Tradition and Change: What Should We Be Teaching In Computer
Architecture?

Daniel P. Siewiorek
Buhl Professor of Electrical and Computer Engineering
and Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Abstract

The structure of computers has been taught for almost
30 years. During that time there have been many
changes both in industry and academia. Even amidst
all this changed there have been certain invariant chal-
lenges to educators. By taking a historical perspective,
this paper identifies some of those invariance. The
paper concludes with an example of a possible com-
puter architecture course based upon interdisciplinary
design that combines both educational and research
experiences.

1 Background

Over the past decade the computer industry has un-
dergone major restructuring, from an industry that
was once dominated by a small number of vertically-
integrated companies to an industry with hundreds of
companies each occupying small horizontal niches.
Thirty years ago, large mainframe and minicom-
puter manufacturers develop and supply technolo-
gies at all the various levels of abstraction in a com-
puter system from the basic underlying circuits to the
processor/memory/input-output hardware to the op-
erating system and the end-user application. These
vertically-integrated companies which thrived on spe-
cialization preferred to hire students who had deep
knowledge about one subject.

Now the industry has become much more frag-
mented with the various layers in the computer hier-
archy provided not only by different companies but

also by companies that are geographically distributed.
Interfaces between the various layers have become
the focus of attention and interoperability the major
concern. Today, companies prefer generalists who
are able to converse among all levels of the computer
hierarchy. s

At the same time there have been dramatic changes
in universities. Students have been exposed to com-
puters at an earlier age and arrive better prepared with
respect to computer technology than ever before. As
we have learned how to teach computer architecture
there are better educational materials such as text-
books and software. Rapid change in hardware tech-
nology which increase complexity at the rate of 10ca-
pability and lower cost. Indeed, many of the personal
computers that students use today have features that
were reserved for supercomputers only 20 years ago.
Thus more concepts are required to understand con-
temporary computer systems.

Design has returned as a major component in under-
graduate education. Students are learning that there
are many good answers not just a single answer. This
complicates the evaluation process since each indi-
vidual design has to be understood on its own merits.
Design is taught best in a studio-like arrangement as
opposed to the engineering class lecture style courses
rising from the period when engineering education
focused on analysis rather than synthesis.

As design has become more complex, a single stu-
dent cannot complete a realistic design in a single
course. Students must operate in teams in order to
complete a design. Furthermore, tools have become
more important as a means of leveraging student ef-

fort. Not only are tools required to handle the com-
plexity of the design they also represent a realistic
environment in that upon graduation students would
be expected to use tools in industry. However, the
complexity of tools has grown as fast as the artifact
which they were intended to design. It can easily take
an entire course in order to learn how to use an in-
dustrial strength tool leaving no time to experience
design. On the other hand, university tool sets can
be simple and direct however they do not prepare stu-
dents for the real world. Universities are struggling
with mechanisms for handling design and tool com-
plexity. Perhaps history provides some insights on
how to handle these trends.

2 Trends in Computer Architecture
Education

There are four inter-relating factors in computer ar-
chitecture education: theory, design, evaluation, and
the student. Let’s examine the evolution of these four
components over the past thirty years.

Theory. Initial efforts at teaching computer ar-
chitecture attempted to isolate individual principles
(such as addressing modes, memory hierarchy, buses,
etc.) and then that provide a set of alternatives for
implementing the principle. In an attempt to integrate
the principles, case studies were introduced. Since
there were few well documented case studies, it was
difficult to introduce new principles. Next it became
common to integrate all the principles into an exam-
ple general-purpose instruction set. These “teaching
examples” fit the various principles together in a pre-
cise fashion. While these examples did integrate the
principles for the students, the students were often left
with the mistaken impression that there was only one
way to fit all the pieces together.

Design. Computer architecture is an active disci-
pline. One cannot learn computer architecture with-
out attempting to do design. Initially designs were
done with paper and pencil. Subsequently, logical
laboratories became available in which gates could
be interconnected to form small pieces of a computer
such as an arithmetic logic unit. In the early 1970s
Digital Equipment Corporation introduced a product
called the Register Transfer Modules (RTM) which

were also sold as the PDP-16. Figure 1 shows a sim-
ple RTM system for summing the integers from 1 to
10. The right hand side of the diagram is composed
of the data and memory modules while the left hand
side is composed of a string of control modules. The
control modules pass an activation signal to the next
control module thereby imposing sequencing. Each
register transfer was composed of a simple right hand
side, left hand side sequence. For example, loading
the number N from a switch register into an inter-
nal register I would proceed as follows. The student
would wire the signal “N put onto the bus” and “I
takes off the bus” to the output of the control mod-
ule. When that output was activated, the “N puts on
the bus” pin, realizing that it was the right hand side
of the register transfer operation, would put its con-
tents onto the bus and issue to the bus sense module
a ‘“data ready” signal. The “I takes from the bus”
signal would realize that it was selected and wait to
see the data ready signal before taking the data from
the bus. When the data was taken from the bus the “I
takes from the bus” signal would notify the bus sense
module that the operation was completed by a “data
accept” signal. When the bus sense module has seen
both a data ready and data accept sequence it issues
to all the control modules a “done” signal. When the
control module which started the operation of reading
N into I sees the “done” signal it passes control on to
the next module in sequence. Thus register transfer
modules made it very easy to design and implement
arbitrary algorithms. As a matter of fact it became
possible to design a simple computer on a single page
as shown in Figure 2. During the late 1970s simula-
tion packages, first made available through universi-
ties and ultimately available commercially, replaced
hardware as the design vehicle. While more com-
plex designs could be handled, students lost some of
the previously-acquired skills such as hardware test-
ing and debugging. More recently, the availability
of field-programmable gate arrays (FPGA) and VLSI
chip sets (e.g., processors, memory, and input-output)
again make it feasible for students to carry designs
completely through to hardware.

Evaluation. The simple general-purpose com-
puter has many pedagogical advantages. It is a com-
plete system so that students have a sense of accom-

Control part

Dats -Memary payt

evoke operations

detivace

fnudl .
X({evaoke) :u::.ltion{-'-_u=’ T(ewicches:
T =N o g NclS;)
ACCLVALE e .
next 2 l L~ [Tr Lgeneral putpase
s : § - : arichmeric unfts RTM
K{serial merga] ! =158, I:"'"‘
; § + SalS: > pras
1 e ’ vired}
4 “2+1
‘ L sttt
K{evoks} ' - i
Fe 1 o1 fod d
> .
K{braach 2.wav) : w J K{bus senss
aa ¥ L.]
(I = Q)2 " = and terwindtion;
WP " Dy o B ages:
centrat ; e iy . i, . 2 1ix]
ii::’ Exit Oplratinn :uuoiuie =
bup Cone\DOME :ipart of OTH tus
=1 and preswired s
$E e for ozl a1l ¥modulas)

RTM diagram for summing pasitive integers from 1 to N,

Figure 1: RTM diagram for summing positive integers from 1 to N.

plishment once they finish the design. It incorporates
many of the principles in computer architecture edu-
cation. Furthermore, with a suitable subsetting of the
instruction set it is possible to adjust the complexity
of the design so that it may be completed during a
single course. How can the instructor evaluate the
quality of the designs produced by the students? Ini-
tially we would calculate the average number of clock
cycles to execute all of the instructions in the instruc-
tion set. Later it became possible to simulate small
benchmarks. Often students get the impression from
text books that a 10% increase in performance is an
important achievement. Thus after each lab we pro-
vide students feedback on the design space that they
and their fellow students have explored. One example
design space is shown in Figure 6. The datarepresents
student efforts to code a particular benchmark in two
instruction sets. The students quickly learned that
factors of five-to-one are common between program-

mers, Furthermore, these programmers may use the
instruction sets in ways such that design principles in-
tended by the architect are violated. For example in
the plot on the bottom of Figure 6 there are nearly as
many cases when the complex instruction set (VAX)
requires more instruction executions than the simple
instruction set (Alpha) and vice versa.

Students. Instructors and students only have a
finite level of effort that they can place on any given
course. From the student’s side, there is a “rule of
constant complexity”. The students can only produce
a fixed quantum of effort. The goal is to make that ef-
fort as meaningful as possible and not to squander it on
details about software tools and approaches that havea
limited lasting value. Students do very well in design-
ing by analogy. Thus if students are given example
test programs and component libraries from which to
assemble their designs, they will not be caught in the
pitfall of not even knowing how to start, Furthermore,

TS P—
ﬁ :-5:!'1 . e rqligl i em.'1 ~ulTrhas) _|'
e }I::u:"m:t.tuu. r"“:. ;tu' T 1"'1‘531'-31‘-'!.!” c——
Egtrl FaTxn ; Bolte RED | Dot A, INE e
1.8 HLA Lonhazle —_
H E'MI(;'-'I* 1 ey LAINR R AT R CRT N,
&—%.1:-1"15;13" Dezwde kna(cantiona) MideouysH; Ma, He) -
3 _| — TP lerype) — Tinardal dalesinee) -—
kD APD 182 LCh JHE iy kLl vuerale
tip - 0] dop = i [tep = 7Y iy, = 1y fon ~ adep = Shiuw = 8] top - i
dlsa] meorfHz) R-H|Ha! Hit= & Ll Hsb = &
UL i ads E1LIEY of 2 R L LU §ivd A CRSKE -) v dukip o
o = T : '3 (B3EALSR1 —» Jakig
e I oL BBk L
1. L. i .l g 1" l d ey L R L R W < Chrsi W S
. : el = & = SR LpICRECT bt et
BT MRy
feis = a0 A02p%uilL =ium
17~ 5 4 ¢ 0) &3 Snirk dele
FI TR L Seburowrrame 1.
& Sl

Figure 2: RTM diagram for a simple computer.

letting the students work together as teams also helps
minimize wasted effort in looking for answers to fun-
damental questions during the start-up transition. By
talking among themselves students can often figure
out an approach to a new topic rather than waiting for
office hours or lectures to ask questions. The instruc-
tor effort must also be leveraged. In order to simulate
an entire benchmark, the complete design had to work
correctly. This “all or nothing” approach provided
harsh penalties for those students who were very of-
ten were within one “bug” of a completely functional
system. Thus we have used test scripts which exercise
well-defined boundaries and interfaces in the system.
By defining critical interfaces such as between the con-
trol part and the data part of the system, it becomes
possible to initially probe the data part to assure its
correct functionality before exploring the control por-
tion. Partial credit can be assigned for these unique
designs. Given these trends in the various factors of

10

computer architecture education, the question remains
what should be taught in computer architecture for the
future.

3 What is the Goal of Computer Ar-
chitecture Education?

Most computer architecture courses are taught as if the
students would become instruction set architecture de-
signers. Less than 1 percent of the students will be
involved in design of an instruction set. As noted
before, instruction set architectures have been easy to
understand while embodying all the major architec-
tural issues. From our rule of “constant complexity”
instructors have sought the “one page” description of
an instruction set. The description could be textual
or represented by a state machine. Figure 2 depicted
the state machine of a simplified PDP-8 [1] while Fig-

Static Size

- 1= —
g
S 100 .
1
i F B :
A Bl — e
7 o
w—“‘w.‘_l. i
il z :
0 . :
i I i RS
T x @] [R L] [
NAX |PSTUGIETE}
Dynamic Size
‘:Ill’.:i "~
1800+ ;
1400 . F
1
E‘ 14 H 1
i 1 1
£ 1000
L B
= Ll
2 I
2
i ‘-m N v s : o
HEL Y] gl -
0p+ -
-, e, - Nawm
a—— s
a 5
“a 2 w0 &0 00 IR 0 em
VAX rawustonal

Figure 3: Student effort to code benchmarks in two instruction sets.

ure 4 depicts a subset of the state machine for the DLX
[2]. There is a striking similarity between these de-
scriptions which were generated over 20 years apart.
There is an instruction fetch, instruction decode, and
execution.

A larger portion of the students might design non-
instruction set systems to which the principles of lo-
cality, concurrency, etc., that they have learned in the
instruction set architecture design can be applied. But
again, this would represent only a few percent of the
student population. By far, the vast majority of the stu-
dents would become instruction set architecture users
wherein they would build systems. Thus in the future
we should be educating systems architects.

4 A System Architecture Course

The goal of a system architecture course should be
to teach students how to specify systems. In the de-

11

sign of these systems they should use new generation
computer-aided design tools. The course should in-
volve multiple disciplines. As an example, consider
the wearable computer course taught at Carnegie Mel-
lon University for the past three years. The course
involves undergraduates from several disciplines in
the design, fabrication, and evaluation of a complete
computer system in a four-month semester course.
Students include industrial designers, electrical engi-
neers, mechanical engineer, human factors, and com-
puter scientists. The students follow a design method-
ology that allows as much concurrency as possible
during the design process [3]. Concurrency occurs in
both time and resources. Time is divided into phases.
Activities within a phase proceed in parallel, but
are synchronized so that phase boundaries culminate
in an integrated demonstration. Resources consists
of personnel, hardware platforms, and communica-
tions. Personnel resources are dynamically allocated

Static Size

180y
I t
G —_—
i
ST —_
a .
2 1 .
T 100 —
] * | !
= - - :
£ ar— -
z v
H%._I_ 3
-~ -6:‘ - :
ks ; :
. ™ | I 5
] n @ % e 1™ 1@ 1
“AX [rsTuchons)
Dynamic Size
‘.lm] [
1800+ i
i
s =
E T8 = i
£ i i !
2 0
i
= 0
- I
f <o B : T
tmoo -
e =
- ' e
e —
- . .
T @0 a0 w0 MI o0 @0 e
JAX Mramu~tonu

Figure 4: Subset of the state machine for DLX.

to groups which focus on specific problems. Hardware
development platforms include workstations for ini-
tial design, personal computers for development, and
the final target system. Communications allow design
groups and individuals to communicate between the
synchronization points. The final system is evaluated
in field trials.

Figure 5 depicts some of the phases in the de-
sign of an initial inspection check list computer for
heavy vehicle maintenance. Not only do students
gain experience in operating in interdisciplinary de-
sign teams, they have created a network of over forty
suppliers of components and manufacturing services
required for the final system. They learn about inter-
disciplinary dependencies, scheduling, risk reduction,
and how to appreciate different disciplinary views of
a single artifact. The systems produced by the stu-
dents are part of a research project not only identify-
ing how to perform better interdisciplinary design but

12

_ also experimentally-determining the best form factor

for new generations of computers. Students become
highly motivated when they realize that not only will
their design be fabricated but there will also be users
who will depend upon their design to accomplish their
work.

[1] Siewiorek, Daniel P, C. Gordon Bell, and Allen
Newell, Computer Structures: Principles and Exam-
ples McGraw-Hill Book Company, NY, NY, 1982.
[2] Hennessy, John L. and David A. Patterson, Com-
puter Architecture A Quantative Approach, Morgan
Kaufman Publishers, Inc. Palo Alto, CA, 1990.

[3] Siewiorek, Daniel P, Asim Smailagic, Jason C.Y.
Lee, Ali Reza Adl-Tabatabai, An Interdisciplinary
Concurrent Design Methodology as Applied to The
Navigator Wearable Computer System, Journal of
Computer and Software Engineering, Special Issue
on Hardware/Software Co-Design, May 1994,

+ Beetovie, mechuindy comprer
desiyt e divras maneeioe

b Heehainfud isdustral desippers arleet
the mthle vl romeny nprdil

e-d Comprer modek of fhe e bemories d
mee bl bansing,

« Tret con Invfics ik ofthe weanble
compenr, the rerakoFf we doses sders
e

L SEme ST 001

Figure 5: Phases in the design of a wearable computer.

13

