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Abstract

Two of the most important design issues for modern
processors are power and performance. It is important
for students in computer organization classes to understand
the tradeoff between these two issues. This paper presents
PSATSim, a graphical simulator that allows student to con-
figure the design of a speculative out-of-order execution su-
perscalar processor and see the effect of the design on both
power and performance. The simulator explicitly shows the
relationship between instructions within a processor by vi-
sually tagging instructions. The use of a graphical simula-
tor makes it simple for instructors to demonstrate the exe-
cution of instructions within these architectures and the in-
teractions among processor components.

1. Introduction

Given the emphasis on speculative out-of-order execu-
tion superscalar processors and power consumption in in-
dustry, it is important to introduce and cover these topics
in computer organization classes. Ideas that students need
to understand include the flow of instructions within the
pipeline, dynamic scheduling, speculative execution, and
the data dependencies between instructions. Students also
need to appreciate the power consumption which offsets
performance gains within processors. It is difficult to ex-
plain these concepts and the interactions among the archi-
tecture components without visual aids. Graphical simula-
tions of these architectures allow students to easily grasp
the concepts of the architectures by observing the flow of
instructions in time. They allow students to explore the
impact of different architecture options on the performance
and power consumption of a processor.

The majority of existing graphical simulators target sim-
ple processor architectures. For instance, WinDLX [4]

models the scalar pipelined architecture described in [5].
The IJVM simulator [8] models the stack based JVM de-
scribed in [6]. Existing superscalar processor simulators
with graphical front-ends such as SuperSim [7] and the
Simplescalar Visualizer [10] model processors in great de-
tail, but do not show the dependencies between instructions
within the datapath that contribute to different instruction
flows. At present the only classroom tool for modeling the
power consumption of computer architectures is Quilt [2].
However, it does not graphically show the flow of instruc-
tions in a processor.

This paper presents PSATSim, a graphical simulator
that explicitly shows the relationship between instructions
within a superscalar out-of-order execution processor. It
indicates both the power consumption and performance of
a given architecture configuration. The simulator is based
on ideas in the SATSim simulator described by Wolff and
Wills [12]. Our simulator provides a wider variety of con-
figuration options, explicitly shows speculative execution,
provides a clear layout of the processor components, and
provides power consumption values at the end of execution.
PSATSim has been designed for ease of use and installa-
tion. Color tagging of instruction registers makes it easy to
follow the flow of instructions. Incorrectly speculated in-
structions are indicated on screen, making it possible to see
the effect of misspeculation. The simulator is trace driven,
with the traces generated using SPEC benchmarks on the
SimpleScalar simulator [10]. PSATSim is currently used in
undergraduate and graduate courses in computer architec-
ture at Clemson University.

2. Simulator Features

PSATSim models the dynamic power consumption of
superscalar processor architectures. It incorporates a spec-
ulative execution model which gives relative accuracy to
the power values. PSATSim allows students to experiment



Figure 1. Example Execution Results

with a wide range of architectural parameters and to observe
both the power and performance results of the configura-
tion. An example of the results screen from an execution
of PSATSim is shown in Figure 1. The following sections
will describe the architecture used by PSATSim, the model
of speculative execution, and the power model.

2.1. Modeling instruction execution

PSATSim models a superscalar processor with out-of-
order speculative execution. Out of order execution allows
instructions not waiting on data values to execute ahead of
other instructions. Speculative execution allows the proces-
sor to speculate on branch outcomes and continue executing
instructions, without disrupting the final state of the proces-
sor. Figure 2 shows the graphical view of the processor pre-
sented by PSATSim. Instructions flow downward in this
view. The architecture closely models the superscalar archi-
tecture described by Shen and Lipasti [9]. The architecture
can be divided into three parts: the in-order front end, the
out-of-order core, and the in-order back end (Table 1 shows
the components within each part). Users are able to mod-
ify the configuration of the processor and view the effects
on instruction flow through the simulator. At the end of ex-
ecution, a results screen is displayed including the power
consumption and the execution time. Configuration options
are described in detail in section 3.

The three stages in the front end (fetch, decode, and
dispatch) have an in-order flow. As instructions enter the
processor through the fetch stage, they are serially num-
bered and color coded to easily identify their progress
through the architecture. After moving through the decode
and dispatch stages, instructions enter the out-of-order exe-
cution core. The branch predictor is not shown in the graph-
ical view as it is modeled statistically. Since the simulator

Table 1. Components within the simulated ar-
chitecture.

Part of processor Components that can be config-
ured

Front end Fetch, decode and dispatch stage
widths, branch prediction accu-
racy, memory hit rate and access
time.

Out of order core Execution units, renaming table,
reorder buffer, and reservation sta-
tions.

Back end Commit buffer width.

is trace driven, the outcome of all branch instructions are
known a priori. This allows users to try different predic-
tor characteristics and observe its effect on the architecture.
The same applies to the memory hierarchy.

In the execution core, instructions are simultaneously en-
tered into the reorder buffer and an available reservation sta-
tion. They are also renamed through the renaming table and
register remapping table (these tables can be minimized to
reduce on-screen clutter if needed). The reservation stations
indicate the instruction opcode and the source and destina-
tion registers. These registers are indicated by the serial
number of the instruction producing them. If their value
is not available, the registers are also color coded to their
producer instruction’s color. Once the producer instruction
completes execution, the register color is removed to indi-
cate that its value is available. This makes it easy to identify
the data dependencies between instructions in the different
reservation stations and functional units. Once all of the
input values are available and the front pipeline stage on
an appropriate associated execution unit is free, the instruc-
tion begins execution. The instruction continues to occupy
its reservation station until the instruction’s execution has
completed. An execution unit may be pipelined or have a
multi-cycle delay. Each stage in an execution unit pipeline
is shown, while multi-cycle delays are only indicated by the
multi-cycle residency in the execution unit.

After an instruction finishes execution, it is removed
from the reservation station. In addition, the corresponding
entries in the renaming table and reorder buffer are uncol-
ored. This makes it easy to determine which instructions
are ready to commit from the reorder buffer. The reorder
buffer is placed on the left side of the display to provide an
easy reference to all the instructions as they flow through
the datapath.

Memory access occurs in the last pipeline stage of the
memory unit. Therefore, if there is a data cache miss, every
memory instruction in the execution unit will be delayed.
The memory hierarchy is not visualized in the interface,



Figure 2. Normal Execution

Figure 3. Speculative Execution



though cache misses in each level are listed in the running
statistics at the top of the simulator. The statistics at the
top of the window also list the current cycle number, the
number of instructions committed, the IPC, the number of
cycles remaining on a fetch (shown as ’Fetch Latency’), the
number of branches encountered, as well as the number of
misspeculated branches.

2.2. Modeling speculative execution

PSATSim provides the option of simulating the effect of
speculative execution, resulting in significantly more accu-
rate power modeling. Since the simulator is trace driven,
the instructions that would be fetched on a branch mispre-
diction are not available in the trace. However, Bhargava et
al. [1] show that it is possible to model the effect of mis-
prediction by fetching instructions from the main trace file.
This is due to the fact that a large percentage of the instruc-
tions fetched during misspeculation are fetched normally at
other points during execution. In other words, instructions
that would have been executed during a misspeculation are
similar to those in the input trace which is already being
utilized. PSATSim simulates the effect of misspeculation
by loading instructions from the same trace file independent
of the normal stream of execution. This provides the same
general mix of instructions which would have occurred if
the actual program had been executed and accounts for the
energy consumed by instructions which, in the end, have no
effect on the architectural state of the processor.

If the simulation of misspeculation is enabled, the mis-
speculated instructions are shown with a strikethrough on
the display. Figure 3 shows an example of the simulator in
this state. As with any architecture allowing out-of-order
speculative execution, it is necessary to commit the instruc-
tions in order; in PSATSim, this is accomplished using a
reorder buffer. Each cycle, up to the superscalar width of
finished instructions in the reorder buffer will be committed,
thereby permanently affecting the processor’s state. The in-
structions that will be committed in the current cycle are
shown in the bottom row of the display in the ’Commit’
row. Though misspeculation visualization may be disabled,
the reorder buffer is always used to ensure that instructions
are committed in-order.

2.3. Modeling power consumption

PSATSim incorporates the Cacti-based [11] Wattch
high-level power modeling system [3]. Though the Wattch
power model has been designed for the SimpleScalar ar-
chitecture, we have adapted it to support the architectural
flexibility of PSATSim. Because of the large number of dif-
ferences between the two simulators’ architectures, power
values cannot be directly compared between Wattch and

PSATSim.
The Cacti system was designed for computing delay-

optimal cache structures. The delay comes in the form of
the effective resistance and capacitance of the cache. In
computing dynamic power, all that is needed is the effective
capacitance of a structure. The energy is consumed during
switching of the transistor states, that is, in charging and dis-
charging the transistors. The resistance is not needed, since
it principally affects the maximum clock speed at which a
circuit will operate. The Wattch power model uses Cacti,
and its implementation of known semiconductor manufac-
turing process parameters, to compute the effective capaci-
tances for a wider range of processor structures [3].

The dynamic power is defined by Wattch as: Pd =
CV2

dd a f . The exclusion of a model for static power does
not significantly impact the accuracy of PSATSim due to
the use of 350 nm technology process parameters. The ca-
pacitance, C, is generated using Cacti based on the process
parameters. The supply voltage, Vdd , as well as the clock
frequency, f , are generally determined by the technology
process used, though many architectural design decisions
can significantly reduce the clock frequency. The activity
factor, a, represents the average proportion of the structure
that is switching each cycle. Modeling the activity fac-
tor well is the most difficult part of normalizing the power
model to published power figures.

In modeling the effective capacitance for different com-
ponents, there are three general categories which an archi-
tectural structure can fall into: array structures, content-
associate memories, and complex logic blocks [3]. The
last category is used to model functional units and will be
discussed later. The first two categories are interrelated
and are used to model the caches, the reorder buffer, the
register renaming table, and the architecture register file.
Array structures are modeled as sets of decoder, wordline
drive, and bitline discharge circuitry, which consume most
of the energy. Reservation stations are modeled as content-
associative memories, which are similar to array structures,
except that they use taglines and matchlines due to their
fully-associative nature. The original implementation of
Wattch inside the sim-outorder component of SimpleScalar
[10] features a register update unit, which combines the fea-
tures of the reorder buffer, a centralized reservation station,
and the dispatch stage into a single unit. PSATSim mod-
els the structures separately, since that is much more com-
mon in industry. The PSATSim power model for each of
these structures is correspondingly independent, resulting
in a much wider range of possible configurations than with
Wattch implemented in sim-outorder.

Caches are modeled using a hybrid between the two that
is built out of array structure equations. This is due to the
fact that caches are rarely fully-associative, due to their size
and the need for performance. Since the memory hierarchy



is stochastically modeled in PSATSim, the cache size para-
meters which would actually provide the supplied hit rates
is unknown. Therefore, it is necessary to assume certain
cache sizings for the purposes of power modeling. Since
PSATSim uses the baseline 350 nm technology parameters
contained within the Wattch model, the two L1 caches are
modeled as direct-mapped 16 kB each, while the L2 cache
is modeled as 256 kB four-way set associative. These cache
parameters are typical of processors made using 350 nm
processes, as specified by Wattch [3].

For structures such as caches, which pre-charge and dis-
charge the bitlines every cycle, regardless of being used, the
activity factor is assumed to be 100%. For wide structures,
such as the fetch, decode, dispatch, and commit stages, the
activity factor can be scaled by the utilization. That is, if
only one-half of the decode stage is being used, then the
activity factor can be approximately halved. Wattch intro-
duces a number of conditional clocking schemes designed
to mimic modern processors. The most important of which
models the activity factor as a linear function of the number
of units being utilized. Even with no utilization, there is still
some power consumed, due to clock circuitry. At this time,
PSATSim scales the activity factor for all regular structures
linearly from 10% to 100% (this is the same assumption
used in Wattch). The 10% minimum is used by Wattch to
account for transistors that cannot be disabled by aggressive
conditional clocking [3]. If a structure is too complicated to
be modeled in this way, then an activity factor of 50% is
assumed. This gives an equal likelihood for each gate to be
switched.

The selection logic, found with each reservation station,
and the dependency check logic, found in the dispatch stage,
both feature complex logic which have models which were
used within Wattch [3]. Due to the complex nature of func-
tional units, there is no way to construct a high-level model
to support a wide range of functional unit types. It is there-
fore necessary to extract capacitance values for each func-
tional unit type from low-level models for a specific tech-
nology process. In PSATSim, these values are stored, along
with technology process parameters, within a file that de-
fines the ISA and the capacitance of the circuitry to execute
each instruction. At the moment, PSATSim uses extremely
aggressive clocking which causes different opcodes that ex-
ecute on the same functional unit to have different energy
consumption.

3. Simulator Configuration

When the simulator is started up, the user is presented
with a processor configuration dialog box to tailor the archi-
tecture. The configuration is divided into three main parts
(through a tabbed interface): general, execution, and mem-
ory/branch. Figures 4, 5, and 7 show example screenshots

Figure 4. General Settings for a New Trace

of the three tabs. The settings specified can be saved and
loaded later. The exact configuration used by the simulator
is saved into the output file, including the random-number
generator’s seed, making it possible to exactly recreate the
output. The configurations are stored in XML format, mak-
ing it simpler to edit and view manually if necessary. The
following sections discuss the three configuration tabs and
how they relate to the architecture modeled.

3.1. The General Tab

On the general tab (see Figure 4), the superscalar width
specifies the bandwidth of the front and back ends of the
processor (fetch, decode, dispatch, and commit stages). The
number of reorder buffer entries, renaming table entries, the
input trace file, and the output results file are also specified
here.

3.2. The Execution Tab

On the execution tab (see Figure 5), the user can config-
ure the reservation station and the execution unit configura-
tion. Three reservation station structure types (as defined in
Shen and Lipasti [9]) are offered: distributed, centralized,
and hybrid. In the first case each functional unit has its own
reservation station, while in the centralized case all func-
tional units share a common reservation station buffer (see
Figure 6). In the hybrid case, a group of functional units
shares a buffer, as in the MIPS R10000 [13].



Figure 5. Standard Execution Architecture
Settings for a New Trace
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Table 2. Functional Unit Types
Type Functional Units
Simple ALU, branch, and memory.
Standard Integer, floating point, branching, and

memory.
Complex Integer addition / multiplication / divi-

son, floating point addition / multipli-
cation / division / square-root, branch-
ing, and load/store.

The execution tab also allows the user to configure the
number of functional units. Depending on the details taught
in class, students can pick different types of functional unit
configurations: simple, standard, complex, and custom (see
Table 2). In the simple case, all integer and floating point
operations are carried out through a general ALU. In the
standard case, separate integer and floating point ALUs are
provided, while in the complex case, separate functional
units are provided for each sub type of operation (such as
floating point divide and floating point multiply).

In the custom case, the user can specify any arbi-
trary structure of functional units and reservation stations.
It allows functional unit latencies and throughputs to be
changed, along with the type of instructions executed by
the units. In addition the functional units connected to each
reservation station can be modified. The custom configura-
tion is specified by hand editing an XML file.

3.3. The Memory/Branch Tab

The branch prediction accuracy and memory properties
are defined in the memory/branch tab (see Figure 7). The
user can choose to have just system memory, system mem-
ory with L1 caches, or system memory with both L1 and L2
caches. The access latency and hit-rate for each cache level
is configurable, as is the branch speculation accuracy. A
checkbox is provided to disable the visualization of branch
misspeculation modeling. Since these components are mod-
eled statistically, students can observe the effect of different
branch hit-rates or memory latencies on processor perfor-
mance.



Figure 7. L1 and System Memory Architec-
ture Settings for a New Trace

4. Implementation

PSATSim was implemented in C++. GTK+ v2 was used
to provide the GUI functionality. The use of cross-platform
libraries enables PSATSim to run under both Windows and
Linux environments, as well as some other Unix-type sys-
tems, including Solaris and MacOS X. Full inheritance and
polymorphism is used, allowing for ease of extension in the
future. Each component in the system, be it an entry in the
reorder buffer or an execution unit, is an independent ob-
ject that is linked to other objects. This design allows for
custom architectures and simplifies future expansion of the
program.

The Windows installer for PSATSim uses the Nullsoft
Scriptable Install System and was designed to conform to
general norms of modern installers. Options are given to
install additional trace files. An installer for GTK+ is in-
cluded in the installer to help get PSATSim running on ma-
chines which do not have GTK+ installed already, which is
a high probability for most Windows based machines. The
simulator and it’s associated trace files can be downloaded
from:
http://www.ces.clemson.edu/~tarek/psatsim/

5. Use of PSATSim

PSATSim allows the user to explore different configura-
tions of basic superscalar processors with ease. In a course

on computer architecture, it can be used in class to visually
demonstrate the flow of instructions in a modern processor.
A large variety of superscalar architecture configurations
can be demonstrated by modifying the configuration file.
The color coding of instructions allows students to visualize
the interaction between processor components. PSATSim
provides the same structure as other simulators, but with a
more flexible configuration system, allowing an instructor
to both raise and lower the level of complexity to meet the
needs of their students. Configurations can be developed
and then saved for use later in class or to be given as an
experiment to students.

It is important for students to understand how to inves-
tigate architectures that are optimized in terms of cost, per-
formance, and power. Projects designed around PSATSim
have been used in both undergraduate and graduate level
courses at Clemson University to teach students these con-
cepts. In these assignments, students are asked to explore
architecture configurations that optimize for power, perfor-
mance, or both within a given chip area budget (at present
an equation for chip area based on architecture configura-
tions is utilized). The assignments can be tailored by having
students develop architectures that are targeted to a specific
class of applications (such as integer, scientific, multimedia,
or a combination of these).

6. Future Work

In its present form, PSATSim does not allow the user to
directly alter the power model settings. The inclusion of an
interface with which the user could select from a set of tech-
nology processes would increase the simulator’s flexibility
and usefulness. This would also allow for the incorpora-
tion of more modern technology processes than the base
350 nm process. Also, the incorporation of leakage char-
acteristics would improve PSATSim’s accuracy for more
modern processes.

At the moment, the user input cache hit-rates do not im-
pact the power consumption due to the use of a fixed cache
organization power model that does not reflect the chosen
hit-rates. Similarly, the efficacy of the branch predictor has
no impact on the power consumption. Functional modeling
of the branch predictor components would provide more ac-
curate power and performance modeling. The incorporation
of a model to reconstruct the run-time object code, such as
that presented by Bhargava, et. al, would improve the ac-
curacy of energy consumption statistics for misspeculated
execution paths [1]. The inclusion of memory addresses
into the trace files would facilitate the incorporation of func-
tional cache modeling as well. This would make it possible
to directly associate the power consumed by the caches and
branch predictors and would significantly improve the ac-
curacy of the power model across the range of input para-



meters.
The implemented power model has not been normalized

against published figures, so it is not possible to compare
the power values from PSATSim against those of other sim-
ulators. Normalization would improve the accuracy of the
power model and extend the usefulness of PSATSim as part
of a broader power modeling project. Additionally, the abil-
ity to easily input the energy values for each instruction type
by the user would make it possible for students to incorpo-
rate values generated from SPICE models and the like into
PSATSim and quickly see the results of low-level changes
at a high-level.

7. Conclusion

PSATSim provides a unique tool for use in computer ar-
chitecture courses. It allows students to try out different
architectural parameters and interactively watch execution
or quickly jump to the end of the execution and view the re-
sultant power and performance figures. It can be used both
to demonstrate the operation of speculative superscalar ar-
chitectures and to teach students about the trade off between
performance and dynamic power consumption.
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