,
subtract and multiply operations can be automatically
inferred from the symbols “+”, “-”. and “*” appearing
in VHDL code. The synthesis process requires several
hours of workstation time for each group.

In the first two weeks of the course, students
divide into groups ranging in size from two to four
and design their instruction set. Then using a meta
assembler, students develop an assembler for their
new machine. The benchmark program is hand-
compiled from C into assembly language for use in the
first course of the two course sequence. At the same
time as the assembler and benchmark programs are
being developed, students design the data path
architecture of a processor for their instruction set.
Coding several benchmark programs at this point
exposes any major deficiencies in the instruction set.
Short machine language programs, assembled using
the meta assembler, are run in the VHDL simulation
to verify correct operation of the processor at the
instruction level. A written report or design
specification describing the instruction set and data
path architecture with block diagrams is used as the
basis to begin coding of the VHDL synthesis model of
the processor. Most groups choose to divide the
VHDL work up which each team member being
responsible for a different pipeline stage. Typically
each pipeline stage was a separate VHDL behavioral
module. A top level VHDL structural model connects
the stages together. Two to three levels of hierarchy
were present in all designs. The VHDL model was
then simulated and tested using short test programs
produced using the meta assembler. After the
simulation was successful, each group began the
synthesis of the design to a gate level schematic. The
netlist or schematic is then input to the automatic
partitioning software which is used to divide the
design between multiple FPGAs in the hardware
emulator.

At midterm and the end of the quarter, each design
team makes a formal presentation of their design and
submits a written report. Design hierarchy was
emphasized in the class as well as commenting
methodology. In an industrial environment,
communication of design details through well
commented hierarchical hardware description
languages such as VHDL is becoming very important.
A news group was created to permit students and
instructors the exchange ideas and tips about the
various tools. Design teams were evaluated based on
the correct operation of machine language instruction
level test and benchmark programs, execution time
and memory requirements of these benchmarks, and
the number of gates used in their design. In addition

 7

to instructor and TA input, students are encouraged to
provide comments on other groups presentations and
to rate the participation of other members of their
group. Each team member is required to present a
portion of the formal presentation.

In CmpE 4510, the second course in the sequence,
students run machine language programs on the
prototype machine and verify correct operation using
an HP 16500 logic analysis system. The logic
analyzer connections are left on predefined back panel
connector pins that can be selected automatically in
software by using the interconnect FPGAs with
constraint files. This prevents students from needing
to move the connections which would in time damage
the connectors and also provides for quick
changeovers from one design group to the next. It is
possible to switch designs on the emulator and logic
analyzer in less than five minutes. In parallel with this
task, work starts on retargeting the C compiler for
their machine. Lcc, a public domain retargetable C
compiler available for UNIX workstations and PCs, is
used for this step. Assembly language files generated
by the compiler are then input to the meta assembler
to produce machine language code. Machine
language files are then used to run several benchmark
C programs on the prototype machine.

Two formal presentations of the design and a
written report is required from each group. In
addition, informal design reviews with the instructor
are held twice each quarter. Traces of programs
running on the hardware emulator are displayed and
recorded on the logic analyzer. Working computer
designs must be demonstrated to the instructor or
laboratory TA. Teams are also evaluated based on the
correct compilation and execution time on the
hardware prototype of several C benchmark programs.

The designs resulting from the first offering of this
course are summarized in Table 3. Over the six month
period each group’s design reflects a total
accumulated effort of approximately one thousand
person hours. A total of nine teams completed the two
course sequence. Six of the nine designs ran the
required benchmark program successfully on the
hardware emulator. Three designs were only partially
successful. The benchmark program was a bubble sort
program that sorted eight numbers in an array in
memory. The sort program from [2] is a short C
program that contains integer only add, subtract, and
compare operations, nested loops, if statements,
integer variables, array and stack operations, and a
subroutine call. Thus it serves as a reasonable test of
the basic operation of the compiler and the computer.
Several other C programs were provided to test
additional features of the compiler. Most groups
divided up into a hardware design and emulation team
and a compiler team for the second course in the
sequence.

Two of the groups designed their own instruction
set and two built a 2-way superscalar machine. They
also wrote a code reorganizer to optimize the pipeline
scheduling of assembly language code for their design.

These designs worked but they taxed the available
computer and emulation resources to the limit.

Three of the groups’ processor designs included
hardware multiply and one group designed a hardware
divide unit. Only small versions of the multiply and

TABLE 3 Summary of Student Processor Designs.

Machine
Name

Inst.Set
Arch.

Data Path
Architecture

VHDL
Sim

Hardware
Emulation

Compiler
Retargeted

Benchmark
Results

Gate
Count

Dueling
Pipes

RISC
16-bit
Data
Path

2-way
Superscalar

5 Stage
Pipes

64 Registers

Yes Ran
Benchmark

Program

Passed all
test

programs

357 clocks
12.34 MHz

36272(32)
8632(8)

Speed RISC
MIPS

5 Stage Pipe
32 Registers
1 Delay Slot

Yes Ran
Benchmark

Program

Passed all
test

programs

490 clocks
6.2 MHz

21200(32)
9557(8)

Scotty RISC
VLIW

2-way
Superscalar

5 Stage
Pipes

Yes Ran with
minor

problem

Passed
main

Benchmark

n/a
5 MHz

29000(32)
10853(8)

Dino RISC
MIPS

5 Stage Pipe
32 Registers

Yes Ran
Benchmark

Passed all
test

programs

920 clocks
5.68 MHz

25800(32)
9803(8)

Lightning RISC
MIPS

5 Stage Pipe
32 Registers

Yes Ran
Benchmark

Passed
Benchmark

390 clocks
10 MHz

30100(32)
10379(8)

Melvin RISC
MIPS

5 Stage Pipe
32 Registers

Yes ALU stage
test only

Partial 827 clocks
4 MHz

28000(32)
8945(8)

Dinosaur RISC
MIPS

5 Stage Pipe
no Data

Forwarding
32 Registers

Yes Ran
Benchmark

Program

Partial 672 clocks
4 MHz

24000(32)
9200(8)

TBM RISC
MIPS

5 Stage Pipe
32 Registers

Yes ALU stage
test only

Partial n/a
5 MHz

19200(32)
n/a(8)

Midget
MIPS

RISC
MIPS

5 Stage Pipe
32 Registers

Inst.
Level
test
only

ALU stage
test only

Partial n/a 16050(32)
6067(8)

divide hardware were included on the emulator since a
full 32-bit version of array multiply or divide would
use most, if not all, of the 30,000 gates available on
the hardware emulator. Divide hardware is not
automatically produced by the synthesis tool. Due to
gate count and time constraints floating point
hardware was not included.

All of the groups were able to successfully
develop the assembler for their design. A meta
assembler definition file must be written to define the
new instruction formats. This process is somewhat
similar to writing macros. Once instruction formats
and mnemonics are defined, an assembly language
program can be written and assembled using the meta
assembler. An object module in hex format and a
listing file is created by the assembler. This machine
language file is then read into the VHDL model’s
memory with a read command or hardcoded into a
ROM used to simulate instruction memory. Three of
the groups decided to write their own custom
assembler.

The efforts to retarget the C compiler were for the
most part successful. The Lcc compiler emits
assembly language source files which are then
assembled using the meta assembler. The machine
specific features for the compiler’s code generator are
contained in a single machine definition file that must
be modified for retargeting. Three of the groups ran
numerous tests on the compiler and produced correct
machine language automatically for several
benchmark programs that ran on the prototype system.
The remainder of the groups produced correct
instruction sequences for short benchmark programs
but they found it necessary to hand edit the assembly

 8

language files prior to assembly to correct minor
problems with assembly language register
assignments, addressing modes, psuedo-ops and
directives.

Using timing estimates from the VHDL synthesis
tool and clock cycle counts from the emulation
hardware, the sort program benchmark results are
summarized in Table 3. The clock cycle times are
based on gate delays for the Xilinx 4000 technology
libraries. Clock cycle times are slower on the
emulator due to programmable interconnect FPGAs
and the physical dimensions of the emulator. Three of
the designs were fully operational at 3.2 MHz on the
emulator.

As shown in the last column of Table 3, two
versions of the design were developed by most groups.
A 32-bit version was run in the VHDL simulation
tests. A smaller version with an 8-bit data path with
full 32-bit instructions and control was developed by
most groups to permit the design to synthesize quickly
and to easily fit on the emulator. The limiting factor
was not the total gate count rather it was the maximum
number of available FPGA I/O interconnect pins.
Data path models with 32-bit busses and large
forwarding muxes quickly consume most of the
available pins on the FPGAs in the emulator. So we
quickly found that around 10,000 gates in a RISC data
path design was a reasonable target instead of the
maximum of 30,000 suggested for the hardware
emulator. Larger hardware emulation systems which
could handle the larger 32-bit designs are currently
available. 32-bit designs could have be placed on the
emulator at the expense of greatly increased computer
and user effort. Locking the pins to pre-assigned
locations for the logic analyzer also consumes
additional interconnect resources. The smaller design
also greatly reduced the computer requirements for
each design cycle to just a few hours and made for a
reasonable student project. Benchmark programs
were selected to use small integer data values so that
they still function correctly on the smaller models
running on the prototype.

7 Future Enhancements

Based on our experiences in the first offerings of
this course we plan several enhancements. The first
offering was successful, but it would be possible to
accomplish more now that we have become familiar
with all of the various tools and have developed lab
manuals, tutorials, and batch files for the students.

It became apparent that our current instructional
computer resources were barely adequate for the task
given our anticipated enrollment of around one
hundred students per year. Our workstations could
use more physical memory and swap space to run the
CAD tools required. Currently we have a small
number of UNIX workstations with 128M of memory
and 375M of swap space. This is close to the
minimum required and for some of the designs it was
a limiting factor with our current CAD tools. Several
hours of continuous workstation time are required to

synthesize the design and to map the design to the
emulator. Design teams required four to six hours of
workstation CPU time for each design cycle. Eight
hour time slots were reserved for designs teams on two
workstations. The minimal disk file space required for
each design is around 150M. We are investigating
several approaches to upgrade and obtain additional
workstations.

Four of the groups detected timing problems that
caused errors on the emulation hardware after
successful VHDL behavioral simulation. In each case
it was a real timing problem traced back to VHDL
coding errors. They were able to detect and diagnose
the problem, modify the VHDL, resynthesize and
eliminate the timing problems. Problems included
combinatorial loops, inferred latches, logic hazards
on critical control lines, and mixing level triggered
latches and edge triggered flip-flops in the same
design. It is likely that a post synthesis full-timing
gate level simulation would have detected these
problems prior to emulation. Workstation availability
and multi-vendor CAD tool interface problems
prevented the widespread use of full-timing gate level
simulations during the first offering of this course.

It is possible to attach external hardware to the
emulation device via a back panel wire wrap
connector containing 512 pins with TTL signal levels.
No system clock is provided on the emulator so one
was constructed at Georgia Tech. Using the back
panel pins, an external variable speed clock circuit
with a reset and single step switch reminiscent of old
style computer front panels was connected to the
special bus lines. These low skew clock bus lines are
distributed directly to all Xilinx chips The logic
analyzer is used to monitor and check busses output to
the back panel pins for correct operation. We plan to
add external hardware such as lights and switches, a
data terminal, expansion memory, and other I/O
devices which would interact with the computer
system and impose real-time constraints on the
designs. The terminal could be easily be used to add
human I/O to the C programs running on the emulator.

Once I/O devices are interfaced and functional and
a small monitor or OS kernel program written in C
could be ported to the design using the retagetted C
compiler. A minimal set of assembly language
functions for I/O would need to be rewritten and
assembled using the meta assembler. A timer and
interrupt hardware could easily be added to each
design in VHDL to provide a time slice interrupt for
multitasking.

Actual VLSI chips with higher clock rates could
be automatically produced using the VHDL synthesis
generated netlist as the input to a silicon compiler
[10]. This process would add a substantial delay due
to VLSI fabrication times and would make design
turnarounds difficult if not impossible in a one quarter
course. In future offerings of this course, designs will
be fabricated using this technique after successful
simulation and emulation.

 9

Complex processor oriented VLSI chips fabricated
using MOSIS have traditionally have had a high
failure rate due to inadequate simulation and testing.
MOSIS now recommends simulation and even
emulation prior to fabrication. This would allow more
of the design errors to be identified prior to chip
fabrication. MOSIS chips fabricated from this
methodology will have a higher success rate. The use
of the hardware emulator in this course serves the
purpose of greatly decreasing the design cycle and test
time at the expense of a slower clockrate on the
prototype system. Clock times of one to two orders of
magnitude lower than the actual VLSI chip still permit
the execution of systems level software that could not
be simulated in a reasonable amount of time.

8 Conclusions

Rapid Prototyping provides a new paradigm for
computer architecture classes. With the proper CAD
tools and equipment it is possible for groups of
undergraduate students to design, simulate, and
develop working prototypes of complex computer
systems as part of their laboratory coursework. The
equipment and CAD tools required are available to
schools at prices comparable to existing instructional
laboratories. Students gain a sense of accomplishment
and work harder on the computer design projects
when given the opportunity to use real hardware rather
than just a software simulation. Student and employer
feedback has encouraged the continued use of new
CAD tools, FPGAs and the new emulation hardware.
A rapid prototyping design laboratory demonstrates
and unifies many of the ideas taught in numerous
undergraduate classes and serves as an ideal capstone
design course for computer engineering students.

Acknowledgments

The authors would like to thank the many students
and teaching assistants who aided in the development
of the new courses. Donations of workstations and
logic analyzers from Hewlett Packard, Personal
Computers from Intel, and CAD tools from AMD,
Synopsys, Viewlogic, Xilinx, and ZyCAD made the
development of these new laboratories possible

References
[1] R. H. Katz, Contemporary Logic Design,

Redwood City, CA: Benjamin/Cummings
Publishing, 1995.

[2] D. Patterson, D. and J. Hennessy, Computer
Organization & Design The Hardware/Software
Interface, San Mateo, CA: Morgan Kaufmann,
1994.

[3] J. Larus, Assemblers, Linkers, and the SPIM
Simulator, University of Wisconsin, 1991.
Reprinted in [1], manual and SPIM software
available via ftp from ftp.cs.wisc.edu.

[4] J. Heinrich, MIPS R4000 User's Manual,
Englewood Cliffs,N.J.: Prentice Hall,. 1993.

[5] C. Fraser, C and D. Hanson, A Retargetable C
Compiler: Design and Implementation,
Redwood City, CA: Benjamin/Cummings
Publishing, 1995. Information and compiler
source code available from http://www.
cs.princeton.edu/software/lcc

[6] P. Ashenden, The VHDL Cookbook, University
of Adelaide, 1990. Available via ftp from
bears.ece.ucsb.edu.

[7] P. Kurup, and T. Abbasi, Logic Synthesis Using
Synopsys, Boston, Mass: Kulwer Academic
Publishers, 1995. Synopsys information
available from http://www.synopsys.com

[8] VHDL Reference Manual for Synthesis,
Marlboro Massachusetts: Viewlogic Systems,
1992. Viewlogic information available from
http://www.viewlogic.com

[9] XACT Viewlogic Interface User Guide, San
Jose, CA: Xilinx Corporation, 1994.
Xilinx information available from http://www.
xilinx.com

[10] R.W. Brodersen, editor., Anatomy of a Silicon
Compiler, Boston, Mass: Kulwer Academic
Publishers , 1992. Lager information available
from http://infopad.EECS.berkeley.edu/research
/tools/lager

[11] H. Owen, U. Khan, and J. Hughes, "FPGA
Based Emulator Architectures”,More FPGAs
(Will Moore and Wayne Luk, Eds.),
Abbingondon, England: Abbingondon EE & CS
Books, pp. 399-409 (1994). Emulator
Information available from
http://www.zycad.com and http://www.
quickturn.com

[12] D. Patterson, and J. Hennessy, Computer
Architecture A Quantitative Approach, San
Mateo, CA: Morgan Kaufmann, 1990.

[13] R. L. Sites, ed, Alpha Architecture Reference
Manual, Bedford, Mass: Digital Press, 1993.

[14] D.L Weaver,. and T, Gemond eds., The SPARC
Architecture Manual, Prentice Hall, Englewood
Cliffs, H.J. 1994.

[15] S. Wiess and J. E. Smith, Power and PowerPC:
Principles, Architecture, Implementation, San
Mateo, CA: Morgan Kaufman, 1994.

