An Execution-Driven Simulation Tool for Teaching Cache Memories
in Introductory Computer Organization Courses

Salvador Petit, Noel Tomas
Computer Engineering Department
Faculty of Computer Science
Polytechnic University of Valencia
spetit@disca.upv.es, noetoar @eui.upv.es

Abstract

Cache memories are the most ubiquitous mechanisms
devoted to hide memory latencies in current microproces-
sors. Due to this importance, they are a core topic in com-
puter architecture curricula, both in graduate and under-
graduate courses. As a consequence, traditional literature
and current educational proposals devote important efforts
to this topic. In this context, exercises dealing with sim-
ple algorithms, also known as code-based exercises, have
a good acceptance among instructors because they permit
students to realize how the accesses generated by the pro-
grams affect the cache’s state.

From about one decade ago, simulators have been ex-
tensively employed as a valuable pedagogical tool as they
enable students to visualize how computer units work and
interact each other. Unfortunately, there is no simple simu-
lator allowing to perform code-based exercises for cache
memories. Hence, students perform these exercises by
means of the classic “paper and pencil” methodology.

In this paper we introduce Spim-cache, a simple
execution-driven cache simulator to carry out such exper-
iments, intended to use in undergraduate courses. The tool
allows, in an intuitive and easy way, to select a given cache
organization and run step-by-step the code proposed while
visualizing dynamic changes in the cache’s state.

1 Introduction

The ever increasing gap between the memory and the mi-
croprocessor speeds has encouraged microprocessor archi-
tects across several decades to provide mechanisms in order
to hide the long memory latencies. Cache memories have
become the basic and ineludible mechanism implemented
in current processors to hide these latencies and reduce the
average data access time. Furthermore, the importance of

Julio Sahuquillo, and Ana Pont
Computer Engineering Department

Technical School of Applied Computer Science

Polytechnic University of Valencia
{jsahuqui, apont} @disca.upv.es

caches grows as the memory-processor gap widens, which
is the current trend; for instance, in 1980 some micropro-
cessors were designed without caches while current micro-
processors include two or even three levels of caches [1] on
chip. These memory structures base their effectiveness in
the exploitation of the principle of locality (i.e., temporal
and spatial) that data exhibit, and have been employed by
computer architects from about four decades ago [2].

Consequently, a large amount of research works in the
computer architecture field have focused on cache mem-
ories and related issues. This research has provided effi-
cient mechanisms to manage and exploit caches, and some
of them have been implemented in modern microproces-
sors. For instance, the AMD Ahtlon [3] includes a victim
cache [4], the Itanium 2 [1] incorporates a prevalidated tag
structure to provide fast accesses, the HP 7200 implements
the Assist Cache [5], a particular type of split data caches
[6].

Concerning to international curricula recommendations,
the joint [IEEE Computer Society and ACM Computer Engi-
neering Task Force has identified cache memories as a core
topic in the Computer Organization and Architecture [7]
area of knowledge. This fact is because the processor
performance strongly depends on the cache performance.
As a consequence, cache memories play an important role
in Computer Organization/Architecture Courses mainly of-
fered at Computer Engineering schools, although concepts
concerning cache memories are also studied in a more sim-
plified way in other Technical Schools, like Electrical En-
gineering or Computer Science. Computer Organization
courses cover the study of the basic functional units of the
computer and the way they are interconnected to form a
complete computer. Computer Architecture courses mainly
cover advanced processor architectures, advanced memory
mechanisms, and multiprocessor systems; as well as the
corresponding performance evaluation issues. Concerning
to the study of caches, they involve a wide variety of con-

cepts and functionalities ranging from the basic functional-
ity to advanced mechanisms implemented in modern micro-
processors. The basis of caches, covered in initial Computer
Organization courses, deals with concepts like cache orga-
nization, mapping functions, and replacement algorithms.
Advanced mechanisms, like way prediction or the trace
cache, are covered in a posterior Computer Architecture
course.

To teach how caches work some widely referenced
books, e.g., [8], [9], [10], and [11], use simple algorithms,
for instance, the sum of the elements of an array (see Fig-
ure 1). For these algorithms, students must obtain some
metrics concerning cache behavior, e.g., the hit ratio. These
examples have a great pedagogical value to reinforce the
learning process and have been commonly adopted by in-
structors around the world. Nevertheless, despite the un-
doubtable pedagogical value, instructors train students per-
forming these exercises using the classic paper and pencil
method.

sum = 0;
for (i=0;1 <100; i++)
{
sum = sum + A[i];

}

Figure 1. Simple algorithm example

The massive use of computers in classrooms and labo-
ratories has resulted in new teaching methodologies using
computers as a pedagogical tool. In this context, the use
of simulators is highly recommended as they enable stu-
dents to visualize how the modelled system operates. A
wide set of these simulators has been developed to teach the
basic functional units of the computer in Computer Orga-
nization/Architecure courses, e.g., simple processors, com-
puter arithmetic units, or cache memories. Concerning to
cache memories there are simple simulators dealing with
the basis of caches. Unfortunately, and to the knowledge of
the authors, none of these basic simulators can be used to
perform code-based exercises, i.e., the same kind of exer-
cises that have been traditionally proposed in the teaching
literature. In this paper Spim-cache is proposed, as a peda-
gogical tool intended to be used in undergraduate courses,
attempting to fill the existing gap between current simula-
tors and the reference guides.

Spim-cache has been developed by students and staff of
the Computer Engineering School at the Polytechnic Uni-
versity of Valencia. In this University, computer organiza-
tion subjects are split in two annual courses [12], namely
Computer Fundamentals (first year) and Computer Organi-
zation (second year). In these courses, as in a high number

of universities around the world, the MIPS approach is used
to illustrate the corresponding topics, e.g., the processor
pipeline, the memory hierarchy, and the input-output sys-
tem, are studied using the same machine model. This means
that students are trained with the MIPS assembly language
and the corresponding Spim [13] simulator. This teaching
context led us to extend the Spim simulator to implement
our proposal.

Spim-cache provides support to perform code-based ex-
ercises detailing cache events in a friendly and easy way.
Spim-cache allows students to run programs while visual-
izing, step-by-step, how the cache controller works, e.g.,
fetching memory blocks, or dealing with write policies.
The simulator code is open source and can be found at
http://www.disca.upv.es/spetit/spim.htm.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the main features of current simulators
and the reasons that encouraged us to deal with this work.
Section 3 describes the proposed pedagogical training tool.
Finally, Section 4 presents some concluding remarks.

2 Background and motivation

An interesting laboratory using real microprocessor’s
caches is described in [14]. In this laboratory, students run
a small benchmark on a given computer. The benchmark
is mainly composed by a nested loop that reads and writes
an array of data using different strides and array sizes. The
benchmark measures the average data access time, which
varies according to several factors, e.g., if this array is larger
or smaller than the cache size. Analyzing the times pro-
vided by the benchmark execution, students must deduce
the cache geometry (i.e., the cache size, the line size, and
the associativity degree). Further details can be found in
[10]. This kind of laboratory, really encourages students
as they work directly on the real hardware. Unfortunately,
in order to ease the analysis of the results, the benchmark
must run in a relatively old processor like the Pentium II
which includes a simple cache organization. In more recent
microprocessors including advanced cache mechanisms, for
instance, some kind of prefetching like the Intel Pentium 4
[15], or victim caches like the AMD Ahtlon, the cache ge-
ometry could not be deduced from the results provided by
the benchmark.

The mentioned drawback jointly with the pedagogical
value that simulators provide, led instructors to train stu-
dents by using cache simulators. Table 1 shows a subset of
current simulators dealing with caches that are being cur-
rently used for educational or research purposes, or both.
An interesting survey of simulators can be found in [16].
Simulators can be classified in two main groups attending to
the way they are fed: trace-driven simulators and execution-
driven simulators. The first ones are fed by simple traces

Table 1. Educational simulators: an overview

poses like [18] and [19]. Nevertheless, as this kind of sim-
ulators are fed by traces they are not appropriate to perform

A1l Rights Reserved.
DOS and Windows ports by David &. Carley (dac@es.wisc.edu).
Copyright 1997 by Morgan Kaufmann Publishers, Ine.

See the file README for a full copyright notice.

v
=

Simulator | Complexity | Driven | Graphic Interface | Core Details
DCMSim Low Trace Driven Yes No
Dinero Medium Trace driven No No
mlcache Medium Trace or execution driven No No
Simplescalar High Execution driven No Yes
while the second ones, much more complex, are fed by the @@ e
binary of a given benchmark. FrEERETE Y
B = 00000000 EPC = 00000000 Cause = 00000000 BadVaddr= 00000000A |
Status = 3000££10 HI = 00000000 = 00000000 |
To teach students in undergraduate courses instructors e 52 e EEEEEBEEV!
use trace driven simulators, e.g., [17]. A trace is composed < T e | 5|
by a set of lines, where each line represents an specific i :zt;:gthidl‘ |
event, i.e., a write or read operation in a given memory ad- o l
dress. The simulator shows how the cache contents change — Pk R A
each time a new event occurs. In this way, students can fol- oot s ca S l
low how memory accesses miss or hit into the cache. Some (ox7Err8EEe] e s v}
trace driven simulators have been also used for research pur- Copyright 1990-2004 A;
|
|
|
|

code-based exercises.

Advanced execution-driven simulators are mainly used
for research purposes. These sophisticated tools may con-
centrate only on cache related issues, e.g., the mlcache sim-
ulator [18], or in the complexity of the entire microproces-
sor, e.g., the simplescalar toolset [20], which models an
aggressive out-of-order processor. This kind of tools can
provide detailed information cycle-by-cycle, showing how
the machine units interact each other. Due to the huge com-
plexity involving current microprocessors, this kind of tools
are organized in a structured way, including a specific cache
memory module. The main advantage of advanced simula-
tors is that they permit to know the details on each instruc-
tion in the pipeline, however, they usually fail in that they do
not provide a friendly graphic interface and are quite diffi-
cult to use. This fact jointly with the complexity of the mod-
elled processor make advanced execution-driven simulators
unsuitable to perform code-based exercises in undergradu-
ate courses.

In this paper we propose a simulator intended to use in
undergraduate courses which provide support to perform
code-based exercises. The tool attempts to get the best
of both kinds of simulators, i.e., a friendly and easy-to-
use simulator which visualizes, cycle-by-cycle, the archi-
tectural state of the machine. From the pedagogical point
of view, the proposal provides a framework which permits
to perform the typical exercises based on simple algorithms
proposed in the literature.

For Help, press FL FC: EFC =

Figure 2. Cache simulator option

3 Spim-cache

Spim is a simulator that runs MIPS32 assembly language
programs. It has a wide acceptance among instructors of in-
troductory Computer Organization courses and it has been
widely referenced in [8]. UNIX, Linux, MS-DOS, and Win-
dows versions are available. The user’s interface for Mi-
crosoft Windows platforms, also known as PCSpim, con-
sists of a window that is composed by four frames, from
up to bottom: the contents of the register file, the program
being simulated (assembler and machine codes), the mem-
ory, and a list of log messages. This simulator permits to
illustrate the instruction set architecture, i.e., the processor
as seen by the programmer.

The proposed tool extends the Windows version provid-
ing support to simulate cache memories. The tool also visu-
alizes step-by-step how the cache contents change. In addi-
tion, important statistics, e.g., number of hits or misses, are
also provided on-the-fly. The tool supports the simulation
of both data and instruction caches.

In order to start with the cache simulation, user should
firstly select the Cache Simulation option in the Cache Set-
tings dialog, which pops up after clicking on the settings
entry of the simulator menu (see Figure 2). After doing so,
a dialog with the different cache organization configuration
options is displayed (see Figure 3). Users can select among

EERHEL

Data Cache Only Caneel
Instuction Cache Orly
DATA ‘ &
[0210000000] . . . [0210040000
STACK
[0r7fEfeffe] 0200000000
-
Copyright 1990-2004 by James R. Larus (larus@es.wisc.edu). ~

11 Rights Reserved.

DOS and Windows ports by David A. Carley (dac@es.wisc.edu).
Copyright 1997 by Morgan Kaufmann Publishers, Inc.

See the file README for a full copyright notice.

For Help, press F1 PC: ERC <

, - [O=| [- [B]x]]
(|| 2o o 2)e =|H| == o] 2
PC = 00000000 ERE = 00000000 Cause = 00000000 BadVaddr= 00000000 A Ba = 00000000 ERPC = 00000000 Cause = 00000000 BadVaddr= 00000000 4
Status = 3000££10 HI = 00000000 Lo = 00000000 Status = 3000££10 HI = 00000000 La = 00000000
General Registers . - —— = =
RO (r0) = 000000OD RS (t0) = 00000000 RI16 (s0) = DOO0DOOO RZ24 (t8) = 00000000 " CachieSettings X 5
R1 (at) = 00000000 RS (tl) = 00000000 R17 (sl1) = 00000000 R25 (t9) = 00000000
e
2 = 5 EERNEL CACHE SIZE BLOCK SIZE
Cache Configuration e

)i
e
ALGORITHM

S
2 Waps Sebssociative i cate | 5
£ Waps SetAssociative I
Fully Assoiative wdiiteB ack MNodlocate
0
Instiuction Cache Acces

¥ Showfiale
set | v [Tagthy | Data(h)
o o
1 o
2 o

2568 =
DATA oo e o
[0z10000000] . .. [0=1| | D

MAPFING

Set | v [Tagthy | Instructio
o o

1 [
] 0

0
Data Cache :0_Hits:0 _Hit Rate:0.000000 __ Misses: C v:0_Conflict0_Capacity:0
@éee the file README for a full copyright notice. =

For Help, press F1 PC=D0x EPC: Ca

Figure 3. Cache configuration dialog

simulate a data cache, an instruction cache, or both, as ex-
plained below.

3.1 Cache Architecture Configuration

Current processors implement independent cache orga-
nizations to store instructions and data. In this context,
Spim-cache permits to simulate only a data cache, only a
instruction cache, or both together (i.e., Harvard Architec-
ture) as implemented in modern processors.

The default configuration (i.e., the Harvard Architecture)
can be changed through the proper dialog (see Figure 3), by
clicking on the Cache Architecture Configuration entry of
the Cache Simulation menu option. The data and instruction
caches are displayed as two independent frames inside the
main PCSpim window. Both frames are only displayed if
the Harvard Configuration is selected; otherwise, only one
frame is shown.

3.2 Cache settings

To display the Cache Settings dialog, users should click
on the Cache Settings entry of the Cache Simulation menu
option. This dialog allows users to change the configuration
of the caches. The same dialog is used to change both data
and instruction cache configuration. To change between
them, select the proper option from the Cache combo_box
in the dialog as shown in Figure 4.

The dialog shows the different options available. This in-
terface allows users to choose the cache size (ranging from
128B to 1024B), the block size (4, 8 or 16B), the map-
ping function (direct mapping, 2 or 4 ways set associa-
tive or fully associative), the writing hit and miss policies
(write-through or write-back, and write-allocate or write-
no-allocate), and the replacement algorithm (LRU, FIFO).
As instruction caches are not allowed to be modified by user

Figure 4. Cache settings dialog

programs, the writing hit and miss policies are only avail-
able for data caches. In addition, in order to provide peda-
gogical feedback, if the show rate option is selected, Spim-
cache displays some statistics, like the number of misses, in
a small frame below the cache frame.

The cache frame visualizes the cache contents and its
layout, depending on the selected configuration. The direct-
mapped is the default configuration and its layout is orga-
nized as a matrix. Each row in the matrix represents a cache
line and the columns represent all the information associ-
ated with it. The first column contains the line identifier (or
line number) while the remaining columns contain data and
control information. The control information displayed for
this configuration is the valid bit and the tag bits (in hex-
adecimal notation). In addition, for pedagogical purposes,
a field Acc showing the result of the cache access (i.e., hit
or miss) has been included.

When adding associativity to the cache (i.e., increasing
the number of ways) the layout of the cache frame changes.
To this end, Spim-cache replicates the columns of a direct-
mapped cache as many times as the number of ways se-
lected. Proceeding in this way, each row of the window
represents a single set of the cache (i.e., the lines belong-
ing to the set) and the first column states the set identifier.
To support the replacement policy, an additional column
(LRU/FIFO) is added for each way, to represent the counter
value of the replacement algorithm. In addition, if the user
selects the write-back policy, a new column (M) is added
for each way to represent the modified or dirty bit of each
block.

In order to facilitate the user interaction and offer a bet-
ter visualization, the basic strategy of replicating columns
to provide a higher number of ways to the cache is not fol-
lowed by a fully associative cache. On such case, the basic
layout is transposed. In this configuration, the first column
indicates the number of way and each row shows the con-

File Simulator Window Help CacheSimulation

=al =z o 2

RZ (w0) = 00000000 R10 (t2) - 10020074 RI1G (s2) = 00000000 RZ6 (kO) = DO00O0O0 ~
R3 (w1} = 00000000 R11 (t3) = 0000000 R19 (s3) = 00000000 R27 (k1) = 00000000
R4 (a0} = 00000000 R1Z (t4) = 00000003 R20 (s4) = 00000000 R2Z8 (gp) = 10008000
RS (al) = 00000000 R13 (t5) = 0000000e R21 (s5) = 00000000 R29 (sp) = 7fffeffc
R6 (a2} = 00000000 R14 (th) = 00000Ole R22 (s6) = 0O0DOOOO R3O0 (s8) = 0OO0O0DO
b
[0x00400014] 0zEd040000 1w S13, O(S8) : lw St5, 0(5t0) A
[0x00400016] 0zEd2b0000 1w S11, 0(59) ; 14: 1w $t3,0(5t1)
0z0040001c 0x01ab7020 add 514, $13, 511 : add Sth,5t5,5t3

For Help, press F1

0x00400024 0221080004 addi S8, : addi 5tO,

w
[0z10010020] Ox00000009 Ox0000000a Ox0000000k Ox0000000¢ |
[0x10010030] O0x00000004 Ox0000000e OxO000O0QO0f Ox00000O10
[0x10010040]...[0x10020000] Oz00000000
[0x10020000] Ox00000001 Ox00000002 Ox00000003 Ox00000004
[0x10020010] 0x00000005 Ox0000000e OxO000O0QO07 Ox00000OO0S

b
Set | W | Tag (h) | Instructions (h) | Ao A
1 1 8000 ori §12, $0, 16w $13, 00$8) e $11, 00$9) add §14, $13, $11
z 1 8000 sw$14, 0010) addi$B, §8, 4 addi$10, $10,4 addi$9, §9, 4 it
3 1 8000 addi$12, $12, -1 bre$12,40,-32 MNUL MULL
4 i
5 o
& 0 b
Instruction Cache Accesses:126 Hits:122 Hit Rate:0.968254
set | w |RU [Tagihy | Dataih) wayo [acc | [w [tru | Tagihy | Dataih) way 1 | acc |
0 11 400800 00000001 00000O0Z 00000003 00000004 i b 400801 00000002 00000004 00000006 0000000S
1 11 400800 00000005 00000006 00000007 00000008 1 0 400801 0000000a 0000000 0000000 00000010
z 11 400800 00000009 000D0OOa 0000000b 0000000 1 0 400801 00000012 00000014 00000016 000D0O1S
3 10 400800 00000004 0000000e 0O00OOOF 00000010 1 | 400400 00000004 ODOO0O0e 0O000OOCF 00000010
Data Cache Accesses:42 Hits:0 Hit Rate:0.000000 Misses: Compulsory:12 Conflict:27 Capacity:3
[0=00400018] 0x8d2b0000 1w S11, 0(S9) ; 14: lw St3,0(5t1) A
[0=0040001] 0x01ah7020 add $14, 513, 511 15: add $t6,.5t5,5t3

w
£ B |

|PC=0x00400020 EPC=000000000 Cause=000000000

Figure 5. First step of execution

tents of the corresponding line.
3.3 Running a program

Spim-cache allows the user to visualize how the proces-
sor’s state, the main memory, and the cache interact while
a given program runs step-by-step. In addition, statistic re-
sults about the cache behavior are also presented. To run a
program step-by-step, the user should load it and click on
the single step menu option of the simulator menu (or use
the F10 key function).

In the PCSpim simulator, a step of execution covers the
entire execution of a single instruction. The cache simula-
tion extension modifies this semantic in order to help stu-
dents to follow how the cache memory works. In this sense,
memory reference instructions (loads and stores) can take
several steps to execute when the extension is activated. In
this case, if the access hits into the cache, it takes one step to
execute as the remaining instructions. Nevertheless, if the

access misses, the number of steps depends on the type of
instruction and the write policies.

For the sake of clarity, load and store misses are han-
dled in a different number of steps. On one hand, a load
miss is handled in three steps: a) detect and mark the miss
in the corresponding set (all lines in the set are marked),
b) fetch the block from main memory to the cache, and c)
load the desired data into the corresponding register. On
the other hand, a store miss is handled in two or three steps
depending on the write miss policy (allocate or no-allocate)
selected. If the policy is no-allocate, the steps are a) detect
and mark the miss, and b) store the content of the register in
main memory. Otherwise, the steps are a) detect and mark
the miss in the corresponding set, b) fetch the block from
main memory, and c) store the corresponding data into the
cache. Finally, with respect to the instruction cache, a miss
is handled analogously to a load miss in the data cache. In
this case the third step consists in the execution of the in-
struction.

File Simulator Window Help CacheSimulation

=al =z o 2

RZ (w0) = 00000000 R10 (t2) - 10020074 RI1G (s2) = 00000000 RZ6 (kO) = DO00O0O0 ~
R3 (w1} = 00000000 R11 (t3) = 0000000 R19 (s3) = 00000000 R27 (k1) = 00000000
R4 (a0} = 00000000 R1Z (t4) = 00000003 R20 (s4) = 00000000 R2Z8 (gp) = 10008000
RS (al) = 00000000 R13 (t5) = 0000000e R21 (s5) = 00000000 R29 (sp) = 7fffeffc
R6 (a2} = 00000000 R14 (th) = 00000Ole R22 (s6) = 0O0DOOOO R3O0 (s8) = 0OO0O0DO
b
[0x00400014] 0zEd040000 1w S13, O(S8) : lw St5, 0(5t0) A
[0x00400016] 0zEd2b0000 1w S11, 0(59) : Iw St3.0(5t1)
0z0040001c 0x01ab7020 add 514, $13, 511 : add Sth,5t5,5t3

For Help, press F1

0x00400024 0221080004 addi S8, :addi stO,

v
[0z10010020] Ox0000000% Ox0000000a Ox0000000k Ox0000000c |
[0x10010030] Oxz00000004 Ox0000000e Ox00000COf Ox00000010
[0x10010040]...[0x10020000] Oxz00000000
[0x10020000] Ox00000001 Ox0000000Z Ox00000003 Ox00000004
[0x10020010] O0xz00000005 Ox00000006 Ox00000OO07 Ox00000008

v
Set | W | Tag (h) | Instructions (h) Ao A
1 1 8000 ori$12, 40, 16w $13, 0($8) e $11, 0590 add $14, $13, $11
2 1 8000 sw$ld, O($10) addi$s, $5, 4 addi$10, $10,4 addi$s, $9, 4
3 1 3000 addi$12, $12, -1 brne$12,$0,-32 MULL ML
4 0
5 0
6 0 =
Instruction Cache Accesses:126 Hits:122 Hit Rate:0.968254
set | w |RU [Tagihy | Dataih) wayo [acc | [w [tru | Tagihy | Dataih) way 1 | acc |
0 11 400800 00000001 00000002 00000003 00000004 10 400301 00000002 00000004 00000006 O000000S
1 11 400800 00000005 000000CE 00000007 00000003 10 400301 00000002 0000000C 000000Oe 00000010
2 11 400800 00000009 000000Ca 000000Ch 0O00000C: 10 400301 00000012 00000014 00000016 00000O01S
3 11 400800 00000004 000000Ce 0ODOOOCF 00000010 10 400801 (0000001a OOOOOO00 0ODO0OOD 00000000 Thiss)
Data Cache Accesses:42 Hits:0 Hit Rate:0.000000 Misses: Compulsory:12 Conflict:27 Capacity:3
[0=0040001] 0z01ak7020 add 514, $13, 511 ; 15: add $t6,5t5,5t3)
[0x00400020] Oxad4e0000 sw S14, 0(510) 16: sw Sth,0(5t2)

v
¢ B |

|PC=0x00400020 EPC=000000000 Cause=000000000

Figure 6. Second step of execution

Let us see a working example in order to illustrate
how Spim-cache handles cache misses. Assume a 128B
size, 16B line size, direct-mapped instruction cache and a
128B size, 16B line size, 2-way set associative data cache
with LRU replacement algorithm, and write-through write-
allocate policies. Let us consider the execution of the store
instruction highlighted in Figure 5. Notice that the execu-
tion of a memory reference instruction involves two cache
accesses, one to the instruction cache to read the corre-
sponding instruction and the other one to the data cache.

In the first step, there is instruction cache hit as the store
is already in cache (see Figure 5). Also, in the first step
when the store is executed and accesses to the data cache
this access results in a miss. Since both ways in the set
contain a valid line, the LRU algorithm selects the line in
way 1 to replace as it contains the LRU line (higher LRU
counter value). Hence, in the second step, the missing block
is fetched from main memory to the data cache (see Fig-
ure 6). Finally, the content of register $14 is written to the

data cache. In parallel, it is also written to main memory
because of the write-through selected policy.

Notice that on each step of the execution, if the show
rate option is selected, Spim-cache visualizes the number
of accesses, the number of hits and the cache’s hit rate. For
the data cache the Spim-cache also visualizes the number
of the different misses. Misses are classified as compulsory
misses (when the block is accessed for the first time), con-
flict misses (when the target set is full but the cache is not
full), and capacity misses (when the cache is full). The ob-
tained statistics would allow the student to realize how the
configuration of the cache affects performance.

4 Conclusions

Educational books and instructors use small fragments of
code implementing simple algorithms that include memory
references to teach cache memories. Students learn caches
identifying these instructions and following, using paper

and pencil, the sequence of accesses to the cache. In this
context, they observe when these instructions miss or hit
into the cache.

This paper has presented Spim-cache as a pedagogi-
cal tool to perform this kind of exercises in undergradu-
ate courses. The proposed tool has been implemented as
an extension of the Windows version of the MIPS R2000
Spim simulator, because this framework is well known and
widely used in a high number of universities around the
world. Nevertheless, the same idea could be implemented
in other basic tools.

From a pedagogical point of view, the proposed tool ben-
efits the learning process, since it permits students to ob-
serve how cache information dynamically changes as the
processor runs instructions, helping students to learn how
the processor-memory work as a whole.

The current version of Spim-cache has been thoroughly
tested on the Windows operating system and Linux operat-
ing system using the wine library (http://www.winehq.org/).
The Spim-cache source code is publicly available at
http://www.disca.upv.es/spetit/spim.htm. Users can directly
either run the tool by using its binary file or modify its
source code to add new functionalities.

Acknowledgements

This work has been partially supported by the Generalitat
Valenciana under grant GV06/326 and by Spanish CICYT
under Grant TIC2003-08154-C06-01.

References

[1] C. McNairy and D. Soltis, “Itanium 2 Processor Mi-
croarchitecture”, IEEE Micro, Vol. 23, No. 2, March-
April 2003, pp. 44-55.

[2] M. V. Wilkes, “Slave Memories and Dynamic Stor-
age Allocation”, Transactions of the IEEE, vol. EC-
14, 1965, pp. 270.

[3] J. Huynh, “The AMD Athlon MP Processor with
512KB L2 Cache”, AMD White Paper, May 2003.

[4] N. Jouppi, “Improving Direct-Mapped Cache Perfor-
mance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffers”, Proceedings of the
ISCA-17, June 1990, pp. 364-373.

[5] K.K. Chan, C.C. Hay, J.R. Keller, G.P. Kurpanek, F.X.
Schumacher, J. Zheng, “Design of the HP PA 7200
CPU”, Hewlett-Packard Journal, February 1996, pp.
1-12.

[6] J. Sahuquillo, A. Pont, “Splitting the Data Cache: A
Survey”, IEEE Concurrency, September 2000.

[7] Curriculum Guidelines for Undergraduate Degree
Programs in Computer Engineering, Joint Task Force
on Computer Engineering Curricula, IEEE Computer
Society— Association for Computing Machinery, De-
cember 2004.

[8] D. A. Patterson, J. L. Hennessy, Computer Organiza-
tion: the Hardware/Software Interface, Morgan Kauf-
mann 2005 (3rd edition).

[91 W. Stallings, Computer Organization and Arquitec-
ture: Designing for Performance, McGraw Hill 2002
(6th edition).

[10] J. L. Hennessy, D. A. Patterson, Computer Architec-
ture: a Quantitative Approach, Morgan Kaufmann
2003 (3rd edition).

[11] C.Hamacher, Z. Vranesic, and S. Zaky, Computer Or-
ganization, McGraw Hill 2002 (5th edition).

[12] J. Real, J. Sahuquillo, A. Pont, L. Lemus, and A. Rob-
les, “A lab course of Computer Organization in the
Technical University of Valencia”, Proceedings of the
Workshop on Computer Architecture Education, May
2002, pp. 119-125.

[13] J. Larus, “SPIM: a MIPS32
http:/fwww.cs.wisc.edu/larus/spim.html.

Simulator”,

[14] “Machine Structures”, CS6IC, UC Berkeley,
http://inst.eecs.berkeley.edu/"cs61c/labs/labl2.txt,
Spring 2005.

[15] G. Hinton, D. Sager, M. Upton, D. Upton, D. Boggs,
D. Carmean, A. Kyker, and P. Rousell, “The Microar-
chitecture of the Pentium 4 Processor”, Intel Technol-
ogy Journal, Q1, 2001.

[16] W. Yurcik, G.S. Wolffe, M.A. Holiday, “A Sur-
vey of Simulators Used in Computer Organiza-
tion/Architecture Courses”, Proceedings of the Sum-
mer Computer Simulation Conference, July 2001.

[17] E. Cordeiro, I. Stefani, T. Soares, C. Martins, “DCM-
Sim: Didactic Cache Memory Simulator”, Proceeed-
ings of 33rd ASEE/IEEE Frontiers in Education Con-
ference, November 2003.

[18] E. S. Tam, J. A. Rivers, G. S. Tyson, and E. S. David-
son, “mlcache: A flexible multilateral cache simula-
tor”, Proceedings of MASCOTS 98, 1998, pp. 19-26.

[19] http://www.cs.wisc.edu/"markhill/DinerolV/

[20] D.C. Burger and T. M. Austin, “The SimpleScalar
Tool Set, Version 2.0”, Computer Architecture News,
25 (3), June 1997, pp. 13-25.

