
DYRECT – A DYnamic REConfiguration Tool for Multicomputer Systems

Leslie D. Fife, Gopal Racherla and Steven E. Killian
School of Computer Science

University of Oklahoma
Norman, OK 73019

Abstract

In this paper we discuss the design and
implementation of a tool to teach dynamic
reconfiguration of multicomputer systems.
DYRECT is a graphical tool used to visualize
and analyze various topologies like stars, cubes,
meshes, trees, and rings. Various existing re-
configuration algorithms have been incorporated
as a part of DYRECT's reconfiguration library.
This tool allows the user to interactively design
new reconfiguration algorithms. DYRECT has
been implemented on PC-DOS machines running
Microsoft Windows.

1. Introduction

Dynamic reconfiguration of multicomputer
systems is an important topic in advanced
computer architecture courses. It is anticipated
that this topic would be taught in a computer
architecture course at the senior or graduate
level. However, even for advanced students
dynamic reconfiguration can be difficult to
visualize and understand. The complexities
associated with reconfigurations suggest the use
of a graphical tool to present, simulate, and
experiment with different re configuration
approaches. This tool would demonstrate
dynamic re configuration in a clear and concise
manner and could be used by the students
outside of the classroom to supplement lectures
and assignments. The lack of specific
educational tools in this area has been the main
motivation behind the development of DYRECT
– DYnamic REConfiguration Tool for
multicomputer systems.

DYRECT is an interactive tool that simulates
dynamic reconfiguration networks and enhances
the instruction of reconfiguration algorithms and
strategies. DYRECT provides a user-friendly
Graphical User Interface (GUI) to the dynamic
reconfiguration simulator for interacting with the
student. This allows the student to investigate the

results of different reconfiguration strategies.
The simulator has several common strategies
available directly through a set of library files.
Furthermore, new scenarios may be constructed
and analyzed by the simulator. This ability to
create and modify new and existing re
configuration algorithms assists the student in
understanding the effects of each a
reconfiguration strategy. This will enhance the
knowledge gained in the classroom, providing an
additional dimension to the students' learning.

2. Related Work

Dynamic architectures were introduced by
Kartashev in the early 1970's. A dynamic
architecture can be viewed as a black box
consisting of processor and memory units with
differing computing structures such as
multicomputers, arrays, and pipelines. Recon-
figuration can be either architectural or fault-
tolerant. DYRECT focuses on architectural
reconfiguration of multicomputer systems which
is an ensemble of stand- alone processors with
distributed memory. DYRECT assumes the
presence of a supervisory system monitor which
decides when and how the reconfiguration
occurs. A dynamic reconfiguration can assume a
set of configurations during the program
execution and improve the performance of the
system. Rings, for ex- ample, are quite useful for
pipelined computations and control algorithms
while stars and trees are suited for divide-and-
conquer algorithms like sorting. DYRECT uses
the Shift Register with Variable Bias (SRVB)
scheme proposed by Kartashev [1]. Each
processor has a unique node number that is
decided a priori by the system monitor. The
monitor also broadcasts a bias number to all the
nodes. The user can choose the resultant
architecture and its parameters. Based on this
information, each node performs a local
computation to get the node numbers of its
neighbors that it will connect to at the time of
reconfiguration.

There has been some work in this area to date.
Kartashev devised strategies for re configuring
trees and rings [1] Biswas designed
reconfigurable m-ary trees for any value of m
[2]. Ruskey used transpositions to generate
binary trees [3]. Racherla and Radhakrishnan
developed parameterizable algorithms for rings
and trees. These include reconfiguration
algorithms for m-ary trees of variable height and
a forest of trees with variable height and
branching factor [4]. Lin and Wu worked on
polymorphic and partitionable multicomputer
systems creating meshes, trees, and rings [5].
Biswas and Srinivas designed a reconfiguration
strategy for the binary tree configuration [6].

• Srinivas and Biswas [21[61: This algorithm
produces m-ary tree structures. This
approach is based on the extended
multistage interconnection network which is
a generalization of the shuffle exchange net-
work. The main advantages of this algorithm
include fast reconfiguration, simplified
hardware in the nodes and the multistage
interconnection network (Figure 1).

• Ruskey [3] : This algorithm produces trees
by bit transpositions and inversion. It
produces all binary trees with a fixed
number of nodes using a gray code type
generation.

 • Racherla and Radhakrishnan [4] : This is an
extension of the Srinivas-Biswas algorithm
that allows parameterization of the height of
the trees and their branching factor. It
incorporates the advantages of all of the
other algorithms described above.

3. Description

DYRECT is composed of three primary
subsystems. These are the Reconfiguration
Libraries, Graphical User Interface, and the
Reconfiguration Simulator. The modular design
of each subsystem allows for rapid integration of
reconfiguration algorithms and strategies, as well
as improvements to either the GUI or
reconfiguration simulator, without impacting on
the other parts of the system.

DYRECT does not address the mapping of
programs onto processors following
reconfiguration. A module is being designed that
intelligently performs this mapping. Using this
module, a user can map his program, written in a
higher level parallel language on to a
multiprocessor system. Work is also in progress
to add performance metrics to help the user in
choosing an appropriate algorithm for
reconfiguration depending on the application.

2. Rings:
3.1 Reconfiguration Libraries • Kartashev and Kartashev [1]: This algorithm

produces single and multiple rings. It
produces simple and compound rings
depending on the input. Com- pound rings
are rings that are inter-linked.

The first subsystem contains the reconfiguration
libraries. Each reconfiguration strategy is
included as an algorithm in a re configuration
library file. The reconfiguration libraries are
grouped by network topology. The topologies
include Trees, Rings, Stars, Meshes, and Cubes. • Racherla and Radhakrishnan [4]: This

algorithm parameterizes the ring size and
number of rings to produce single rings. 1. Trees:

• Kartashev and Kartashev [1]: This algorithm
provides synthesis of both single and
multiple tree structures. For single tree
structures, it shows how to find the root and
other nodes if the bias is given.

• Lin and Wu [5]: This algorithm produces
double and chordal rings and is
parameterized on the ring size. It also
produces single rings. This method uses a
matching technique on the interconnection
structure and the task graph.

3. Stars:

• Racherla and Radhakrishnan [4]: This
algorithm produces stars based on the input
parameters which are the size of the star and
the number of stars.

4. Meshes:

• Lin and Wu [5]: This method produces a
mesh given the dimensions. This work
assumes a polymorphic and partitionable
multiprocessor system. It relies on dynamic
creation of subsystems.

5. Cubes:

• Racherla and Radhakrishnan [4]: This
algorithm produces cubes of a given
dimension. All the re configurations are
done in parallel.

The user can use DYRECT to study, analyze,

com- pare and contrast these predefined, as well
as user specified reconfiguration algorithm thus
gaining in- sight into the specifics of each
algorithm. An important part of the DYRECT
system is the ability to design and test new
configuration algorithms. New methods are
entered through the Equation editor (Figure 2),
and can be saved for future use.

3.2 Graphical User Interface

DYRECT provides an easy to use GUI which
accepts user input for all relevant user specified
parameters for a given reconfiguration. As
mentioned, DYRECT also allows the user to
design and implement their own re configuration
strategies, and have them simulated by the tool.
These strategies can be saved in library files for
later reuse, modification, and analysis.

The reconfiguration equation editor (Figure 2)
is a tool for the user to build and test new
reconfiguration equations for various topologies.
This tool is invoked from the main menu under
the Tools option. The tool provides basic
primitives to build reconfiguration equations.
These include binary and register operations. The
binary operations consist of AND, OR, XOR,
NOT, and Bit Flip. The register operations are
shifting, partitioning, merging and building.
Shifting can either be left or right as well as
circular or non-circular. By using all the
primitives the user can build various

reconfiguration equations and test them. The
modularity of the editor reflects the manner in
which the entire system was constructed.

The GUI prototype was designed as a

Windows application, running in a PC-DOS
environment under Microsoft Windows. The
GUI is designed as a separate subsystem. This
allows rapid porting to other systems. For a new
windowing environment, a new GUI would have
to be provided. However, the libraries and
simulator would only require recompilation on
the new platform. As the crux of the work is
done within the simulator, changing interfaces
will have minimal impact on the tool as a whole.

3.3 Reconfiguration Simulator

The third subsystem is the reconfiguration

simulator. The reconfiguration simulator
performs the primary work, and is the central
subsystem of DYRECT . The simulator performs
the processing required for each dynamic
reconfiguration. The simulator works as a
standalone program. The simulator is started by
the GUI when the user chooses to perform a
reconfiguration. The GUI provides any user
inputs required. The simulator uses these inputs
and one of the reconfiguration library files to
perform the necessary processing. The simulator
is designed as a C program.

The simulator is designed so that the
reconfiguration equation that is applied to each
node is identical, with the exception of each
node's unique node number . Because of this, the
application of a re configuration equation on
each processor node can be parallelized. The
determination of each node's neighbors is a local
operation and is independent of the
determination of neighbors by the other
processor nodes.

4. Example

To illustrate how DYRECT works a sample
session has been captured and is presented here.
Given below is an example reconfiguration
session.

Upon starting DYRECT, the primary window
appears as shown in Figure 3. This window
initially displays a default configuration. The
default values may be changed using the Options
menu choice. In this ex- ample, a configuration
of 16 nodes has been used as an illustration.
Further, the nodes are not interconnected and are
considered as standalone processors.

From the main DYRECT window the

configuration specifications are made for the
node reconfiguration. This is exhibited in Figure
4. For this example, a tree configuration has been
selected. From this point further specifications
are made based on the tree con- figuration. These
include the number of nodes for the tree, the
bias, tree height, branching factor, and the
reconfiguration algorithm to be used. Once this
information is specified the user is returned to
the main DYRECT window (Figure 3).

On returning to the main window, the

configuration information is updated and
displayed in the text box at the top of the

window. Figure 5 shows the information selected
earlier in the text box. At this point the nodes are
ready for reconfiguration, which may be
achieved with the connect button. Figure 6
shows the state of the nodes after connection.
The node connection is shown based on the
reconfiguration information specified, albeit
disorderly and confusing to visualize at this
point.

To clarify the connection reconfiguration

exhibited in Figure 6, the beautify function is
used. The performance of this function is
dependent on the reconfiguration specifications.
The rules used to rearrange the nodes are
predetermined by the reconfiguration type and
once the beautify function is invoked, the nodes
are ordered based on the topology specific rules.
The effects of the beautify function are shown in
Figure 7.

The example shown here was produced in

Visual Basic version 3.0 for Windows, running
under PC- DOS. The window designs were taken
from versions initially developed for X
Windows. The code for the interface is also
written in Visual Basic.

Acknowledgements

The authors would like to thank the Graduate

College and the School of Computer Science at
the University of Oklahoma for research funding.
Special thanks are due to Prof. Rex Page for his
encouragement and support. Thanks are also due
to Prof. S. Lakshmivarahan and Dr. Sridhar
Radhakrishnan for their insightful comments on
our work.

References

[1] S. P. Kartashev, S. I. Kartashev, “Analysis
and Synthesis of Dynamic Multicomputer
Networks that Reconfigure into Rings, Trees,
and Stars” IEEE Transactions on Computers,
Vol. C-36, No. 7, July 1987.

5. Conclusions

The study of dynamically reconfigurable
networks is an important topic in advanced
computer architecture courses. The complexity
of dynamic reconfiguration makes this a difficult
topic for many students to visualize and
understand. The use of a graphical tool can assist
in the educational process and supplement the
content of lectures, readings, and course
assignments.

[2] S. Srinivas, N. N. Biswas, “Design and
Analysis of a Generalized Architecture for
Reconfigurable m-ary Tree Structures” IEEE
Transactions on Computers, Vol. 41, No.11,
November 1992.

[3] F. Ruskey, et al, “Generating Binary Trees by
Transpositions”, Journal of Algorithms, Vol. 11,
1990. The DYRECT system was developed

modularly as a collection of three primary
subsystems. These subsystems are the re
configuration libraries, graphical user interface,
and the reconfiguration simulator. These systems
can be modified and updated individually. The
simulator was initially developed for the Unix
environment. In an effort to make DYRECT
available to a larger audience, it was ported to
the PC-DOS environment.

[4] Gopal Racherla, R. Sridhar, “Parameterized
Re-configuration of a General Architecture into
Tree Structures and Binary Hypercube”,
manuscript.

[5] Woei Lin, Chuan-Lin Wu, “Reconfiguration
Procedures for a Polymorphic and Partitionable
Multiprocessor” IEEE Transactions on
Computers, Vol. 35, No.10, November 1986.

DYRECT provides an important illustrative
ex- tension to the standard lecture format of
university courses in computer architecture. By
providing an interactive tool, the learning
process is enhanced, allowing the student to
experiment and implement various approaches to
reconfiguration. After each reconfiguration, the
results can be analyzed and compared thus
augmenting the student’s knowledge of the
benefits and weaknesses of the various
reconfiguration approaches. This increases the
ability of the student to understand and integrate
the theory presented in class on dynamic
reconfiguration of multicomputer systems with
its application.

[6] N. Biswas and S.Srinivas, “A
Reconfiguration Tree Architecture with
Multistage Interconnection Network” IEEE
Transactions on Computers, Vol. 39, No.12,
November 1990.

	Acknowledgements
	References

