SPIMbot: An Engaging, Problem-based Approach to Teaching Asembly Language
Programming

Craig Zilles
Department of Computer Science
University of lllinois at Urbana-Champaign

zilles@cs.uiuc.edu

ABSTRACT

This paper describes SPIMbot, an extension to James Larus’s
widely-used MIPS simulator SPIM, that allows virtual robots
to be controlled by writing programs in the MIPS assem-
bly language. SPIMbot was written to provide an engag-
ing environment to motivate students to learn assembly lan-
guage concepts. The SPIMbot tool allows the development
of scenarios—in which students must program the robot to
perform certain tasks—and provides the means to compete
two robots against each other.

In our sophomore/junior-level class, we structure the pro-
gramming component as a collection of structured assign-
ments that produce sub-components for the robot; these
sub-components are then used in a final open-ended pro-
gramming assignment to produce an entry for a SPIMbot
tournament. In our experience, this has been an effective
means of engaging students, with many students investing
time to aggressively optimize their implementations. SPIM-
bot has been effectively used in large classes and its source
code is freely available [8].

1. Introduction

As one of their “Seven Principles for Good Practice in
Undergraduate Education”, Chickering and Gamson [1] list
emphasizing time on task as number 5. They state:

Time plus energy equals learning. There is no
substitute for time on task.

Thus one of our chief tasks as undergraduate educators is
to develop activities that encourage our students to spend
time on the course concepts and approach them with de-
sire to master them. This paper describes one such set of
activities, focused on teaching concepts related to assembly
language programming.

In the remainder of this section, we describe the motiva-
tion for this work (Section 1.1) and abstractly how we use
SPIMbot to achieve our pedagogical goals. After discussing
the capabilities of the software (Section 2), we discuss, in
detail, how it was used in the Spring 2004 semester (Sec-
tion 3). We conclude, in Section 4, with a discussion of
student feedback that supports our assertion that SPIMbot
is an engaging way for students to learn assembly language
programming concepts.

1.1 Motivation

In teaching assembly programming in our Computer Sci-
ence curriculum®, we have two primary goals: 1) to pro-

1Assombly programming is taught in the context of the second

| GIsKe] spimbot

| Pc - 00000000 EPC - 00000000 GCause = 00000000 Badvaddr= 00000000
| status - 00000000 HI - 000000D0 Lo = 00000000
General Registers

RO (:0) = 00000000 RS (t0) - 00000001 Ri6 (s0) = 00000000 R24 (£8) = 0000000D
R1 (at) - 00000003 B9 (1) = D0ODD0OD R1T (s1) = 000D0OOD R2S (£9) = 00000ODD
R2 (v0) = 00000002 R10 (t2) = 00000DOD R18 (s2) = 00000000 R26 (kD) = 000D0OOD
R3 (v1) - 00000000 R1l (t3) = 00000000 R19 (s3) = 00000000 R27 (k1) = 00000000
R4 (a0) = 10010144 R12 (t4) = 00000000 R20 (s4) = 00000000 R28 (gp) = 10008000
RS (al) = 7EEEFO00 R13 (t5) = 00000000 R21 (s5) = 00000000 R29 (sp) = TEffeffc
R6 (a2) = TEEEF004 R14 (t6) = 00000000 R22 (sk) = NNANAAN RAN (sR) = NAANAD
R7 (a3) = 00000000 R1S (£7) = 00000000 Re3 |) O O \ Map
- Double Floating
FRO = 0.00000 FP8 = 0.00000 FPi6
ez - 0.00000 FP10 = 0.00000 P18
FP4 = 0.00000 FP12 = 0.00000 P20
Fp6 = 0.00000 FP14 = 0.00000 P22

Single Floating

(-

Text Segm|
1w 84, 0($29)
0x27250004 addiu §5, §29, 4

0x00c23021 addu $6, $6, 52
0x00400014] 0x0c10000d jal 0x00400034 [na:

fop
ori §2, 50, 10
syscall

sll 84, 4, 8

Data Segmj

2 T
.
.
B
:
o8
A

DATA
0x10000000] .. . [0x1000££€c]

0x00000000
0x10010000. 0x00000002 O
0x10010010 0x00000001 Ox{
0x10010020 0x00000001 Ox{
*{ (0x10010030; 0x00000001
0x10010040 0x00000002 0x00000000 UX00000000 UX000000
0x10010050 0x00000002 0x00000001 0x00000000 0x00000064
\|Loaded: /trap handler

4

Figure 1: Example SPIMbot screen shot. The map
window shows the robot’s current location, orientation, and
virtual environment; in this scenario, SPIMbot can turn
on/off a paint trail allowing it to write out messages. Be-
hind the map window is the main window (unmodified from
xspim,) that shows the MIPS processor’s machine state.

vide students a mental model of how a computer executes
their high-level language (HLL) programs, and 2) to pro-
vide the background knowledge necessary for later courses
on compilers and operating systems. To this end, we teach
the students about instruction sets, stacks and their man-
agement (including recursion), calling conventions, floating
point arithmetic, instruction encoding, I/O interfacing, and
interrupt handling.

If one is not careful, these topics can come across as dry.

semester-long class in a required two-class sequence in computer
architecture. The first class in the sequence teaches digital fun-
damentals: the digital abstraction, combinational logic, finite-
state machines, and basic architecture concepts (e.g., a single-
cycle implementation). The second class covers three main topics:
assembly programming, machine organization, and memory and
1/0 systems; each topic receiving roughly a third of a semester.
As our undergraduates predominantly pursue software-oriented
(rather than hardware-oriented) careers, the goal of this second
class is to provide the practical understanding of computer hard-
ware necessary to be an effective programmer. Most students
continue their architecture sequence, taking a third course in ei-
ther high-performance architecture or embedded systems.

The students’ limited programming experience (this class
is early in the curriculum) coupled with the inherent in-
efficiency of assembly programming can limit the scope of
programming assignments. Furthermore, the demands of
grading, especially in large enrollment classes where some
form of automation is necessary, require most assignments
to be rather structured. Examples of common assembly pro-
gramming assignments found at many universities include:
producing the Fibonacci sequence, string manipulation (re-
versing a string, toupper (), etc.), and sorting arrays. In
many cases, HLL source is provided, reducing such assign-
ments to somewhat mechanical translation.

The goal of SPIMbot was to produce an environment for
teaching assembly programming that was fun and interest-
ing, to motivate students to want to learn the material.
While there is a long history of using robots for instruc-
tion (e.g., [5]), the author’s inspiration came from Patricia
Teller’s presentation [7] at the 2003 Workshop for Computer
Architecture Education. In their semester-long course on as-
sembly programming concepts, students program 68HC11-
based robots to escape from mazes and chase other robots.
Pedagogically, programming robots has three appealing fea-
tures: 1) it is visceral: students like seeing their code control
motions and actions of objects in the physical world, 2) it is
cognitively challenging: debugging requires mapping robot
behavior back to the behavior specified in the code, and 3)
it provides a non-contrived way to expose students to I/O
programming.

The problem with (physical) robots is one of logistics;
in a high enrollment class—we have 100-150 students per
semester—acquiring, maintaining, and scheduling sufficient
resources is prohibitive. In contrast, virtual robots are cheap,
plentiful, take-up no space, require no maintenance, yet (for
students accustomed to interpreting computer-rendered vir-
tual realities) still provide the fundamental qualities of phys-
ical robots.

1.2 How we use SPIMbot

The central part of our implementation is the SPIMbot
tournament, a friendly competition between the programs
that the students write. The contest presents a challeng-
ing, multi-part task for the robots to perform. We use this
concrete task to motivate the presentation of the desired as-
sembly language concepts and the problem solving/design
process.

As most of our students have not been exposed to assem-
bly language previously, the SPIMbot tournament is the last
activity in our assembly language segment. We work up to
the contest by solving isolated sub-problems as program-
ming assignments. We start with small structured assign-
ments and then move onto larger structured assignments
before attempting the contest (a large open-ended assign-
ment). This structure lets us provide the students with
early, motivating successes.

Although it is the last assignment, we present the con-
test first, because it allows us to model a problem solving
process: a top-down design, followed by a bottom-up imple-
mentation. In class, we brainstorm approaches to the con-
test task, making it clear that there are multiple approaches.
Then, we identify sub-tasks necessary for accomplishing the
contest goal; these sub-tasks make up the structured pro-
gramming assignments leading up to the contest. The con-
test itself challenges students to figure out what they need to

implement and requires them to integrate the components
they’ve completed in previous assignments.

When it comes to covering the desired course material, the
fact that SPIMbot exists only in a virtual reality can be an
advantage, as we can structure that reality to include those
concepts that we want to teach. For example, two concepts
that we cover in the course are recursion and the implemen-
tation of linked-data structures. To incorporate these con-
cepts into our programming assignments, our Spring 2004
contest (see Section 3) involved an I/O device that returned
its output as a tree, requiring students to write a recursive
procedure to traverse the nodes of the tree.

After the students have submitted their contest entries,
we use one class period to hold a tournament. With each
competition lasting about 15 seconds, a double-elimination
tournament for 32 teams can easily be held in a 50-minute
class period. While this class time could be used for other
purposes, we believe that it successfully motivates students
to be actively engaged with course material outside of class
achieving our objectives.

A Note on Competition: As competition can be demo-
tivating if not handled properly [2, 3], we take a number
of steps to alleviate the potential downsides of competition:
1) performance in the competition is responsible for a min-
imal fraction (about 1 percent) of student’s final grade, 2)
students compete as teams, reducing the pressure on indi-
viduals, and 3) teams select team names allowing students
to compete anonymously.

2. SPIMbot Software

SPIMbot is an extension of James Larus’s widely-used
MIPS simulator SPIM [4]. SPIMbot involves three major
enhancements: 1) a framework for simulating robots and
their interactions with a virtual world, 2) a 2-D graphical
display to visualize the robots and their environments, and
3) support for concurrently simulating multiple programs—
each on their own virtual processor—allowing multiple robots
to be simultaneously active in a single virtual world.

Simulating the virtual world requires tracking and updat-
ing the state of the robots and other objects in the simu-
lated world. In addition to location, orientation, and veloc-
ity, we have to keep track of the state of any 1/O devices.
Updating the world involves computing new locations for
objects based on their current velocities. Collision detec-
tion is performed to update an object’s velocity /orientation
(e.g., when a robot runs into a wall) and to allow inter-
action between robots and simulated objects (e.g., when a
robot picks up an object or pushes a button). Events in the
virtual world can also trigger events in the MIPS processor,
either updating the state of an 1/O device and/or triggering
an interrupt.

To interact with the virtual world, SPIMbot provides the
robot programmer an (extensible) array of input/output de-
vices. These virtual I/O devices, like real I/O devices, have
their I/O registers mapped to memory addresses and, thus,
are accessed using normal loads and stores. Simple examples
include “sensors” that tell SPIMbot its or the opponent’s
(X,Y) coordinates and “actuators” to control its orientation.
The SPIMbot code is structured so that the collection of I/O
devices can easily be extended for a particular scenario. Fur-
thermore, SPIMbot includes a programmable interrupt con-
troller (PIC) that allows individual device interrupts to be

enabled/disabled. Standard interrupts include the “bonk”
interrupt (raised when SPIMbot runs into something) and
timer interrupts (SPIMbot includes a programmable timer).
The collection of interrupts can also be extended.

To achieve a tight coupling between the virtual world and
the simulated MIPS code, we interleave the simulation of
the virtual world with that of the MIPS code. Every cycle
we execute a single instruction for each robot and update
the physical world based on the actions of the robots. Sim-
ulating multiple concurrent robots required eliminating the
use of global variables in SPIM’s parsing and simulation of
MIPS code; while currently we only simulate two robots,
this could easily be extended to any number. As there can
be interactions between the robots, we alternate each cycle
which robot is simulated first in an attempt to be fair.

The graphics are currently decidedly low tech—XWindows
drawing primitives are used to draw geometric shapes (lines,
boxes, circles, etc.)—but this appears to actually have two
advantages: 1) it is very simple; a minimal amount of de-
velopment time is required to add the rendering code for
a new scenario, and 2) it is not distracting; students can
focus on what the graphics represent instead of the graph-
ics themselves. Because the graphics are not demanding,
smooth animation can be achieved without state-of-the-art
hardware. In part this is because the graphical display need
not be rendered every cycle. Currently, we re-draw every
1024 cycles and can achieve a refresh rate over 60 Hz on a
1GHz laptop.

3. Example Scenarios

In this section, we discuss one scenario in detail to demon-
strate how we organize the competition and the assignments
that lead up to it and, then, discuss two other competitions
more briefly to demonstrate the expressiveness of SPIMbot.

3.1 Spring 2004: Token Collection

In the Spring 2004 semester, the competition revolved
around collecting “tokens”: 15 tokens were randomly placed
on a square map, tokens could be collected by driving over
them, and the location of tokens can be divined by using an
I/0 device called the “scanner.” The winning robot was the
one that collected the most tokens by the end of competi-
tion.

Writing a program to compete in the contest involved: 1)
allocating memory for the results of a scan, 2) communi-
cating with the scanner to initiate a scan, 3) handling the
scanner’s interrupt, 4) searching the tree-like data structure
returned by the scanner for the location of tokens, and 5)
repeatedly orienting SPIMbot toward a token and recogniz-
ing when it has arrived, until all tokens have been collected.
As this represents a relatively difficult programming assign-
ment for students at this point in the curriculum, we broke
out major components of the program as individual pro-
gramming assignments. Below is a list of the structured
assignments that led up to the contest:

1. A SPIMbot introduction: write a simple interpreter
that reads a string of commands (e.g., turn, wait, paint
on/off) and invokes provided functions that perform
these actions. Introduces students to SPIM/SPIMbot
and exposes students to loops, arrays, calling func-
tions, control flow and I/0 interfacing.

. .
-
an area ¢
being
scanned
a SPIMbot
0 robotl
0 robot2

Figure 2: SPIMbot token collection competition.

2. Arctangent Approximation: given the (x,y) location
of 2 points, compute the angle to drive from one to
the other using a Maclaurin series expansion. Fzxposes
students to computing in floating point.

3. Tree Traversal: SPIMbot’s scanner returns the loca-
tion of the tokens embedded as leaves of a tree-like
data structure. Students write a recursive function
that traverses the tree. Ezposes students to linked data
structures and recursive functions in assembly.

4. Interrupt Handler: write an interrupt handler for the
timer interrupt that commands SPIMbot to turn 90
degrees and resets the timer, resulting in SPIMbot
driving in a square. Introduces students to writing in-
terrupt handlers.

While the solutions to these assignments can be integrated
into a working contest entry, designing a competitive en-
try requires a little more effort. Three activities dominate
the execution time of most of the robots: scanner latency,
tree traversal, and collecting tokens. In a straight-forward
implementation, which scans the whole map at once, these
activities are performed completely sequentially (Figure 3a).

A higher performance implementation can be developed
which pipelines the scan/traversal/collection process. The
scanner can be programmed to scan only a portion of the
map at a time, and its latency is largely a function of the
area scanned. Once a small portion of the map has been
scanned, the robot can begin collecting tokens from that
portion while it requests the scan of the next region. In
this way, much of the scan latency can be overlapped with
the latency of tree traversals and token collection. Students

a) | scan

4 traverse

collect

NEECECEEE
A=A S

Figure 3: Pipelining the three sub-tasks reduces the
latency of the task. By scanning one-ninth of the map
at a time, the pipelined version (b) overlaps the collection of
tokens with the scanner latency, completing the task signifi-
cantly before the non-pipelined version (a).

found that breaking the map into 9-36 pieces and pipelining
the processing of those pieces resulted in good performance.
Another enhancement that students developed was driving
to the center of the region currently being scanned after all
known tokens had been collected.

Developing such a pipelined solution requires managing
concurrent activities and demonstrates the importance of in-
terrupts. The students learn first hand that their interrupt
handler must avoid clobbering the applications registers, be-
cause it could be called at any time. It also demonstrates
that pipelining—a concept we introduce in the machine or-
ganization portion of the class—is not a concept that is re-
stricted to hardware.

3.2 Fall 2004: Block Pushing

In the Fall 2004 semester, the contest revolved around
pushing blocks onto your side of the map (see Figure 4).
The contest had a fixed running time and the winner was
the one with the most blocks when time ran out. Elementary
physics were implemented so that robots could push blocks,
which in turn could push other blocks. An I/O device was
provided that could be queried to provide the location of
each of the blocks.

Like the token collecting contest, we integrated a compu-
tational challenge into the contest. Initially, a most of the
blocks are “locked” to one or both of the robots. When
a robot runs into a locked block, an interrupt is triggered
and the robot receives a six character string. This string
is a scrambled version of common english word, which, if
unscrambled, can be used to unlock the block for this robot
so that it can be pushed. As machine problems leading up
to the contest, students wrote a string compare function, a
function that would do a binary search of a sorted dictio-
nary looking for a given word, and a recursive function that
produces every permutation for a 6 character word. These
functions can be integrated to unscramble the scrambled
clues.

Because we provided the dictionary to the students ahead
of time, there was a significant opportunity to optimize the
unscrambling function by offline computation. The follow-
ing is representative of what the winning robots did: 1) sort

rlu'u_ =] |

4 Ghost_of _Semester_Past.s
2 robot_blockBoptd, =

Figure 4: SPIMbot block pushing competition.

the characters in the scrambled word into a canonical or-
der (i.e., alphabetical order), 2) as only the 26 lower case
letters were used, each ascii character could be represented
in 5 bits; use this insight to translate the 6 char string into
an integer (6 * 5 bits = 30 bits), 3) do a binary search on
a precomputed table that maps these canonical integers to
the strings they encode.

3.3 Spring 2005: Maze Traversal

This Spring semester our contest goal was to completely
traverse a maze without being able to see the walls (see
Figure 5). Since the mazes we generate are unicursal (i.e.,
there are no isolated islands), the “right-hand rule” (i.e.,
never letting your right hand leave the wall) can be used tra-
verse the whole maze. Alas, SPIMbot does not have arms,
much less hands, but the right-hand rule algorithm can be
implemented with two interrupt handlers, by periodically
checking to see whether a wall is still to the right of you,
as follows: 1) request timer interrupts at a period so that
roughly one is received for each square visited; when a timer
interrupt is received, turn right and request another timer
interrupt, and 2) when you run into a wall (which triggers
a “bonk” interrupt), turn left. This was assigned to the
students as a machine problem.

The computational challenge for this contest was to sort
an array of double precision floats to find the Nth highest
number (for varying N). Each time the correct value was
identified, the SPIMbot was provided additional “energy”;
energy could be used to drive faster, or, in large amounts, to
drive through walls for short periods of time. Incorrect an-
swers were penalized, so that the expected value of random
guessing would be negative.

As a machine problem early in the semester, the students
implemented a bubble sort, but there is clearly much op-
portunity to do better. A number of students implemented
quicksort with the optimization of, at each stage, only sort-
ing the partition that contains the Nth number. A few
groups recognized that because a small error rate could be
tolerated, the computation could be done on the integer
pipeline only loading the top word of the doubles; this opti-
mization saves one cycle on each of the load, because Iw.d is
translated into two instructions. The winning group realized
that, because multiple guesses were allowed, the penalty for
incorrect guesses was low enough that it was more efficient
to guess an expected range for the Nth value (based on the
properties of our random number generator) and perform
a single pass over the array guessing any number in that
range. In this way, their robot could maintain full energy
while constanting driving through walls; their run time was
minimized by finding the shortest path that visited every
square.

Scenario Implementation Time: After the Spring 2004
semester, we re-factored SPIMbot’s implementation to de-
couple the scenario-specific aspects from the core of SPIM-
bot’s implementation. With these changes in place, it is
rather straight-forward to implement new scenarios, by im-
plementing a collection of functions for supporting scenario-
specific initialization, physics, drawing, and 1/O devices.
The Fall 2004 scenario required about a day to prepare;
this accounts for the time to implement both the SPIMbot
code, as well as the MIPS code to test the scenario (which
includes solutions to most of the structured assignments).
The Spring 2005 scenario took longer to implement (per-
haps a 40-hour week of programming time), but was largely
completed by an undergraduate.

4. Student Reaction

The Spring 2004 students had a quite positive opinion
of the SPIMbot assignments and student anecdotes suggest
that they found it engaging. Students were asked in an
anonymous electronic survey to rate their enjoyment of the
SPIMbot assignments on a 5-point scale (5: “very much
so” to 1: “not at all”). Of the 88 out of 99 students that
responded, the mode was a 5 and the mean was just under
4 (see Figure 6).

In the course evaluations, six students commented specif-
ically about SPIMbot when asked “What do you like about
this course?”, including the following quotes:

“I really liked the SpimBot Tournament. That
was the coolest thing I have done in a class. It
makes it a lot more fun”.

“I liked the MP’s, especially the SPIMbot Tour-
nament and how the MP was designed to make
us think of optimizations for ourselves.”

“... T also really liked the SPIMbot tournament”

The feedback was not uniformly positive, suggesting that
there remain opportunities for improvement. One student
mentioned SPIMbot in response to the question “What do
you NOT like about this course?”, giving the following re-
sponse:

“Spimbot. Pointless, difficult, and closed source,
so hard to see exactly what was happening, so
it’s not entirely useful”.

212G

L
=
fu
o

49 traversal .=
31 test,=

Figure 5: SPIMbot maze traversal competition. The
red squares are those that have only been wvisited by the red
robot; the purple squares have been wvisited by both the red
and blue robots (red + blue = purple). The black bars below
the map indicate energy.

25
20
15
10
=
o ‘ ‘ ‘
1 2 3 4 5

Student Enjoyment (higher is better)

Number of Students

Figure 6: SPIMbot achieved high-level of student
enjoyment. Data shown for the 88 (out of 99) responding
students for the Spring 2004 semester.

We have addressed this comment in more recent contests
by providing the SPIMbot source to the students when the
contest is assigned. By having the source, students can run
SPIMbot inside a debugger which helps them debug prob-
lems relating to interrupts, which are challenging to identify
from SPIM’s built-in debugger. We encourage students to
inspect the code by stating that they are free to exploit
any bugs they find?. A number of students do inspect the
source; in the Spring 2005 contest, we received many com-
ments about an unused “SPIMBOT_CHEATER” #define
statement that was left in the code from when we were de-
veloping and testing the scenario. As the ability to efficiently
read source code is a skill that comes with practice (one not
emphasized early in our curriculum), organizing the contest
in this way motivates some students to study the code.

Another measure of student engagement is the effort they
expended. Along with their source code, students handed
in a short write-up describing any noteworthy aspects (gen-
erally optimizations) of their program. Of the 30 teams,
over 3/4’s of the teams attempted optimizations with half
completing significant optimizations:

e 15 teams (50%) described aggressive optimizations like
segmenting the scan and the aforementioned pipelin-
ing,

e 5 teams (17%) described modest optimizations like
greedily picking up the closest known token at any
time,

e 7 teams (23%) reported attempting no optimization,
and

e 3 teams (10%) reported attempting aggressive opti-
mizations, but failed to get them working, requiring
them to submit unoptimized versions.

Some of the teams that aggressively optimized their code
reported trying a variety of techniques or parameterizing
their code and tuning those parameters. Here are two stu-
dent comments:

“We tried many different strategies, including
sorting the nodes in order of increasing distance
from the spimbot, using an algorithm which heads
toward the closest node to spimbot each time
spimbot moves toward a new token, rescanning
token locations to determine if they have been
picked up, and breaking up the scans into dif-
ferent sizes. After trying all of these, we found
that the only one which sped up the collection of
tokens was breaking down the scan.”

“Our program does scans of size 25 thus giving
36 scans. We found this to be optimal because we
started out with scans of size 5 doing 900 scans
and found it to speed up as we approached 36.
We even went down to 16 and found it slowed
down as the scan sizes got bigger. Thus we have
an optimal scan size.”

Interestingly, the first thing that many students look for
is a way to write to the memory image of the other robot,
which provides a nice segue to discussing virtual memory,
also covered in the course.

In the Fall 2004 semester, we had students report the
number of hours they contributed to the development of
their SPIMbot programs. While there was some variability,
most students spent 10-20 hours each, working in teams of
2-3 students.

A final metric of effort that students expended on their
contest entry is the number of lines of code. While lines of
code is a metric of little practical utility, it outlines the of the
work and the amount of effort the students put into it. The
assignments that the students handed in ranged from 186
to over 608 lines of code and data segments (not counting
blank lines and those containing only comments), with most
in the 200-400 lines of code range. For comparison, there
were about 130 lines of code provided in solutions that most
students incorporated into their designs.

In light of the age-old challenge of teaching a student body
with a diversity of aptitude (i.e., “How can we teach so
that all of the students learn the fundamentals, while still
pushing the best students?”), perhaps the SPIMbot tourna-
ment’s best use is providing the best students a challenge
that pushes them.

5. Future Work

As it stands, SPIMbot is derived from SPIM which is
only a functional simulator: each instruction takes a single
cycle. Given that our course teaches pipelining and cache
fundamentals, it would be desirable to enhance SPIM (as
was done for CLSPIM [6]) to model pipeline and cache stalls.
In this way, the course material would be unified in this final
project and students would be exposed to a more realistic
optimization scenario.

6. Acknowledgments

This work was supported by NSF CAREER award 434
CCF 03-47260.

7. REFERENCES

[1] A. W. Chickering and Z. F. Gamson. Seven principles
for good practive in undergraduate education.
American Association for Higher Education Bulletin,
39:3-7, 1987.

[2] B. G. Davis. Tools for Teaching. Jossey-Bass, San
Francisco, CA, 2001.

[3] E. M. F. III and L. Silvestri. Effects of Rewards,
Competition and Outcome on Intrinsic Motivation.
Journal of Instructional Psychology, 19:3-8, 1992.

[4] J. Larus. SPIM: A MIPS R2000/R3000 Simulator.
http://www.cs.wisc.edu/~larus/spim.html.

[5] S. Papert. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, New York, 1980.

[6] A. Rogers and S. Rosenberg. Cycle level SPIM.
Technical report, Department of Computer Science,
Princeton University, Princeton, NJ, October 1993.

[7] P. Teller, M. Nieto, and S. Roach. Combining Learning
Strategies and Tools in a First Course in Computer
Architecture. In Workshop on Computer Architecture
Education, held in conjunction with the 30th Annual
International Symposium on Computer Architecture,
June 2003.

[8] C. Zilles. SPIMbot.
http://www-faculty.cs.uiuc.edu/~zilles/spimbot.

