### CHIPDESIGN – FROM THEORY TO REAL WORLD

Guillermo Payá-Vayá, Thomas Jambor, Konstantin Septinus, Sebastian Hesselbarth, Holger Flatt, Marc Freisfeld, Peter Pirsch





## Overview

- Introduction
- Seminar Description
- The Project
  - Design Concept
  - Project Phases
  - ASIC Manufacturing and Testing
- Evaluation
- Conclusions

## Introduction

- University electrical engineering lectures
  - Computer architecture
  - ASIC design
  - Fundamentals of Microelectronic



- Practical training at universities
  - HDL digital design courses limited to FPGA-examples
  - High expenses and experience for EDA-tools required
  - Design issues not included in small projects

How to provide a suitable solution?

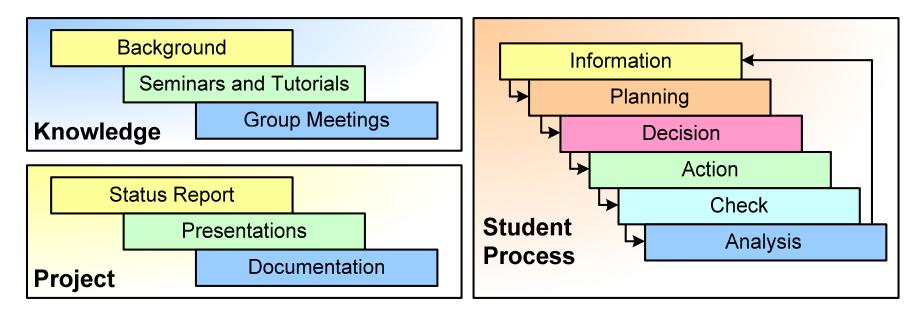
# **ChipDesign Seminar**

- Project-oriented ASIC design seminar
  - 1999-2002 : Least Cost Router
  - 2003-Today : 8-bit RISC Microcontroller
- Motivation: "From theory to real world"
- Focus
  - Practical knowledge
  - Teamwork experience
- Goal
  - Chip manufacturing



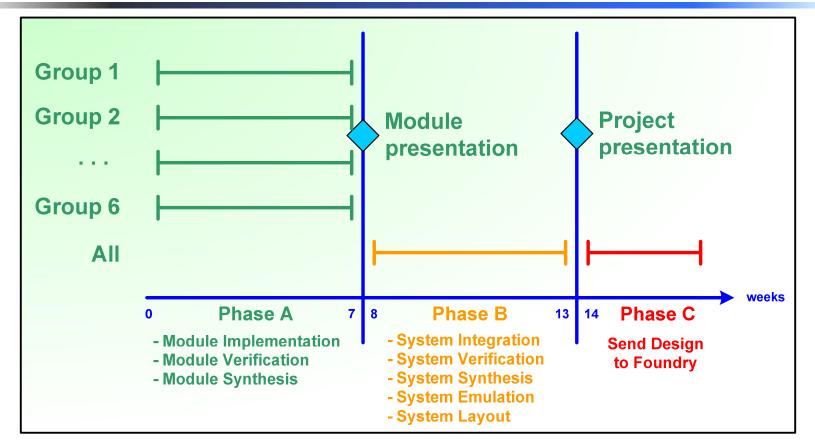
## Seminar Description: General

- Extend theorical study by practical aspects
- Duration: 15 week
- ~24 Students
  - Electrical engineering and computer science
  - 3<sup>rd</sup> 5<sup>th</sup> year with bachelor or compatible degree
- Supervision
  - Guaranteed by members of the research staff (tutors)
- Equipment provided by the university
  - Workstations, EDA tools, communication platform,...


## **Seminar Description: Focus**

#### Technical skills

- Design of hardware architectures
- Hardware description language (verilog)
- Verification strategies
- Fundamentals of integrated circuit: Backend
- Social skills
  - Team work (4 students)
  - Responsible for a subtask of the overall project
  - Status meetings and presentations




# Seminar Description: Learning Approach



- Self-regulated learning
- Knowledge, Student Process and Project
- One group (max.4 students), one tutor, one task

## **Course Description: Scheduling**



Specific tutorials synchronized with design process

Status meeting every week

## The Project : LCR Design Concept

#### Least Cost Router

- Topic from 1999 to 2002
- Controller for choosing the cheapest telephone provider
- Modules:
  - keyboard interface
  - display controller
  - synthesizer for a loudspeaker
  - central control unit



### Problems:

- Dedicated hardware with limited functionality
- FSM-based modules with strong dependencies

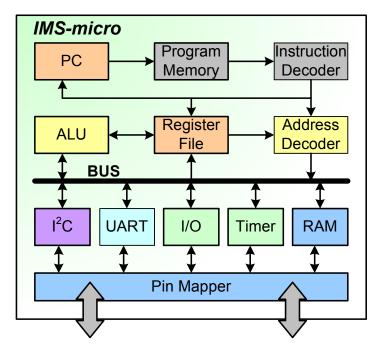
## The Project: IMS-micro Design Concept

#### 8-bit RISC microcontroller

- Introduced in 2003
- Programmable hardware design
- ATMEL AVR 90S8515 instruction set compatible

- Advantages:
  - Education on system level aspects, e.g. computer architecture and low-level software programming
  - Sophisticated modules with fewer dependencies

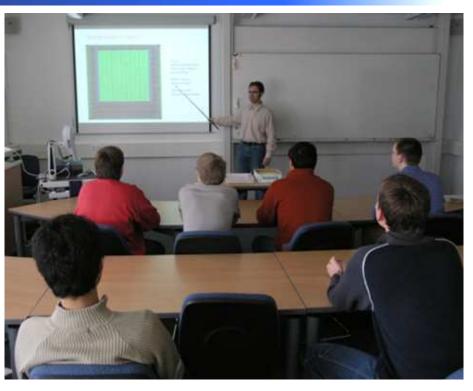
# The Project: Phase A (W0 – W7)


#### Module Implementation

- Instruction Decoder (given)
- Group 1. I2C interface
- Group 2. SRAM Controller and Pin Mapper
- Group 3. UART Controller
- Group 4. Timer and I/0 Ports
- Group 5. Register File and PC Unit
- Group 6. ALU and Address Decoder

#### Tutorials

- W1 Verilog-HDL tutorial
- W2 Writing test-benches. Functional verification
- W3 Logic Synthesis tutorial






## The Project: Phase B (W8 – W13)

- Top-level design
  - Sub-module integration
  - Synthesis
  - Backend
- Top-level verification
  - Simulation environment
  - Assembler programs
  - In-circuit emulation
- Technical documentation
- Social skills: Student communication





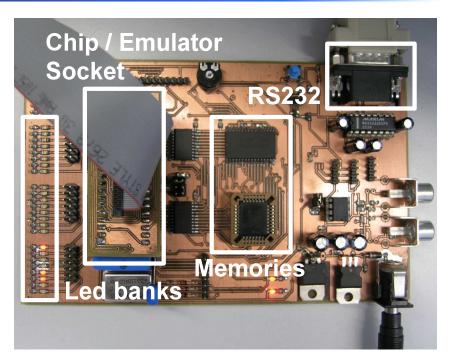
### The Project: Phase C (W14)

#### Extended top-level verification

- Code coverage (ModelSim)
- Functional coverage (Automatic test programs)

Critical path and architecture optimizations

|                                                                    | Instance Coverage   | •               |                         | _0                        |
|--------------------------------------------------------------------|---------------------|-----------------|-------------------------|---------------------------|
| ance Coverage 🖉 🔬                                                  |                     |                 |                         |                           |
| Instance                                                           | △ Design unit       | Stmt % Stmt gra | h Branch % Branch graph | Condition Condition graph |
| /microcontroller_asic_test/MC_ASIC/MC                              | microcontroller     | 100%            |                         |                           |
| /microcontroller_asic_test/MC_ASIC/MC/Address_Decoder              | address_decoder     | 79.1%           | 73.2%                   | 56.2%                     |
| /microcontroller_asic_test/MC_ASIC/MC/Alu                          | alu                 | 94.9%           | 97.6%                   | 81.5%                     |
| /microcontroller_asic_test/MC_ASIC/MC/Ext_Sram                     | ext_sram            | 60%             | 35.7%                   |                           |
| /microcontroller_asic_test/MC_ASIC/MC/Ext_Sram/fsm                 | ext_control_fsm     | 17.6%           | 18.2%                   |                           |
| /microcontroller_asic_test/MC_ASIC/MC/Ext_Sram/timer               | timer_ext_sram      | 71.4%           | 66.7%                   |                           |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller               | i2c_controller      | 100%            | 100%                    |                           |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Bit_Fsm       | bit_fsm             | 13.3%           | 15.1%                   |                           |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Bit_Router    | bit_router          | 100%            | 100%                    |                           |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Bus_lo        | bus_io              | 36.4%           | 20%                     |                           |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Byte_Ctrl     | byte_ctrl           | 13.7%           | 5.33%                   |                           |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Clock_Divider | clock_divider       | 100%            | 100%                    |                           |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Control_Reg   | control_reg         | 41.7%           | 56.2%                   | 50%                       |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Counter       | counter             | 80%             | 75%                     | 33.3%                     |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Data_Reg      | data_reg            | 21.4%           | 50%                     | 50%                       |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Int_Ctrl      | int_ctrl            | 100%            | 100%                    |                           |
| /microcontroller_asic_test/MC_ASIC/MC/I2C_Controller/Timer_Reg     | timer_reg           | 60%             | 66.7%                   | 50%                       |
| /microcontroller_asic_test/MC_ASIC/MC/IO_Ports                     | io_ports            | 56.4%           | 46.2%                   |                           |
| /microcontroller_asic_test/MC_ASIC/MC/Instruction_Decoder          | instruction_decoder | 55.9%           | 41.8%                   | 88.1%                     |
| /microcontroller_asic_test/MC_ASIC/MC/PCIRQ_Control                | pcirq_control       | 53.2%           | 60%                     | 100%                      |
| /microcontroller_asic_test/MC_ASIC/MC/Pin_Mapper                   | pin_mapper          | 64%             | 66.7%                   |                           |
| /microcontroller_asic_test/MC_ASIC/MC/Pin_Mapper/intreg            | interruptreg        | 41.1%           | 22.4%                   | 15.6%                     |
| /microcontroller_asic_test/MC_ASIC/MC/Timer                        | timer               | 36%             | 30%                     | 65.8%                     |
| /microcontroller_asic_test/MC_ASIC/MC/Uart                         | uart                | 68.9%           | 41.7%                   | 44.4%                     |


Institute of Microelectronic Systems

13

### The Project: After the Seminar

#### ASIC manufacturing

- > 2003, 2005 and 2006
- Europractice / Austriamicrosystems AG
- ▶ 0.35 µm CMOS
- > One chip per student



Leibniz

Universität Hannover

### Testing

- IMS-micro evaluation board
- Maximum running frequency: 60 MHz (2006)

# Evaluation (I)

- Seminar scheduling concept
  - Synchronized with the IMS-micro design
  - Tutorial-based
- Supervision concept
  - One tutor per student group
  - Status meetings
- Student prerequisite
  - Pre-selection of participants by written exams
  - Examination results used to divide students into groups

# Evaluation (II)

#### IMS-micro vs. LCR

LCR

\* dedicated hardware with limited functionality

- clearly structured modules with similar complexity
- \* only FSM-based modules with strong dependencies
- IMS-micro
  - ✓ programmable hardware design
  - more sophisticated design with fewer dependencies
  - ✓ knowledge of the whole architecture required
  - ✓ higher acceptance due to a practical design
- IMS-micro is more suited to teach students all aspects of the design process

## Conclusions

Project-oriented ASIC design course

- Tutorials and practical work separated
- Whole integrated circuit design flow
- Improve social skills by giving responsibilities
- □ Pros vs. cons of *ChipDesign* 
  - Programmable hardware design
  - ✓ System level aspects
  - Elevated cost (equipments, EDA-tools, tutors,...)
- After the project, students are ready to design integrated circuits of higher complexity