

An Emulated Computer with Assembler for
Teaching Undergraduate Computer Architecture

Timothy Daryl Stanley, PhD

Brigham Young University Hawaii, #1854
55-220 Kulanui Street

Laie, Hawaii 96762-1294
(808) 293-3388

 stanleyt@byuh.edu

Mu Wang
Brigham Young University Hawaii, #1854

55-220 Kulanui Street
Laie, Hawaii 96762-1294

mw024@byuh.edu

Abstract
An eight-bit computer has been designed using an open
source logic emulation package called “Multimedia Logic”
from www.softronix.com. The intent of the project was to
make clear to computer science students how the data path
and control lines work to provide computer functionality.

This computer is an excellent teaching aid because:

1. All registers, ALU outputs, control lines, and
memory outputs are instrumented.

2. Instructions can be executed with a single step
switch or run with a clock.

3. The architecture is quite simple, with separate
memory devices for data and instructions.

4. It is supported with an assembler patterned after
the MIPS assembler used with the SPIM
simulator.

5. An ASCII output display is available.

The instruction set designed for this computer includes:
Add from memory, Add immediate, Load from memory to
the input register, save from the output register to memory,
jump to the address given by the immediate, jump to the
address given by the immediate if the last add produced a
zero result, and halt.

The design includes an instruction format of three bits of
operation code followed by five bits of immediate.

Using this design as a launching point, students have been
encouraged to design their own computers. Some
excellent designs have been submitted. These include an
elaborate multi-cycle 16-bit design, and many application
specific designs.

This paper provides details of this computer design,
assembler and example programs as well as descriptions of
designs submitted by students.

Categories and Subject Descriptors
B.6 Hardware / Logic Design / Simulation.

C.1.1 Computer Systems Organization / Computer
Architectures

General Terms
Design, Human Factors, Theory

Keywords
Logic Simulation, Computer Design, Binary Visualization,
Multimedia Logic

1. Introduction
The concepts of computer architecture are some times very
difficult for beginning computer science students to
visualize because the action is all happening at the electron
level in microscopic circuits. By building on knowledge
from other courses students may be able to visualize what
is happening in circuits, but many layers of abstraction are
involved. For example, if one builds a computer with TTL
circuits, there is a level of abstraction in the relation ship
between circuit pin outs and logic elements. There is also a
complex chain of detail between circuits that is visible only
with logic probes or additional expensive instrumentations.
Also when a student has spent the time to understand and
master the breadboard circuit the semester is over, the
circuit is disassembled and used for the next class.

The emulated logic approach the authors have developed
overcomes these limitations in understanding the details of
computer architecture. The circuits are designed by
“wiring” up logic elements with all data inputs coming in
on the left, control signals coming in from the bottom, and

outputs exiting from the right. The high level devices like
memory circuits and ALU’s look like the devices in
schematic diagrams, making these devices easier to
visualize. By designing simple circuits the operation of the
individual components can be understood. At the
completion of the class the students can take the design
with them.

While the focus of this paper is an emulated computer for
teaching architecture, a series of introductory circuits used
to develop an understanding of the components that make
up a digital computer are also provided. Many of the
concepts of digital logic are difficult to grasp without
practical experience. Some use prototyping boards with
small scale digital circuits to design and build examples of
digital devices [1]. Others use a hardware design language,
like Verilog, to illustrate and teach digital logic concepts
[5]. One school even uses students actors to emulate
instruction flow in a computer [6].

The 8-bit computer will be thoroughly documented starting
in section three.

2. Component Learning Projects and
Outcomes
A number of projects built and demonstrated by students
will be given in this section. We will start with simple
projects and advance to more complex designs. Each
design will be demonstrated with the presentation of this
paper at the conference.

2.1 Calculator with Binary and Hexadecimal
Outputs

The first project, illustrated in fig 1, is a calculator that
takes two four-bit inputs, from hexadecimal keypads, and
provides an output in both binary and hexadecimal, based
on a function selected. The function is selected with the
selector switch. The functions available in the ALU are:
addition, subtraction, multiplication, division, equal, less
than, shift right and shift left.

This is a nice project to start with as it builds on the ALU
device example that is provided with Multimedia Logic.

The learning outcomes of this project are: familiarity with
the ALU, comparing hexadecimal and binary, exploring
properties of binary numbers under operations like the 5-6
operation shown in figure 1 to see the two’s complement
binary notation of a negative one.

2.2 Scanned Memory to Output Display

This project, shown figure 2, connects the output of a
memory device to an ANSII display device. Then by
sequentially scanning the memory addresses with a counter
connected to a clock, the content of the memory is sent to
the display. In this case the content of the memory is “
HELLO WORLD! ”. For this project, only the first sixteen
locations in memory are used, however, with an 8-bit
counter, 256 locations could be used.

In Multimedia Logic the memory contents can be read from
a “text” file or written to during the simulation. In this case
the memory contents are loaded from a file and the
memory is treated as a read-only memory (ROM).

Learning outcomes from this project are: an understanding
of the relationship between memory address lines and data
output lines, understanding counters, and clock oscillators,
and synchronous data transfer from memory to display.

2.3 Programmable Calculator

This project, shown in figure 3, is a combination of the first
two, using scanned memory to provide functions and data
to an ALU. This project begins the comparison to a real

Figure 1. Calculator with Binary and
Hexadecimal Outputs

Figure 2. Scanned Memory to Output Display

Figure 3. Programmable Calculator

computer, with the upper memory serving as data memory,
the lower memory which provides functions to the ALU as
a program memory, and the counter as a program counter.

The learning outcomes of this design are observation of the
different things that a series of binary lines can be, from
instructions to data to addresses, to clock pulses. This is
where we also learn about data paths and control paths.

2.4 Four-Bit Adder

These next two projects are designed to understand the
inner workings of an ALU. The first, shown in figure 4, is
a ripple carry binary adder. Two four-bit values are
provided on the hexadecimal key pads and the results of
the addition are displayed on the seven segment displays.
By inverting the B inputs and making the C input for the
first stage one the adder can be converted to a subtraction
unit, illustrating the algorithm for converting a binary
number to its two’s complement negative.

The most important learning outcome of this design is an
appreciation for how logic circuits can perform the kinds of
operations we see computers perform.

2.5 Four-Bit ALU
This project, shown in figure 5, illustrates the complexity
in the design of an ALU. This ALU, designed after the
one-bit ALU from Patterson (Figure 6), can And, Or, Add,
and Subtract. It is very useful for illustrating the bitwise
operations of And and Or. For example the output
illustrated above is the bit wise And of 3 and 5.

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

Learning outcomes of this project include an appreciation
of how multiplexers make possible the control path in a
computer—and again, an appreciation of how gates can be
combined to produce computer functions.

3. An Emulated Computer for Teaching
Computer Architecture
Providing a computer that is very well instrumented,
visible on one page and easy to demonstrate, was the main
goal of this design effort. In my computer architecture
classes I ask my students to design an emulated computer.
This design was one I produced to illustrate what I wanted
from my students. I suggested they start with an
instruction set and register design and build a computer
from this foundation. For this eight-bit computer, an
instruction format of three bits of operation code and five
bits of immediate was chosen. This instruction format
provides for eight instructions. These with mnemonics are:

1. adi - Add the immediate value to the input register
and place in the output register,

2. adm - Add memory location addressed by the
immediate to the input register and place in the
output register,

3. lmi - Load the contents of the memory location
addressed by the immediate value to the input
register,

4. som - Save the output register to the memory
location addressed by the immediate value,

5. ji - Jump to the location given in the immediate,

Figure 5. Four-bit ALU

Figure 4. Four-bit Adder Figure 6. One-bit ALU from Patterson [4]

6. jzi - Jump to the location given by the immediate
if the result of the last addition was zero,

7. om - Output the data from the memory location
addressed by the immediate to the output display
device,

8. hlt - Halt operation.

The physical architecture was to use two separate
memories, to hold the data and program. This parallels the
MIPS emulator PC SPIM which has a “.data” segment of
memory holding constant data and a “.text” segment that
contains the machine instructions. This construction
simplifies the data path of the computer, but limits the
capability to do recursion. The design includes an input
register and an output register.

This design is a complete eight-bit, single cycle, stored
program computer. The data paths are connected at the
start of the clock cycle at then at the clock transition

registers and memory are writing enabled. This enables
demonstration of the inputs to commands being set up and
then the operation being executed.

One non-physical device available in the logic emulator
used is a binary controlled text display. This device can be
seen just below the vertical column of control line
indicators. This display shows one of sixteen lines of text,
depending on the binary inputs to the device. In this case
the device is used to show the operation being set up in the
computer.

The memory devices can be used as read-only devices
reading content from an underlying file, or they can be
initialized with a file and altered dynamically during
program execution. For registers memory devices with all
address lines grounded are used.

One limitation of this emulation package is the absence of a
2-by-8 multiplexer. As a result the multiplexers are
assembled by stacking a series of 1-by-2 multiplexers

Figure 7. Eight-bit teaching computer design implemented in multimedia logic

partially overlapping one another. Since this emulator is
published with its source code, I have built versions of this
computer using a version of the software with a modified
ALU that has an A out and a B out instruction. Then the
multiplexer stacks can be replaced with ALUs. I have not
included this design because it uses ALUs in a non-
standard way and because the design could not be used
with the emulator down loaded from the emulator’s web
site.

4. Sample Programs for the Computer
With this set of instructions a number of demonstration
programs have been written. The file underlying the
memory has a format that includes two hexadecimal digits
that are the memory content for each line. The memory
ignores any additional information on the line. So
following the operation code or data a comment can be
given. This allows instruction documentation information
to be included with each line. These include a program to
send a string in data memory to the output display device, a
program with an up counting loop and a down counting
loop to display the letters of the alphabet and halt at Z, and
a program to display various size boxes on the display.

The design includes two ALUs, one incrementing the
program counter and one performing the additions.
Memory devices include a data memory, program memory,
input register, output register, program counter, and an
operation decode ROM. The nicest feature of
implementing a computer design this way, rather that in a
breadboard, is the much greater instrumentation of
registers, and data lines. One can see each value as the
computer steps through the program.

Three sample programs are included in this section.

4.1 Sample Program 1, ABCs.
This first program was designed to be simple but use all
eight of the operations of this computer. It consists of a
loop that counts up one memory location from ASCII A to
ASCII Z, and counts down in another location to halt the
computer after 26 letters. To implement this program the
memory contents in the following tables are place into the
data and program memories. Note that in these tables that
the two hex digits in each line are the actual output from
the memory device and the rest of the line is a comment.
Data and program memory files are shown if tables 1 and 2
below. The output is shown with figure 7 above.

4.2 Sample Program 2, Hello World.
The second program was to be the simplest possible, like
the “Hello World” used to introduce all programming
languages. For this program a string in the data memory is
sent character by character to the output screen and then
the program loops back to the beginning. The lack of
instructions to update program memory based on
calculations prevents the use of simple iteration to
implement this program. The data and program memory
files are show in tables 3 and 4 and the output is shown in
figure 8.

c4 Output from memory location 04
44 Load input register from memory location 4
01 Add I (01) to input register
64 Save output register in memory location 04
c4 Output from memory location 04
41 load input register from memory location 01
22 Add from memory location 02
61 Save output register to memory location 02
aa Jump if last calculation result was zero to 0a
80 Jump to memory location 00(+1)
e0 Halt execution

Table 2. Program memory content
for program 1

00 zero (not used)
19 Hex for character count in alphabet
ff Twos complement negative one
fe Twos complement negative two (not used)
41 ASCII code for letter A
41 (not used)
41 "
00 "
00 "
00 "

Table 1. Data memory content for program 1

4.3 Sample Program 3, Triangle.
This program was written to test the assembler discussed in
the next section. It uses two nested loops to print a triangle

on the output screen. Data and program memory files are
given below and the output is shown in figure 8.

c0 Output from memory location 00
c1 Output from memory location 01
c2 Output from memory location 02
c3 Output from memory location 03
c4 Output from memory location 04
c5 Output from memory location 05
c6 Output from memory location 06
c7 Output from memory location 07
c8 Output from memory location 08
c9 Output from memory location 09
ca Output from memory location 0A
cb Output from memory location 0B
cc Output from memory location 0C
cd Output from memory location 0D
ce Output from memory location 0e
80 Jump to Zero (+1)

Table 4. Program memory content
for program 2

45 Load input register from memory location 5 (zero)
20 Add memory location 0 (column) to input register
62 Save result in memory location 2 (column step)
63 Save result in memory location 3 (row step)
c6 lp1: Output from memory location 6 (symbol "*")
44 Load input register from memory location 4 (neg
one)
22 Add from memory location 2 (column step)
62 Save result in memory location 2 (colmn step)
a9 Jump on zero to lp2:
83 Jump to lp1:
23 lp2: Add from memory location 3 (row step)
63 Save result in memory location 3 (row step)
b6 Jump on zero to :hlt
c7 Output from memory location 7 (new line)
45 Load input register from memory location 5 (zero)
20 Add memory location 0 (column) to input register
44 Load input register from memory location 4 (neg
one)
20 Add memory location 0 (column) to input register
60 Save result in memory location 0 (column)
45 Load input register from memory location 4 (neg
one)
20 Add memory location 0 (column) to input register
62 Save result in memory location 2 (column step)
83 Jump to lp1:
eo hlt: Halt

Table 6. Program memory content for program 3

06 column (size of triangle)
03 row (not used in program)
00 column step
00 row step
ff negative one (allows decrementing)
00 zero
2a symbol "*"
0d new line

Table 5. Data memory content for program 3

20 Space
20 Space
48 H
45 E
4c L
4c L
4f O
20 Space
57 W
4f O
52 R
4c L
44 D
21 !
0d New Line

Table 3. Data memory content for program 2

Figure 8. Output screens for programs 2 and 3

5. The Assembler in PERL
To add to the utility of this computer, an assembler was
designed in the PERL language. As the assembler runs it
generates text files that can be loaded into the data and
program memory in the simulated computer. The
assembler allows symbolic linking between the data and
the program and allows symbolic naming of jump
locations. The assembler was patterned after the assembler
imbedded in the MIPS emulator PC SPIM.
This assembler starts execution by asking the user for data
and program memory file names. Then the user sees the
screen from the table below which gives a review of the
instruction set of this computer and then provides a sample
input file to show the syntax that must be used. When the
line with the stop command is given, the program closes
the files and returns.

6. Student Computer Designs
Using this computer and its design process as an example,
computer architecture students have been required to
design a computer of their own from the registers and
instruction set to layout and implementation with example
programs. The first design from a student team was an
elaborate 16-bit design that used eight cycles to decode and
execute each instruction with the idea of demonstrating a
pipeline implementation. This computer consisted of eight
pages of logic. While this computer represents a great deal
of effort on the part of the students involved, it is not as
useful for demonstration because parts of the display are on
separate pages and can not be viewed simultaneously.
Some students had difficulty designing a computer starting
with operations and layout. For these students the
approach that seemed to work best was to start with an
application they would like to demonstrate on their
computer and then design a computer to meet that
requirement. Some examples of the application-motivated
designs were for an electronic door lock and a “Whack a
Mole” game.

7. Comments from Students
In this section, student’s comments are provided to show
the value of this approach to teaching the inner-workings
of a computer. One student, Daniel McCallum, wrote in an
email [2] after completing Computer Organization:

“Multimedia Logic has helped me a lot to comprehend
many of the complex ideas behind the workings of a
computer. It helps me see things visually and can look at
things one step at a time. For example how an ALU works
made a lot more sense when I could put it together and take
it apart myself, using Multimedia Logic. Another big
aspect of Multimedia Logic was that I can see all the
different switches, gates, etc. visually and have come to
understand how basically a computer does what it does.”

Several students commented that they now understood how
circuits make computers and how computer functions can
be made from simple switching logic devices. Students
that previously used breadboard devices commented that
understanding what was going on was much easier in the
emulated environment because each register can be
instrumented individually.

 ********** Operation Code **********
 **
 ********* adi- Add Immediate *********
 ********* adm- Add Memory *********
 ********* lmi- Load Mem -> Ri *********
 ********* som- Save Ro-> Mem *********
 ********* ji- Jump Immediate *********
 ********* jzi- J on z Im *********
 ********* om- Out Mem Im *********
 ********* Hlt- Halt *********
 **

 ************* Sample Input **************
 **
 .data
 (PLease Input Data for DataMem.)
 numlet:26d
 negone:ffh
 acode:41h
 .text
 (PLease Input Data for ProgramMem.)
 omi acode
 start:lmi acode
 adi 01d
 som acode
 om acode
 lmi negone
 adm numlet
 som numlet
 jzi stop
 ji start
 stop:hlt
 **

Table 7. Assembler Output

8. Limitations of Multimedia Logic
One difficulty encountered with Multimedia Logic is the
unexplained dropping of wires from saved files. This
occurs the first time a new file is saved and seems to be a
problem with overlapping components. For example a
horizontal row of eight light-emitting diodes will lose
connection to every other light when saved, if they are
placed adjacent to each other and are vertically lined up.
The “work-around” for this problem is to stagger the lights
slightly in the vertical direction. This vertical staggering
can be seen in figures 1, 3 and 5.

9. Summary
A number of designs built in Multimedia Logic have
shown to be useful to students in gaining an understanding
the inner workings of a computer and related technology.
Students in computer architecture classes have successfully
used this tool to design many eight-bit and even two
sixteen-bit computers, most with single cycle designs, but
two with multi-cycle designs. Through this experience the
details of how switches can make computers becomes very
clear.

10. Acknowledgments
Thanks to George Mills of www.softronix.com, who has
graciously made his product, Multimedia Logic, available
for free download and included the source code.

And a special thanks to the faculty and students of our
computer science department who have encouraged me in
this effort by their enthusiastic support.

11. References
[1] Hoffman, Mark E., The Case for More Digital Logic in

Computer Architecture, Conferences in Research and
Practice in Information Technology, Vol. 30.

[2] McCallum, Daniel, Email of 6/25/2004.
[3] Mills, George, www.softronix.com, Multimedia Logic

download kit and source kit.
[4] Patterson, David A., and Hennessy, John L. Computer

Organization and Design, the Hardware/Software
Interface, 2nd Edition, Morgan Kaufmann Publishers .

[5] Patterson, David A., and Hennessy, John L. Computer
Organization and Design, the Hardware/Software
Interface, 3nd Edition, Morgan Kaufmann Publishers .

[6] Powers, Kris D., “Teaching Computer Architecture in
Introductory Computing: Why? And How?” Sixth
Australasian Computing Education Conference
(ACE2004), Dunedin.

[7] Wolffe, Greg, Yurcik, William, Osborne, Hugh, and
Holliday, Mark, “Teaching Computer
Organization/Architecture With Limited Resources
Using Simulators”, SIGCSE 2002, ACM Press,
Northern Kentucky USA, Feb/March 2002.

