Components of a Computer Architecture Education

Yale N. Patt
University of Michigan
Ann Arbor, MI

Abstract

Computer Architecture, if it is a science, is a sci-
ence of tradeoffs. Thus, the more ca.sesd(computer de-
signs) we ezamine end the more we understand about
the components of a particular case, the betler we can
make those trade-offs. The reality, of course, is that
computer architecture is not a science ot all, but rather
e craft. This paper ezplores some of the training that
is essential in developing the capabilily of the crafis-
man.

1 Introduction

This paper represents my views as to what a com-
puter architecture education should consist of. I will
describe a set of courses which I suggest constitutes a
core computer architecture curriculum. I will also of-
fer some statements about what I think are important
to learn in some of those courses. First, I feel com-
pelled to make a few introductory remarks. My view
is that if you understand some of my prejudices up
front, you are better able to know whether to embrace
or disregard all that follows.

First, it should be clear that this treatment is very
much a personal note. What I am writing here is based
on almost 30 years in the business, — the business of
designing and the business of teaching. My views have
been influenced by anecdotal evidence which hardly
qualifies as a set of empirical laws. However, where
the more judicious choose not to tread, I bulldoze for-
ward, having warned the reader that much of what I
write here is the result of my experiences practicing
my craft, as teacher and designer. I make no pretense
that this is systematic science.

Where does computer architecture fit within the
spectrum of computing activity? Computer architec-
ture involves the ISA. The ISA (instruction set ar-
chitecture) is a contract between the compiler writer
and the microarchitect, so the better one understands
what the compiler can do and what the microarchitec-
ture can do, the more likely one is able to do serious
work in computer architecture.

For years, computer science education has started
with high level programming. In my view, that is
wrong. All good science starts with the foundations,
and then builds. Only non-sciences seem to start at
the top without proper underpinnings. In that spirit,
I argue for a curriculum that goes bottom up. That
means the student first learns digital logic design, then
computer organization, then actually designs a pro-
cessor, and lastly treats the architectural issues. My

19

belief is that students who have worked their way up

through the trenches are better prepared to discuss the

alternatives of the various architectural paradigms.
Computers exist to execute programs, so an un-

derstanding of the issues of computer architecture is

improved if one understands the nature of compilers
and the nature of operating systems. Programs do
get compiled before execution, so what a compiler can
do and can’t do has major impact on the execution
of that program. The operating system occupies the
processor an inordinate amount of the time, so know-
ing its characteristics enhance one’s understanding of
the demands on a computer architecture.

Processors today are implemented on single chips
consisting of many millions of transistors. The Digi-
tal Alpha 21164, for example, boasts 9.3 million tran-
sistors on a single piece of silicon. Consequently, an
understanding of VLSI circuits enhances one’s under-
standing of computer architecture.

CAD, on the other hand, is like a sliderule. That
is, CAD provides a set of tools such that no serious
computer designer would venture forth without a good
set. But, like a slide rule, it is necessary that the
computer designer understand the internal structure
of the tools only to the extent that is necessary to use
them effectively.

Computer architecture is not a theoretical disci-
pline, although an appreciation of theory is usually
helpful. That is, although a computer is not a Petri
net, nor a Universal Turing Machine, the ability to
examine processing capability from the standpoint of
those conceptual models can provide useful insights.
Nonetheless, one must always keep in mind that at the
bottom line, computer architecture involves real ma-
chines doing real work. Real machines have ”gotchas,”
and you don’t master computer architecture without
exposure to the complexities inherent in all real ma-
chines.

Industry can be immensely important in teaching a
student computer architecture because industry builds
real machines. I would insist that every student of
computer architecture be required to couple periods
of on-the-job training in industry with the curriculum
he/she absorbs in the university.

2 The Core Curriculum

With the biases stated above, I would argue for a
computer architecture core curriculum consisting of
four essential courses, preceded by a universal first
course in computer science and engineering (Course



0). These four courses (Courses 1 through 4) represent

the computer architecture component of a larger Com- -

puter Science and/or Engineering Curriculum. Other
than Course 0, the non-computer-architecture courses
are not discussed below. The curriculum is as follows:

2.1 Introduction to the Discipline

The first course, not specific to computer architec-
ture, but rather to the entire computer science and en-
gineering curriculum, should deal with fundamentals.
The student should come away understanding the ba-
sics of how a computer processes information, what
is a program counter, the fetch, decode, etc. instruc-
tion cycle, the notion of memory and the difference
between a memory location’s address and the value
stored at that address. The student should come away
with a basic understanding of the elements that make
up a data path, and the gates that combine to form
elements of that data path.

The student should also come away with a basic
understanding of the elements of a programming lan-
guage and the notion of translation from programs
written in that language to the executable image that
is presented to the microarchitecture. The student
should come away with some facility in writing pro-
grams in both the ISA that directly interfaces with the
microarchitecture and in a high level language that
has to be translated first into the ISA before it can be
executed. The student should come away with a ba-
sic understanding of the execution time of a program
so as to make choices with respect to what is a good
algorithm or a bad algorithm.

In short, the first course should be a bottom up
treatment of the various elements of a computer that
come together to do useful work. Where possible,
nothing should be left to "magic.” This first course
gives the overall picture, from which the following
four courses then build the discipline of the core of
computer architecture. I would add parenthetically
that this overall picture also enables the building of
the other sub-disciplines of computer science and en-
gineering.

2.2 Course 1: A serious digital logic de-
sign course

A serious computer design course provides the stu-
dent with the experience of dealing with the tradeoffs
that go into producing one complete computer design.
In this course students are given the specification of
an ISA they are to implement; how they do it is up
to them. The design component of this course is (ob-
viously) very high. Their designs should be complete,
down to the gates, using a CAD system that requires
students to analyze their designs, to perform timing
analyses, and to execute code on their finished prod-
ucts. Designs should implement real ISAs, with the
gotchas of a specific real-world machine. It does not
much matter which real world machine one designs,
they all have their own ideosyncracies.

In the real world, when elegance is at cross-purposes
with increased performance, elegance loses. Therefore,
my preference is a subset of a serious commercial ISA.
In the past, I have personally used subsets of the Intel
486, Digital’s Alpha, and Hewlett-Packard’s Precision

Architecture, for example. Whether the student’s de-
sign is microcoded or hardwired, whether it is heavily
pipelined or not matters a lot less than the fact that
the student takes the design all the way down to de-
bugged gates.
2.3 Course 4: Comparative computer ar-
chitecture

Once students understand the fundamentals, have
facility with the building blocks, and have done a se-
rious design project, they are ready to test the impli-
cations of various architectural choices. For example,
the effects of varying the characteristics of the cache
(size, associativity, block size, etc.), the effects of spec-
ulative execution, the nature of the instruction set ar-
chitecture, insterrupt structure, I/O handling, etc. all
make more sense after Courses 1,2, and 3 above.

2.4 Beyond the core

This concludes what I believe is essential to a core
curriculum in computer architecture. Thus it repre-
sents the end of the foundation, not the end of the
story. One could easily augment this core with courses
on multiprocessors, vector processing, I/O architec-
ture, fault tolerant computers, etc. These, I agree, are
useful, but they are all beyond the core, and would
not be appropriate substitutions in my view for the
courses listed above.

3 Concluding Remarks

These are exciting times for computer architecture.

First of all, the field continues to evolve. IBM took
a major departure from their very visible 360/370 line
less than ten years ago, with the introduction of the
RS/6000. Since then, they have joined forces with
Motorola to specify still another ISA, the Power-PC.
Digital announced a major departure from their long-
standing VAX line less than three years ago. Rumor
has it that Intel and HP will introduce a new archi-

" tecture within the next two years that will represent

20

a departure from the most profitable ISA in the his-
tory of computing, Intel’s x86. Less dramatic, but
still exciting, are the continuing changes to the other
architectures such as SPARC (v9) and HP PA.

Also, quite apart from the need for practicing com-
puter architects, there is a growing awareness that al-
goritms work better (i.e., execute faster) if their au-
thors have a clue as to the nature of the hardware these
algorithms are to run on. You can easily throw away
all the performance a modern processor buys you, if
youdon’t know how to harness that horsepower. Ergo,
greater attention is being paid to computer architec-
ture by the algorithm community. For every profes-
sional in the computer architecture community, there
is a large number in the algorithm community.

So. there is new knowledge to impart, and a grow-
ing cadre of professionals who need that new knowl-
edge. How we go about training these professionals
will say a lot about how well we satisfy that need.



