
AA VHDLVHDL ConversionConversion ToolTool forfor LogicLogic EquationsEquations withwith EmbeddedEmbedded DD LatchesLatches

Donald F. Hanson

Department of Electrical Engineering
University of Mississippi
University, MS 38677

Abstract
Logic equations are one way of modeling

combinational digital hardware. Pass transistors in MOS
circuits loaded with a logic gate often behave as a D
latch. In reverse engineering the 6502 microprocessor, it
was discovered that, except for bi-directional pass
transistors, the pass transistors could be modeled by D
latches. In general, pass transistors are embedded along
with logic gates. A hardware description language for
logic equations with embedded D latches, called DSH, is
described. In order to simulate these equations in VHDL,
a DSH to VHDL translator was written. Finally,
examples from the 6502 microprocessor are given.

1 Introduction

The faculty of the Electrical Engineering Department
at the University of Mississippi consists of eight
professors, all with the Ph. D. degree in electromagnetics
or microwaves. The undergraduate program is small with
about 20 students per year and is an Engineering Science
program, not an Engineering program. At the graduate
level, only courses in electromagnetics and microwaves
are taught.

Since 1978, an undergraduate computer architecture
course, El. E. 385, Computer System Architecture, has
been taught. The textbook that was used until this year
was Morris Mano’s Computer System Architecture. This
year, Katz’s Contemporary Logic Design was adopted,
which needed supplementation since a formal register
transfer language (RTL) or hardware description language
(HDL) at the register level was not covered. El. E. 385
was added to our curriculum to bridge the logic design
and the microprocessor courses. Mano’s book presents a
formal register transfer language definition, which is used
to explain processor design principles. One good thing
about Katz is that Katz’s approach encourages the student

to use the familiar state diagram approach to design the
controls for register transfers. On the other hand, Mano
defines a formal register transfer language, which Katz
does not do in detail.

Mano’s RTL is non-procedural and ordinarily applies
to flip-flops. For example, the statement, x: A←B, in
Mano’s RTL is composed of two parts: x is called the
control function and A ← B is called the micro-operation.
Transfer occurs on the negative edge of the clock when
x is asserted. In analyzing the 6520 PIA [1], it was found
that latches were used in a master-slave configuration with
one master and several slaves instead of flip-flops.
Therefore, for [1], Mano’s RTL was modified to apply to
latches. In this case, the statement, x: A←B, refers to
clocked latches rather than to flip-flops where x is the
clock and A and B are latches. This statement says that
when x=0, A is held, and when x=1, A=B. This requires
a separate RTL equation for each latch.

Microprocessor components, such as microprocessors
and input-output ports, are very complex digital functions.
For this and other reasons, only high level programming
models are usually provided. The formal definition of a
register transfer language, such as Mano’s RTL, is often
taught, but then is not used for modeling commercial
microprocessor components. The use of a formal
language to define the operation of a commercial
microprocessor component can succinctly define its
operation in detail. The performance can be analyzed
based on a given table of micro-operations and control
functions rather than reading a manual and picking out the
one sentence that applies. Often the sentence may not
completely describe the behavior and so a series of tests
may have to be done to determine the detailed behavior.
It is for this reason that a paper [1] was published on the
6520 Peripheral Interface Adaptor using the modified form
of Mano’s RTL for latches. This was used in our
microprocessor course at that time which was based on the
6502 microprocessor [2, 3].

Although a course in computer system architecture is
useful in "imagining" how a processor might be designed,
additional insight can be obtained by studying an actual
design. In the commercial marketplace, pressures of
competition force the details of a design into secrecy. For
the educational community, there are situations when it
would be helpful to be able to present design details.
Computer processors and components become obsolete
quickly. Therefore, while there is no reason to expect that
a manufacturer would release proprietary design data at
the time of release of a new component, there should be
less competitive disadvantage to releasing the design of an
obsolete component to the educational community. It
would serve the educational community if obsolete designs
were made available by the manufacturers for reverse
engineering. While many register transfer level behavioral
models for microprocessors have been developed, detailed
switching circuit level models for microprocessors at both
the behavioral and the structural level have not been
attempted because design details are not available.
However, in 1979, several microelectronics companies
were contacted and of these, MOS Technology, Inc. of
Philadelphia, PA did provide a copy of their blueprint for
the 6502 microprocessor and gave permission to publish
its design in behavioral and structural form, as long as the
blueprint itself was kept proprietary.

Anticipating finding static gates, such as were present
in the 6520 PIA, what was found were a large number of
pass transistors (analog transmission gates) used as
dynamic D latches. To handle these pass transistors, a
notation, first described in [4] and which has subsequently
been called D Sample and Hold (DSH) notation, was
devised to keep track of the connections to the pass
transistors in the processor. The major problem that led
to the use of this type of notation came about when many
pass transistors were used in series with combinational
logic gates. The use of this notation led to one equation
whereas more traditional techniques such as register
transfer language typically led to numerous separate
equations with many intermediate variables. These
intermediate variables were superfluous, adding nothing to
the meaning of the expression. The beauty of DSH is that
each expression contains all information about the
connections in a control path.

The nMOS pass transistor has three connectors, one
each for the source, drain and gate, as shown in Fig. 1(a).
If the drain is the input and the source is the output, then
the DSH notation is

Source = <Drain>Gate. (1)

This notation was chosen because in the context of the

Figure 1(a). nMOS Pass Transistor

Gate

(Input) Drain Source (Output)

circuit, the Gate controls the sampling of an input (Drain)
and passes it through to an output (Source). The "<" and
">" angle brackets delimit the "Drain" and "Gate" appears
immediately to the right of ">", the right angle bracket.
The source and drain leads, are labeled more by use
(output or input) than by any physical property since the
pass transistor is a symmetrical device. In most cases, the
Source (output) is attached to an inverter or other logic
circuit with equivalent gate capacitance Cg, as shown in
Fig. 1(b).

Figure 1(b)

VDD

Gate

Gate
Drain

Source
Cg

This equivalent capacitance serves as a dynamic memory
element. When the pass transistor’s gate is asserted
(high), the data on the input (Drain) is passed through to
charge or discharge the capacitance. When the gate is
low, the path between drain and source is high impedance,
and the data remains on the capacitance Cg provided that
it remains charged as before. When a clock is attached to
the pass transistor’s gate and a data input is attached to
the drain, then an output is available at the source
provided that a suitable equivalent capacitance Cg is
present at the source for data retention. The logical
function for this pass transistor -- equivalent capacitance
combination is that of a dynamic clocked D latch.
Dynamic latches, as opposed to static latches which store

data in a bistable circuit, store data on equivalent
capacitance. The charge on the capacitance in a dynamic
latch tends to leak off of the capacitance storage element
and so dynamic latches need to be refreshed periodically.
The 6520 PIA is an example of a static device and the
original 6502 microprocessor is a dynamic device.

The pass transistor’s gate is typically related to one
phase of a two phase clock, the two phases of which are
usually labeled φ1 and φ2. These clocks must be non-
overlapping such that φ1 φ2= 0 for all time. A typical
connection might be Q = <D>φ1. Here the pass
transistor’s source is labelled Q, the drain is labelled D,
and the gate is labelled φ1. In digital applications, D, Q,
and φ1 are logical variables where Q is the output, D is
the data input, and φ1 is the clock. When φ1 is asserted
(high), D is sampled, and is passed to Q; when φ1 is low,
Q is held at its present value (on capacitance Cg) and D
is free to change. In the general case, the pass transistor’s
gate is the sampling input. When it is asserted, D is
sampled and is passed to Q. Otherwise, Q is held.
Therefore, using this terminology gives it the name D
Sample and Hold (DSH) notation. This notation has since
been formalized into a hardware description language, also
called DSH. This paper includes the pass transistor
connection aspects of DSH notation, the logical aspects of
DSH for logical design, and the syntax of the DSH
hardware description language.

The DSH language allows one to write behavior in
one statement instead of many as is typical in register
transfer languages. The complete history of the signal is
contained in that one statement. For modeling in VHDL
[5], the history must be unraveled so that each term
represents at most one memory term, called DSH terms.
DSH terms have the form Q=<D>X where X is a logical
expression. If there are nested DSH terms, where D is
itself expressed as a DSH term or combination of logic
terms and DSH terms, then a de-nesting procedure must
be done to obtain the VHDL equivalent.

In modeling MOS circuits by structural level
equations, which is a goal of this paper, there must be a
correspondence between the equations and actual MOS
hardware. If an equation is written, then it should
represent at least one valid hardware topology. If it
represents only one, then instead of drawing a circuit or
switching circuit, an equation suffices. A list of equations
is often easier to handle (if they are understood) than a
schematic diagram. This is one of the motivations for this
work. If, in addition, a DSH equation is written, then an
actual structural hardware topology can be sketched
rapidly. Hardware can be drawn out directly from a set of
DSH equations.

Reverse engineering is the process of taking a
previously designed integrated circuit and de-embedding
its functional design. There are numerous situations where

an MOS component needs to be replaced due to parts’
obsolescence and the logical functioning of the original
part needs to be recovered. Within certain limitations, this
reverse engineering could be performed for digital
functions by writing down the set of DSH equations. This
has been done for the 6502 microprocessor with only two
problems. These are bi-directional and parallel pass
transistors. Language elements could be added to cover
these cases.

For an example of using DSH notation to represent the
connection of pass transistor circuits, consider the circuit
diagram given in Figure 2.

Figure 2

φ2 φ1

D Q1 IQ Q2 Q

Fig. 2 shows a simple series circuit which is a form of
master-slave dynamic D flip-flop implemented with pass
transistors. Two pass transistors are in series with two
non-inverting buffers. The DSH notation for the two pass
transistors is

Q1 = <D>φ2
and Q2 = <IQ>φ1. (2)

We also see that IQ = Q1 and Q = Q2. Eliminating Q1
and Q2, we obtain

IQ = <D>φ2
and Q = <IQ>φ1. (3)

If the intermediate variable IQ is not needed and is,
therefore, unnecessary, then eliminating IQ from the
equations, we obtain

Q = < <D>φ2 >φ1. (4)

This is the single DSH equation representing the
connections for the hardware of Fig. 2. Note that the
inside term <D>φ2 represents the pass transistor
connection farthest away physically from the output Q and
the angle brackets enclosing it represent the pass transistor
connection closest to output Q. Also note that going from
left to right, the hardware of Fig. 2 shows D, then φ2, and
finally φ1. This same ordering is present in Eq. (4).

In Figure 2, φ2 samples the value of the D input and

φ1 passes its value on to the output Q. With every φ2-φ1
clock sequence, the value of D is delayed or shifted by
one clock period. Latch register transfer statements for
the circuit of Fig. 2 are:

φ2: IQ ← D
and φ1: Q ← IQ. (5)

The number of RTL statements (and intermediate variables
like IQ) grow linearly with the number of latches in the
system. For a complex device which contains many
latches and registers, the intermediate variables and the
long list of equations becomes cumbersome. To avoid
this, DSH notation for connections can be used.

The logical interpretation of DSH notation indicates
that Q=<D>φ1 is a φ1-to-φ1 signal; that is, the output Q
remains stable from the beginning of one φ1 to the
beginning of the next φ1 provided that D is stable and
does not change during this time. This condition is true
in a well designed synchronous system. When φ1 goes
high, Q changes to the (possibly) new value of D and
remains there while φ1 is low. If D changes to a new
value when φ1 is low, then when φ1 is asserted again, Q
will change to this new value. Thus, Q is a φ1-to-φ1
signal.

The behavior of Eq. (4) can be analyzed by using the
fact that φ1 and φ2 are non-overlapping. Therefore, when
φ2 is asserted (high), φ1 is not asserted (low) and we
have:

Q = < <D>1 >0. (6)

This says that D is being sampled and IQ=D while Q is
held. Similarly, during φ1, we have:

Q = < <D>0 >1. (7)

This says that Q equals the value of D sampled during the
previous φ2 clock pulse. Assuming that D is a φ1-to-φ1
signal, then Q is also a φ1-to-φ1 signal which is D
delayed by one clock period. We see that IQ = <D>φ2 is
a φ2-to-φ2 signal and Q = <IQ>φ1 is a φ1-to-φ1 signal.

Assume a given pass transistor connection can be
written in DSH notation as:

Q = <D>φ1. (8)

This is called a DSH-term and for logical behavior, it can
be read, "Q is D sampled by φ1". The quantities between
and immediately to the right of the angle brackets are
taken to be logical expressions. The logical behavior of
the circuit represented by Eq. (8) can also be represented
by the single RTL statement: [1]

φ1: Q ← D. (9)

This means the same thing as Eq. (8); that is, when
φ1=0, Q is held and when φ1=1, Q=D. It is assumed that
D is steady during the time φ1 is high. The above RTL
becomes cumbersome when a number of these MOS D
latch circuits are placed in series in two-phase logic
circuits.

The logical behavior of Eq. (8) and (9) is described by
the recursive logic equation:

where is the logical OR. Recursive means that Q

(10)Q Q φ1 D φ1.

appears on both sides of the equal sign in Eq. (10). For
φ1=0, we find that Eq. (10) becomes Q=Q which means
that Q is in the hold state. When φ1=1, however, Q=D
which means D is being sampled by Q.

Although initially Q=<D>φ1 represented a structure
(pass transistor connection), we shall now use <D>φ1 as
short-hand notation for the recursive logic equation of Eq.
(10) and shall use these two expressions interchangeably.
We write:

Applying φ1=0 and φ1=1, we find that <D>0 = Q and

(11)Q <D>φ1 Q φ1 D φ1

<D>1 = D.
The DSH statement Q = <D>φ1 can easily be

represented in VHDL [5] by the statement:

Q <= (Q and (not φ1)) or (D and φ1); (12)

Since Q occurs on both sides of the equation, this is a
recursive equation and must be declared as inout.

2 The Syntax for the DSH Language

The present syntax for the DSH language is given in
Table I. These grammar rules have been used to write a
"DSH recognizer". This checks a DSH description to
make sure that the programmer has correctly written it.
These grammar rules have also been used to write a
translator between DSH and VHDL [6, 7]. The translator
has been written in C, and lex and yacc of the Unix
Operating System on a Sun workstation. The VHDL
simulation of the 6502 timing circuits has been given at
the VHDL Users’ Group [8].

The syntax is written in Backus Naur Form (BNF)
which is often used in compiler theory. Each grammar
rule lists a property of the DSH language. The brackets
’[’ and ’]’ indicate a term which is optional. The braces
’{’ and ’}’ denote a term which may be used zero or more

times. The vertical bars ’|’ separate options and can be
read as "OR". Looking at Table I, a "program" is a
"statement_list" followed by "fin" followed by an optional
"comment". A "statement_list" is one or more
"state_com" terms. Three kinds of "statement" are
possible. The first line is the usual "statement" and the
second and third lines allow for the open-drain output and
tristate buffer RT equations. An "expression" is a logical
expression and the operators are NOT (’^’), AND (’*’),
OR (’v’), and Exclusive-OR (’x’). Of particular
importance is the "DSH_term" which recognizes the angle
brackets and the "sampling_clock". The "sampling_clock"
can be a "clock_phase", or a parenthesized "expression",
or a "chain_of_char". An identifier can be of two types,
as shown. ’d1’ and ’d2’ with lower case ’d’ are used to
represent φ1 and φ2, respectively. Several definitions that
cannot easily be stated in equation form are listed in
sentences at the bottom.

Table I. Syntax for the Language DSH.

program ::= statement_list fin [comment]
statement_list ::= state_com {state_com}
state_com ::= statement ’;’ | comment
statement ::= identifier ’=’ expression

| expression ’:’ identifier left_arrow expression
| expression ’:’ identifier right_arrow

expression ::= relation {logical_operator relation}
relation ::= ’^’term | term
term ::= identifier | clock_phase | ’(’expression’)’ |

DSH_term
DSH_term ::= ’<’expression’>’sampling_clock
sampling_clock ::= clock_phase | ’(’expression’)’ |

chain_of_char
logical_operator ::= ’*’ | ’v’ | ’x’
identifier ::= chain_of_char [specifier] | indexed_chain
specifier ::= ’n’ | shift_index
fin ::= ’end;’
clock_phase ::= ’d1’ | ’d2’
shift_index ::= ’(n+1)’
right_arrow ::= ’ -> high_Z’
left_arrow ::= ’ <- ’

chain_of_char ::= a consecutive group of letters and
digits without a digit(s) at the end.

indexed_chain ::= a consecutive group of letters and
digits with one or two digits at the end.

comment ::= any set of characters beginning with ’--’
and ending in a carriage return.

The two pass DSH to VHDL translator was written
using unix utilities lex and yacc. The lex program pass0.l
removes blanks from certain locations in the input file. It
creates a file pass0.dsh which is the input file for both
passes of the compiler. The first pass generates files
"dshpre.num" and "dshpre.stu". These files are used by
the second pass when information needs to be known
ahead of time. "dshpre.stu" passes the symbol table and
certain other information to the second pass. "dshpre.-
num" passes information on whether DSH terms are used
alone or are in expressions.

If the file "output" contains the translated VHDL code
after the run, then the DSH syntax in file "input" is error
free. Otherwise, the output file states "syntax error". The
DSH compiler/translator can be run for many different
input DSH descriptions.

3 Examples From 6502 Microprocessor

A block diagram for the 6502 microprocessor is
shown in Figure 3. This was drawn to correspond to the
blueprint. Most of the circuits can be modelled by logic
equations with embedded D latches except for bi-
directional pass transistors shown between SB and DB and
between SB and ADH which are labelled PASS
MOSFETS.

One bit of the X index register of the 6502
microprocessor is shown in Figure 4.

Figure 4. 6502 X Index

L φ1 φ2

B X

The DSH equation for the X index in Figure 4 may be
written as

X = < B >(L φ1) (13)

The φ2 feedback pass transistor serves to maintain data
integrity and refreshes the gate capacitance.

The timing signal generator for the 6502
microprocessor generates a sequence of timing signals
used for controlling instruction execution. The input
signals are TZERO, RDY, and T1. The structural pass

transistor connections used in the processor are as follows:

These equations represent the actual structure used in the

(14)

T2 (TZERO < (RDY <T1>φ2 RDY <T2>φ2) >φ1)

T3 (TZERO < (RDY <T2>φ2 RDY <T3>φ2) >φ1)

T4 (TZERO < (RDY <T3>φ2 RDY <T4>φ2) >φ1)

T5 (TZERO < (RDY <T4>φ2 RDY <T5>φ2) >φ1)

processor. The circuit diagram can be sketched directly
from them. The TZERO signal is a clear signal and RDY
is related to the 6502’s Ready line (also "RDY"). When
TZERO=0 and RDY=1, these equations can be written:

T2 = < <T1>φ2 >φ1,
T3 = < <T2>φ2 >φ1,
T4 = < <T3>φ2 >φ1, (15)

and T5 = < <T4>φ2 >φ1.

These are the equations for four master-slave D flip-flops.
They are all φ1-to-φ1 signals and T2 is just T1 delayed by
one clock period. T1 is a one clock period signal
generated by other circuits. When RDY is brought low
(0), T2 becomes < <T2>φ2 >φ1. This means that T2 is
held. Therefore, these circuits are delay circuits with clear
and hold.

The above 6502 timing circuit has been translated
from DSH to VHDL using the CAD tool translator. A
DSH file "input" is shown below. Each separate
component starts with a line with two pluses on it "++".
This tells the translator that the following words are, in
order, the name of temporary variables, the name of the
VHDL entity, and the name of the VHDL architecture.
Following this are the lines of DSH equations. After
using DeMorgan’s Theorem, the circuits of Eq. (14) for
the 6502 timing variables are described below in DSH
equation form.

++ttDSH tt_ent tt_arch
T2 = (^TZERO)*(<(RDY*<T1>d2) v

((^RDY)*<T2>d2)>d1) ;
T3 = (^TZERO)*(<(RDY*<T2>d2) v

((^RDY)*<T3>d2)>d1) ;
T4 = (^TZERO)*(<(RDY*<T3>d2) v

((^RDY)*<T4>d2)>d1) ;
T5 = (^TZERO)*(<(RDY*<T4>d2) v

((^RDY)*<T5>d2)>d1) ;
T6 = <(<RDY*LA26>d2 v ((^RDY)*T6))>d1;
SYNC = T1 ;
end;

The translated VHDL output for the input given follows
below. The de-nesting is evident if the output equations

are compared to the input equations which are in files
"output" and "input", respectively. All port
declarations must begin with a capital letter and all local
declarations must begin with a lower case letter. VHDL
ports are declared "out" if the identifier appears only
on the left-hand side of the equal sign, "in" if it
appears only on the right-hand side of the equal sign,
and "inout" if it appears on both sides of the equal
sign.

entity tt_ent is
port(
signal T2: inout bit;
signal TZERO: in bit;
signal RDY: in bit;
signal T1: in bit;
signal d2: in bit;
signal d1: in bit;
signal T3: inout bit;
signal T4: inout bit;
signal T5: inout bit;
signal T6: inout bit;
signal LA26: in bit;
signal SYNC: out bit

);
end tt_ent;

architecture tt_arch of tt_ent is
signal ttDSH01: bit;
signal ttDSH02: bit;
signal ttDSH03: bit;
signal ttDSH04: bit;
signal ttDSH05: bit;
signal ttDSH06: bit;
signal ttDSH07: bit;
signal ttDSH08: bit;
signal ttDSH09: bit;
signal ttDSH10: bit;
signal ttDSH11: bit;
signal ttDSH12: bit;
signal ttDSH13: bit;
begin

T2 <= (not TZERO) and (ttDSH01) ;
ttDSH01 <= (ttDSH01 and (not d1)) or
(((RDY and ttDSH02) or ((not RDY) and
ttDSH03)) and d1) ;

ttDSH02 <= (ttDSH02 and (not d2)) or
((T1) and d2) ;

ttDSH03 <= (ttDSH03 and (not d2)) or
((T2) and d2) ;
T3 <= (not TZERO) and (ttDSH04) ;
ttDSH04 <= (ttDSH04 and (not d1)) or
(((RDY and ttDSH05) or ((not RDY) and
ttDSH06)) and d1) ;

ttDSH05 <= (ttDSH05 and (not d2)) or
((T2) and d2) ;
ttDSH06 <= (ttDSH06 and (not d2)) or
((T3) and d2) ;
T4 <= (not TZERO) and (ttDSH07) ;
ttDSH07 <= (ttDSH07 and (not d1)) or
(((RDY and ttDSH08) or ((not RDY) and
ttDSH09)) and d1) ;

ttDSH08 <= (ttDSH08 and (not d2)) or
((T3) and d2) ;
ttDSH09 <= (ttDSH09 and (not d2)) or
((T4) and d2) ;
T5 <= (not TZERO) and (ttDSH10) ;
ttDSH10 <= (ttDSH10 and (not d1)) or
(((RDY and ttDSH11) or ((not RDY) and
ttDSH12)) and d1) ;

ttDSH11 <= (ttDSH11 and (not d2)) or
((T4) and d2) ;
ttDSH12 <= (ttDSH12 and (not d2)) or
((T5) and d2) ;
T6 <= (T6 and (not d1)) or
(((ttDSH13 or ((not RDY) and T6)))
and d1);
ttDSH13 <= (ttDSH13 and (not d2)) or
((RDY and LA26) and d2) ;
SYNC <= T1 ;
end tt_arch;

The above entity and architecture was successfully
analyzed by the VHDL analyzer [7].

4 Conclusions

A language for pass transistors, and D latches has
been developed. Its connection aspects have been
covered, as well as its logical behavior. Several rules
have been developed for the language and hardware
equivalents have been discussed. Several applications of
the language and its syntax have been given. A
translator for the language into VHDL has been written
and a circuit has been translated into VHDL.

Acknowledgements

This work was supported in part by the U.S. Army
Research Office and in part by the University of
Mississippi.

References

[1] Hanson, D. F., "An Improved Model for a Microcomputer
Component--The 6520 PIA," IEEE Micro, Vol. 1, #4,

November 1981, pp. 17-25.

[2] Hanson, D. F., "A Microprocessor Laboratory for
Electrical Engineering Seniors," IEEE Trans. Education,
Vol. E-24, No. 1, February 1981, pp. 8-14.

[3] Hanson, D. F., "A Microprocessor Laboratory Course
Based on an AIM-65 Solderless Interfacing Unit," Proc.
1981 Southeastern Section Ann. Meeting: Computers in
Engineering and Technology Education, University of
Tennessee at Chattanooga, American Soc. for Eng.
Education, April 1981, pp. 21-28.

[4] Hanson, D. F., "Modeling of Two-Phase Logic," Journal
of the Mississippi Academy of Science, Vol. XXVIII,
Supplement, February 25, 1983, p. 52.

[5] IEEE Standard VHDL Language Reference Manual,
IEEE, New York, 1988.

[6] Hanson, D. F., Initial Developments on VHDL Modeling
of a 6502 Dynamic MOS Microprocessor Using a DSH
Recursion Equation to VHDL Translator Written in C
with LEX and YACC, 1988 U.S. Army Summer Faculty
Research and Engineering Program Final Report, Contract
No. DAAL03-86-D-0001, Delivery Order 0789, Scientific
Services Program, Fort Monmouth, NJ, August 31, 1988,
144 pages.

[7] Hanson, D. F., A DSH to VHDL Translator for Logic
Equations, Including D Latches, Written in C Using LEX
and YACC with Application to VHDL Modeling of a 6502
Dynamic MOS Microprocessor, 1989 U.S. Army Summer
Faculty Research and Engineering Program Final Report,
Contract No. DAAL03-86-D-0001, Delivery Order 1481,
Scientific Services Program, Fort Monmouth, NJ, August
18, 1989, 118 pages.

[8] Hanson, D. F., "A VHDL Model for Pass Transistors
Used in the 6502 Microprocessor", 1989 VHDL Users’
Group Fall Meeting Papers, Redondo Beach, CA,
October 22-25, 1989, pp. 12-19 to 12-25.

Figure 3. 6502 Block Diagram

