
Students’ Experimental Processor: A Processor Integrated with Different
Types of Architectures for Educational Purposes

L S K Udugama, PhD
Department of Electrical & Computer

Engineering,
Faculty of Engineering Technology,
The Open University of Sri Lanka.

udugama@ou.ac.lk

Janath C Geeganage
Department of Electrical & Computer

Engineering,
Faculty of Engineering Technology,
The Open University of Sri Lanka.

janathg@gmail.com

Abstract

Students who are beginners face difficulties in
understanding basics of Computer Architecture. Their
problems have been identified, and a project has been
initiated to address these problems, with defined
objectives.

The project is to be implemented in stages: design
a processor; build a simulator; develop a compiler
and develop an intergraded system. The paper
presents the results of the first stage – design a
processor. The features and characteristics of the
processor are defined and the design process is
described in detail.

The SEP (Students’ Experimental Processor)
integrates different types of architectures: Memory-
Memory, Accumulator, Extended Accumulator, Stack,
Register Memory, and Load Store. It can be switched
to any one of them. It was modeled using VHDL and is
ready to be implemented on FPGAs.

The SEP will support the introductory level
students to understand the characteristics of computer
architectures and their operations. Future
developments of Computer Architecture education
using the processor are also discussed.

1. Introduction

The Department of Electrical and Computer
Engineering of The Open University of Sri Lanka
offers specialization in Computer Engineering in the
engineering degree program. In the year 2002 a new
curriculum was introduced where Computer

Architecture is one of the major components in the
computer-engineering stream.

Computer Architecture education in our
department is basically covered in four different
courses taught at different levels. The first course,
Communication and Information Technology is taken
by freshers, where they are introduced to the
components of a processor, how they are
interconnected and how they function. Even though
theory is explained by using a hypothetical machine,
students use a simulator for the 8051 microcontroller
to do their exercises. The second course at the next
level covers microprocessor-based systems. Here
students use the 8051-microcontroller development
boards to do their laboratory work. At the next level,
students study the five classic components of a
computer [6] and other related areas such as
performance and peripherals. At the final level
students will learn to design a processor and they
implement their processors on FPGA development
boards in the laboratory.

Students, especially at lower levels, face difficulties
in understanding basics of Computer Architecture.
Some of these difficulties have been identified, and
remedies suggested [1, 5, 7] According to our
experience, we can highlight some of the problems
faced by our students:

• Understanding the functions of the basic
components of a processor.

• Visualizing how a processor actually executes
an instruction and how data flows through its
components.

• Assembly language programming of complex
commercially available microprocessors/
microcontrollers.

• Comprehending the basic types and concepts of
Computer Architecture.

We have initiated a project to find solutions to
these problems. Here, we have mainly focused on the
lowest level course, targeting students who hardly
have any knowledge of computers/ processors.
However we do not want to limit it to one particular
course, but would like to see the possibilities of
catering for higher level courses as well. Thus, the
following objectives have been drawn up:

• To design a simple processor/s to teach
different basic types of architectures, to
demonstrate functions of components in a
processor and how a processor functions.

• To use the same processor/s to do exercises in
the subject.

• To build a simulator for the processor/s and use
the same to demonstrate its function, to show
the flow of data takes place within the processor
and to write assembler programs and execute
them.

• To keep provision to use the same processor for
microprocessor development systems and to
teach concepts in computer architecture.

• To use the processor in the course on, Processor
Design, at the final level, as a case study.

We have searched the literature to try to locate a
suitable system that meets all our objectives, but found
that while some of the systems [3, 4, 8] and simulators
[1, 2, 5] did cover our objectives severally no system
could be found to cover all in our objectives.

We then decided to commence this project called
Computer Architecture Learning System of The Open
University of Sri Lanka (CALS-OU) to achieve our
target. The project will be implemented in stages:
design a simple processor; build a simulator to write,
debug and execute assembly programs; develop a
compiler to write programs in a high-level language;
and finally develop a hardware/ software intergraded
system facilitating students to learn concepts in
Computer Architecture and to use the same for doing
students’ experiments. The first stage of the project
has been completed, and this paper presents its results
– a simple processor designed and named Students’
Experimental Processor (SEP), which will accomplish
our objectives.

2. How We Made the SEP a Reality

At the very outset of the design we defined the

features and characteristics of the processor to be. The
first is that the processor should comprise of four basic

types of architectures: Accumulator, Memory-memory,
Stack and Load Store. We then decided to include
other two types, register memory and extended
accumulator architectures [6]. We thought of
including these as popular processors have these
architectural styles. The next feature is that the
processor should be able to change to one of the six
architectures using hard or soft switches. To keep the
processor simple and to make it easy for the
programmer, we decided to limit the number of
instructions to less than 32 and leave the I/O
instructions out. However we did not want to limit the
number of addressing modes as it is useful for students
to learn to handle them in different situations.

The design process was comprised of the following
key steps:

• Design of ISAs and applicable addressing
modes, dimensions of data and address buses,
size and the number of GPRs and depth of the
stack.

• Design of Individual Data paths for the six
architectures.

• Design of control sequences of the different
instruction classes.

• Design of the top-level architecture. This is the
architecture, which integrates all six
architectures within one processor.

• VHDL modeling.
• Translator development.
• Testing.
• Documentation.

In the rest of the paper the design process, problems
faced and the solutions arrived at are described.

3. Instruction Set Architecture

Basic instructions are included in the instruction
set to provide an overall understanding of ISAs. All
instructions can be grouped as Arithmetic & Logical,
Control, Data Movement and miscellaneous
instructions (Table 1).

Same set of instructions in each of the groups
Arithmetic & Logical and Control Transfer is
applicable to all architectures. Only the Data
Movement instructions differ from machine to
machine.

Control Transfer instructions refer the Flag
register. The Flag register consists of 5 bits
corresponding to the Parity flag, Sign flag, Overflow
flag, Carry flag, and Zero flag. Instruction count is
less than 32 for all machines.

Seven addressing modes are implemented in this
processor. They are: immediate, direct, indirect,
register direct, register indirect, index and
displacement. Except displacement addressing, others
are available for the user for accessing operands.
Displacement addressing is used by the hardware in
Control Transfer instructions. Operands can be in the
memory, register bank, stack, or accumulator,
depending on the active architecture. Addressing
modes are declared in a way that it includes general
modes and some popular modes. For clarity and
consistency, the same instruction format is applied in
all architectures.

 Table 1. Instructions available in each architecture

Instructions are in two-address format. Targeted

implementation device has about 512K of 16-bit
memory. A 19-bit address bus is required to address
512K locations. In an instruction there are two
addresses (where applicable) and it needs 38-bits.

Instruction format (Figure 1)
• Opcode � 5-bits
• Addressing mode selection � 3-bits
• Addresses of two operands � 38-bits

 Figure 1. Allocation of bits in an instruction

Altogether 46-bits are required for an instruction. It
occupies 3 memory locations. The length of the
instruction is 48-bits.

4. Number Representation

Arithmetic and logic unit supports signed fixed-

point numbers. Negative numbers are represented in
two’s complement form. The sign flag is replicated
over bits 16 to 19, because the ALU is 19-bit and the
data path is 16-bit. It is achieved by coupling the MSB
to the three higher order bits.

5. Data Path Design

The structure of these architectures was designed in
a simple manner. It has only the basic entities, which
clearly shows the operation. For example, memory-to-
memory architecture consists of the following entities,

IP; Instruction Pointer
MAR; Memory Address Register
IR; Instruction Register
OP1; a 16-bit register
SR; Status Register/ Flag Register
MDR; Memory Data Register
3S_buff; a three state buffer
Six multiplexers

5.1. Entities

Each of the architectures has a different data path,
which facilitates the characteristic operation of its
style. Almost all entities are effective in all
architectures. There are two types of entities, namely,
synchronized and asynchronized. Synchronized
entities will function in an edge of the clock signal.
Others change the output whenever a respective input
is changed. Multiplexers and the ALU are non-
synchronised entities. All registers are synchronised to
the rising edge of the clock. Types of entities used in
the processor are master-slave registers, shift register,
3-state buffer, register bank-stack-accumulator
combined unit, Asynchronous SRAM and

Architecture
Arithmetic
and Logic

Control
Transfer

Data
Movement

Misc

Memory to
Memory

LOAD

Accumulator
LOADacc
STOREacc

Stack

PUSH,
POP, DUP,
SWAP,
ROTATE3

Extended
Accumulator

LOADacc,
STOREacc
LOAD,
STORE

Register
Memory

LOAD,
STORE

Load Store

ADD,
SUB,
INC,
MUL,
DIV

AND,
OR,
NOT,
XOR,
SHL,
SHR,
ROL,
ROR

JC, JS,
JP, JZ,
JOF

Call
Ret

Looz

LOAD,
STORE

NOP

multiplexers. As the Register bank-stack-accumulator
is a special unit, the block diagram is shown in the
figure 2.

 Figure 2. Interface of the Register bank, stack and accumulator combined unit

5.2. Handling Different Sized Busses

In indirect addressing, the address of the location re-
trieved from memory is 16-bit. It has to go to the
MAR. MAR is 19-bit wide. In this case only the lower
16-bits are replaced. The data path facilitates this by
coupling 3-MSBs of output of MDR to the input. This
technique is used in several places to overcome the
above situation. It results some limitations to the
design.

5.3. Control Signals

Figure 3 shows the data path of the top-level
processor, which facilitates six architectures
mentioned above. Control signals to each entity can be
found in the same figure.

6. Control Unit Design

A timing diagram was drawn for the execution of
each instruction class to determine the sequence of
control signals. The Control unit was designed using
these timing diagrams.

“Functioning of the entities by the control signals”
was important in designing the control unit, as the
right signal has to be sent at the right time. A
document containing all the entities and their control

signals was prepared at the commencement of the
design of the control unit.

7. VHDL Modeling

We used the Xilinx ISE Webpack 6.3i for VHDL
modeling and for the simulation ModelSim 6.0a.

7.1. Modeling Strategy

Initially, the lower level entities were developed
and tested for the expected results. When all entities
are working successfully as individual entities, they
were connected together to make the data, address and
control paths according to the design done in the data
path design process.

Behavior models were used in developing
individual entities. Structural modeling was used in
creating the top-level entity.

Then the control unit was programmed. Control
states declared in the earlier stage were programmed
using VHDL. The Control unit was tested as a stand-
alone unit, and as an integrated entity, to verify its
behavior.

Integrated testing was carried out after construction
of the control unit.

7.2. Register Bank, Stack and Accumulator -

The 3 in 1 Unit

Register bank, stack and the accumulator in the
combined architecture was developed in a different
way. As far as these three units are concerned, it is
clear that two of them won’t be available in a single
architecture. Accumulator architecture doesn’t have a
register bank or a stack. Stack architecture doesn’t
have a register bank or an accumulator. Because of
this, these three units were combined and developed as
a single unit, which switches the operation according
to the selected architecture. It optimizes resource
usage.

8. The Assembly Code Translator

This system had to go through a testing process to
confirm the proper execution of all instruction classes
in the six architectures. In the simulation, machine
level instructions had been fed to the memory module
of the VHDL model. It needs converting instructions
to operational code and addressing modes (if any) and
operands to binary. The binary stream needs to be split
into 16-bit segments to fit into the memory locations,

Figure 3. Data path of the top level architecture

starting from the initial memory address. This process
was time consuming. One mistake in conversion
would produce an entirely different result.

The translator was developed to overcome this
situation. The major functions performed by the
translator are:

• Validation of instructions, addressing modes
and operands

• Automation of machine code generation

• Automation of VHDL memory initialization
file creation

• Ensuring the reusability of programs

The Translator was developed using Microsoft
Visual Basic 6. It uses a Microsoft Access database to
store the written programmes for future reference.
Figure 4 shows the interface of the translator.

 Figure 4. Interface of the translator

The output of the translator is a text file, which also
contains memory initialization data of the program
written by the user. However, the user has to copy the
contents of that file and paste it in the memory
initialization section within the VHDL memory
module. Using the translator makes the programming
processes interesting.

Even though this was developed originally for
testing, it provides a lot of benefits to the users, and
helps to make their life easy. Moreover the students
can use this translator to write their programmes and
generate the binary code mapped to the memory. It
makes life easy and saves a lot of time.

9. Testing

Testing was carried out to verify the proper
operation of

• Each entity
• Each instruction class
• Each addressing mode under each instruction

class
• ALU for status flag settings
• Synchronous operation
• Special cases such as register bank, stack and

accumulator combined unit

9.1. Testing Strategy

A bottom-up testing strategy was followed. Bottom
level entities were tested and verified first Followed by
integrated testing. A testing check-list was prepared to
measure progress, and to make the process an
organised one.

9.2. Test Results

Successfully tested programmes were stored under
the respective architecture. The system was checked
with those after a modification is done, to verify the
results.

10. Implementation

The target implementation device of this processor
is the Spartan-3 FPGA board developed by the Xilinx
Corporation, with the following features

• Affordable price
• 400,000-gate Platform FPGA – XC3S400
• Xilinx 2 Mbit Platform Flash configuration

PROM – XCF02S
• 1 Mbyte of Fast Asynchronous SRAM
• Daughter card expansion ports

11. Documentation

As the target audience of this project is students, a
considerable effort was made in producing proper
documentation. It was decided to compile the
documentation in separate documents. They are

• Programmer’s Manual (for the six processors)
consists of detailed descriptions of six ISAs

• Description of the Processor Architecture,
which includes the Functioning of entities over
the control signals, Processor Architecture
diagrams, Processor architecture, Abstract
views of six architectures, Detailed control
sequences of the Memory to Memory and Load
Store architectures.

• Source code listing
All documentations and related programs are available
on web http://www.ou.ac.lk/fac_etec/elec/udugama/.

12. Conclusions and Future Work

All six architectures are working perfectly
according to their characteristics.

There are some limitations of this design. Call
Return and indirect addressing can only be used in the
same segment. In case where a Call instruction is
called within a Call, the processor expects the
compiler to do the necessary bookkeeping. This is also
the case in the Looz instruction. For simplicity of the
system, some of them were kept as it is.

Register bank, stack and the accumulator were
combined into one unit, to minimize the resource
usage on the FPGA. It automatically switches to the
relevant storage according to the active architecture.

The next stage of this project is to develop a
simulator for the processor. At the same time, we hope
to develop a compiler for a high- level language as
well. Once they are ready, it will be a good tool for
beginners to learn basics of Computer Architecture.

However we hope to use this processor as a case
study during this academic year for the course in
Processor Design. It is possible to examine the effect
of each control signal in each clock cycle using a
VHDL simulator. Therefore it will be very helpful to
students who are familiar with ModelSim to
appreciate the internal operations of a processor.

There is a possibility to develop a microprocessor
development board using the SEP. It is possible to
implement the design on the FPGA as we targeted for
Xilinx Spartan 3. In addition to that the processor is
designed to interface the onboard 1 Mbyte
asynchronous RAM as well. Therefore Spartan 3
board can be used as a microprocessor development
board. However the interfacing units, keypad and a
display have to be designed and connected to the
board.

This processor can be improved further by
pipelining instruction execution.

13. References

[1] Ola Agren, “Virtual machines as an aid in teaching

computer concepts”, Computer Architecture Newsletter,
IEEE Computer Society, September 2000, pp. 72-76.

[2] Jose R. Arias and Daniel F. Garcia, “Introducing

computer architecture education in the first course of
computer science career”, Computer Architecture
Newsletter, IEEE Computer Society, February 1999, pp.
37-39.

[3] Milos Becvar, Alois Pluhacek and Jiri Danecek, “DOP
— A CPU core for teaching basics of computer
architecture,” In Proceedings of the Workshop on
Computer Architecture Education, 2003, pp 14-21.

[4] Jan Gray, “Hands-on Computer Architecture Teaching

Processor and Integrated Systems Design with FPGAs”,
Computer Architecture Newsletter, IEEE Computer
Society, September 2000, pp. 90-97.

[5] Enric Pastor, Fermin Sanchez, and Anna M. del Corral,

“A Rudimentary Machine. Experiences in the Design of
a Pedagogic Computer”, Computer Architecture
Newsletter, IEEE Computer Society, February 1999, pp.
51-53.

[6] David A. Patterson and John L. Hennessy, Computer

Organization & Design: The Hardware/ Software
Interface, 2nd edition, Morgan Kaufmann Publishers,
San Francisco, 1998.

[7] Timothy D. Stanley and Mu Wang, “An emulated

computer with assembler for teaching undergraduate
computer architecture”, In Proceedings of the Workshop
on Computer Architecture Education, 2005, pp. 38-45.

[8] Yutaka Sugawara and Kei Hiraki, “A computer

architecture education curriculum through the design
and implementation of original processors using
FPGAs” In Proceedings of the Workshop on Computer
Architecture Education, 2004, pp. 3-7.

