
An Embedded Systems Course and Course Sequence

Kenneth G. Ricks*
Electrical and Computer

Engineering
The University of Alabama

Tuscaloosa, AL 35487, USA
kricks@coe.eng.ua.edu

* Contact Author

William A. Stapleton
Electrical and Computer

Engineering
The University of Alabama

Tuscaloosa, AL 35487, USA

D. Jeff Jackson
Electrical and Computer

Engineering
The University of Alabama

Tuscaloosa, AL 35487, USA

Abstract

Recently, the University of Alabama Department
of Electrical and Computer Engineering adopted
curricular changes to incorporate embedded systems
into its computer engineering core course sequence.
One of the major changes implemented was the
creation of a senior lecture/laboratory combination
specifically dedicated to embedded systems. This
paper describes the specific lecture and laboratory
content of this senior-level course and how this course
fits within the new curriculum a The University of
Alabama.

1. Background/Introduction

The faculty of the Computer Engineering program
at The University of Alabama has undertaken a project
of pedagogical improvement by incorporating a focus
on embedded systems that is pervasive throughout the
computer engineering curriculum. There are several
driving factors behind this decision. Embedded systems
represent a major fraction of the digital systems market
as indicated by the fact that embedded systems
represent a key technology in the automotive,
consumer electronics, industrial automation, military
and aerospace applications, office automation,
telecommunication and data-communication industries
[1-3]. There is also significant regional interest in
embedded systems with several major automotive and
other manufacturing industries located in the state of
Alabama and surrounding areas [4].

As much as 98% of all 32-bit microprocessors
currently in use worldwide are used in embedded
systems [5]. However, most computer engineering
programs teach programming and design skills that are
appropriate for a general-purpose computer operating
under control of a commercial operating system rather
than for the more specialized embedded systems [6].
Additionally, instruction in embedded systems can
increase opportunities for breadth in a curriculum as
these systems naturally involve hardware and software
components that interface to various electrical,

mechanical, and chemical processes. Thus embedded
systems education is an excellent example of an area of
study that requires depth and rigor while maintaining
breadth required for meeting emerging workforce and
education needs of U.S. industry [4, 7].

The rapid proliferation of embedded systems
requires an increasing number of engineers trained in
microcontroller-based systems, real-time concepts,
hardware/software co-design, distributed processing,
hardware/software integration, and system-level issues
in embedded systems design. Instructional material is
just beginning to appear in this area and the
development of this focus area, associated instructional
materials, and evaluation materials will allow us to
better serve our students and, more importantly, to
provide material for this emerging area that can be
adapted for use by others.

This embedded systems focus is important in the
context of distinguishing our programs at The
University of Alabama. The embedded systems focus
will directly affect three degree programs: Computer
Engineering, Computer Science, and Electrical
Engineering. The majority of computer engineering
programs deal primarily with design and programming
for general-purpose computers. Traditionally, we also
have offered a broad exposure to computer engineering
topics in our curriculum and conducted research in a
number of areas. Recent self-assessments of our
program utilizing both the IEEE/ACM model computer
engineering curriculum [8] and a set of nationally
recognized and comparable programs led us to choose
to adopt a more focused curriculum model. Because of
our limited size and resources, we believe that focusing
both our education and research efforts on a single
theme, namely embedded systems, will allow us to
progress in both areas. A web-based search for
“embedded systems education” using the ASEE
database and internet search engines reveals a scarcity
of programs focusing on embedded systems,
particularly in the U.S. Southeastern region. We
believe that successful implementation of this focused
effort in a niche area will serve as a model for many
other similarly sized programs [4].

2. The University of Alabama Computer
Engineering Core Course Sequence

The plan for reforming the curriculum will involve
each of the courses in the Computer Engineering
program shown in Figure 1. In this figure, the arrows
denote a prerequisite relationship between the courses.
The comprehensive plan builds upon each of these
courses to provide an enriched experience for the
students.

ECE380
Digital Logic

4 credit with lab

ECE383
Microcomputers
4 credit with lab

ECE484
Computer Architecture

3 credit

ECE480/481
Digital Systems Design

4 credit with lab

ECE486/487
Embedded Systems

4 credit with lab

ECE494
Capstone Design

3 credit

ECE493
Special Topics

3 credit

ECE380
Digital Logic

4 credit with lab

ECE383
Microcomputers
4 credit with lab

ECE484
Computer Architecture

3 credit

ECE480/481
Digital Systems Design

4 credit with lab

ECE486/487
Embedded Systems

4 credit with lab

ECE494
Capstone Design

3 credit

ECE493
Special Topics

3 credit

Figure 1. Computer Engineering Core Curriculum

with Embedded Systems Focus

The first course in the sequence of Figure 1, ECE
380 - Digital Logic, is a four-hour lecture/laboratory
combination class incorporating traditional
combinational and sequential logic design and digital
design using VHDL. The embedded systems theme is
incorporated into this class through exercises that, for
example, include digital counter designs in the context
of watchdog timers common in embedded processors,
pulse width modulation (PWM) circuit design, and
complex state machine designs for typical embedded
system tasks such as bus arbitration. Altera’s Quartus II
electronic design automation software is used to
provide the students with system design and simulation
experience. This course is required for students in all
three directly affected engineering disciplines. Along
with the nature of the subject material, this student
diversity makes this course especially well-suited for
the incorporation of multidisciplinary team-based
learning. Finally, basic designs from exercises in this
course are used as components in larger, more complex
designs in subsequent courses. Proper design
techniques as well as design reuse are stressed.

The second course, ECE 383 – Microcomputers,
builds on a foundation of traditional architectural topics
such as register, memory, bus, and instruction set
design to incorporate embedded systems topics such as
peripheral interfacing, analog-to-digital (A/D)
conversion, device control, interrupt management, and
system reliability. Metrowerks CodeWarrior is used to

provide a modern development environment for
programming and debugging the software portions of
system design. Students expand the use of Altera’s
Quartus II software introduced in ECE 380 to produce
custom interface logic to connect a microprocessor
with a variety of peripheral devices. We also introduce
the basic use of Mentor Graphics software for
facilitating hardware/software co-design and board-
level design issues. As with ECE 380, this course is
required for students in all three directly affected
engineering disciplines facilitating the incorporation of
multidisciplinary team-based learning.

The third course, ECE 480/481 - Digital Systems
Design, is a four hour lecture/laboratory combination
class that focuses on the design and test of digital
systems components including basic arithmetic and
logic components, and digital systems interfaces
including PWM designs, and mouse, keyboard and
video display drivers. VHDL-based designs are
implemented on FPGA devices. System-on-a-
Programmable-Chip design methodologies are
introduced. Special emphasis on testing includes an
introduction to device-embedded logic analyzers and
their use for debugging SoPC designs. Specific topical
material introduced includes hardware description
languages, electronic design automation, logic circuit
testing and testable design, SOC design and intellectual
property (IP) cores. Software tools for electronic
design automation from Altera and Mentor Graphics
corporations are used, allowing students previously
exposed to these toolsets to become more proficient in
their use. More advanced features of these toolsets are
introduced including floor planning, advanced timing
analysis, and synthesis options. Additional toolsets are
introduced including both design-for-test and
hardware/software co-design for embedded processors.
Additionally, the Mentor Graphics toolset includes
capabilities for engineering project management that
are used to manage the execution of best design
practices throughout project assignments. Specific
embedded systems concepts that are covered include
embedded processor design, peripheral integration and
SOC solutions for embedded systems. Integration of
custom hardware and software with existing
components is emphasized. Hardware/software co-
design is addressed by integrating and expanding basic
projects from the first two courses: ECE 380 and ECE
383 [4].

The fourth course, ECE 484 – Computer
Architecture, is a three hour course that incorporates
embedded systems concepts into the context of
computer architectural issues. Traditional computing
architectures are introduced, evaluated, and contrasted
with embedded systems architectures [9]. Specifically,
architectural design tradeoffs associated with the
processor(s), input/output (I/O), and memory are

discussed. Performance evaluation and analysis is also
contrasted between a general-purpose MIPS
architecture and architectures used in embedded
systems. Hardware/software co-design is introduced,
and the relationships between the software and
hardware components of computing systems are
discussed.

The fifth course, ECE 486/487 – Embedded
Systems, is a four hour lecture/laboratory combination
class. It is described in detail in the following sections
of this paper.

The sixth course, ECE 493 – Special Topics,
provides flexibility in the curriculum by allowing
advanced embedded systems concepts to be introduced
on a regular as-needed basis. Such topics would
include, but are not limited to, real-time systems,
distributed embedded systems, hardware/software co-
design methodologies and design
verification/validation/testing.

The seventh course, ECE 494 – Capstone Design,
culminates the undergraduate engineering design
experience by providing a semester-long, team-
oriented design project building on the skills learned in
a previous senior-level lecture/laboratory course.
Candidate lecture/laboratory courses preceding the
Capstone Design course include ECE 480/481 Digital
Systems Design and ECE 486/487 Embedded Systems.
All facets of the previously introduced software tools
will be exercised in this course. Design projects such as
programmable logic devices and SOC solutions in
robotic car competitions [10] and projects following
the IEEE Computer Society International Design
Competition model [11] will be used. Since the design
is team oriented, this course also provides the
opportunity to assess student teaming skills and the
pedagogies used throughout the curriculum for
instruction in teaming [4].

3. ECE 486/487 Embedded Systems

The ECE 486/487 Embedded Systems
lecture/laboratory course is a new course resulting from
the curriculum reform activities. The following
sections describe the concepts covered in the lecture,
how these concepts relate to the IEEE/ACM model
curriculum, the laboratory activities, and the hardware
and software currently used for the laboratory
assignments.

3.1 Lecture Material

The course begins with an introduction to

embedded systems. This portion of the lecture
provides general definitions of embedded systems,
examples of common embedded systems, and
distinguishes embedded systems from other types of

computing systems. Also, general characteristics of
embedded systems are given and functional and non-
functional metrics used to evaluate system design and
performance are described. Background material such
as Moore’s Law is presented to explain the broad
emergence of embedded systems throughout our
society. This leads to a justification of embedded
systems as a focus area within computer engineering
and the corresponding need for embedded systems
education. This material corresponds to various core
components of the IEEE/ACM model curriculum
including “History and overview of embedded systems
– ESY0” and “Classification of embedded systems –
ESY6”, as well as one elective component of the model
called “Software engineering considerations – ESY7”.

The next set of lectures is designed to concentrate
on the design of embedded systems. Specifically, ad-
hoc, top-down, and bottom-up design methodologies
are shown to be inadequate as general-purpose
methodologies due to the varying system requirements
and characteristics across multiple embedded systems
applications. Hardware/software co-design is
introduced and compared to the other methodologies.
Its uses a domain-independent process abstraction to
describe system behavior which delays hardware and
software allocation and mapping decisions making it
more suitable as a general-purpose approach for these
applications. The main goals of this concept are that
embedded systems designers must be able to perform
hardware and software design tradeoffs and analysis.
Computational models used to describe system
behavior are also introduced. These lecture concepts
correlate to several of the components in the “Software
engineering considerations – ESY7” section of the
model curriculum which is recommended as elective
material [8].

The aforementioned lecture materials represent a
high-level, abstract view of embedded systems. Some
of these concepts, particularly the design
methodologies, are difficult for students to grasp, and
students have indicated that these sections of the
lecture are their least favorite. The following sets of
lectures deal with more tangible concepts that are more
easily mapped to hands-on laboratory assignments.
Students have indicated a higher level of interest in this
material.

The next set of lectures is designed to discuss
typical I/O activities and related concepts required of
embedded systems. Specifically, data acquisition, A/D
conversion, digital-to-analog (D/A) conversion,
sampling rates, the Nyquist rule, A/D resolution,
“system” resolution, PWM, timers, timer resolution,
communication protocols, direct memory access, and
specific I/O devices such as keypads, and UARTs are
discussed. Many of these concepts are introduced
earlier in the course sequence, but in this case a

concerted effort is made to put these concepts into a
“system” context. For example, A/D conversion is
introduced in ECE 383 in the context of an on-chip
converter incorporated with the microprocessor. In
ECE 486, A/D conversion is again discussed, but this
time it is seen as part of a data acquisition system and
the A/D converter is incorporated as an off-chip I/O
peripheral device. In this case, the A/D converter
resolution and sampling rate are compared to the
requirements of the “system” within the context of the
specific real-world data being collected. These topics
are listed as components in two parts of the model
curriculum including “Fundamentals of embedded
systems – ESY1” (core) and “Hardware considerations
– ESY3” (elective) [8].

The different architectures to support interfacing
required for the I/O activities previously mentioned is
the focus of another set of lectures. In particular, bus-
based architectures are discussed and specific designs
are created. Bus communication protocols are
compared, master-slave relationships are defined, and
system activities are decomposed into atomic bus
transactions. Bus arbitration is introduced,
multiprocessor bus architectures are described, and bus
saturation is defined and explored. Finally, interrupt-
driven and polled I/O are described, compared, and
contrasted in terms of hardware design, software
design, and system performance. All of these topics
satisfy many of the components in the following parts
of the model curriculum: “Language issues – ESY2”
(core), “Hardware considerations – ESY3” (elective),
“Mapping between languages and hardware – ESY4”
(core), “Classification of embedded systems – ESY6”
(core), “Particular techniques and applications –
ESY8” (elective), and “High integrity software systems
– ESY10” (elective) [8].

Another set of lectures is designed to address
memory concepts. These lectures cover different
memory technologies and discuss particular
applications of each. The technologies are compared
and contrasted based upon their operational
characteristics. Also, memory system hierarchical
design and caching are introduced. The localities of
reference upon which memory system design is based
are used to show the importance of memory system
design and its effect on overall system performance.
The particular aspect of the model curriculum
incorporated into these lectures is “Mapping between
languages and hardware – ESY4” (core) [8].

The last set of lectures is designed to introduce
real-time issues. Real-time systems are defined and the
various types are compared and contrasted. Real-time
operating systems are discussed and their performance
goals are described as they relate to I/O activities and
memory operation addressed in earlier lectures. For
example, at this point students seem to recognize and

understand the effects of caching on real-time
performance and the minimization of interrupt latency
with real-time operating systems. The students have
shown genuine excitement about being able to relate
such concepts. Scheduling is also introduced at this
point. Since we have already defined the process
abstraction and the concurrent process model of
computation, it is easy to address process scheduling,
preemption, non-preemption, priority-based
scheduling, and priority assignments based upon
popular algorithms such as the rate-monotonic
algorithm. These topics correlate to the following
parts of the model curriculum: “Language issues –
ESY2” (core), “Mapping between languages and
hardware – ESY4” (core), “Real-time operating
systems – ESY5” (elective), and “Classification of
embedded systems – ESY6” (core) [8].

3.2 Laboratory Hardware and Software

The hardware and software dedicated to the

embedded systems laboratory assignments uses a
single-bus architecture built around the VMEbus. The
VMEbus is a standardized bus protocol designed for
I/O intensive operations and often used in industrial,
military, and aerospace embedded applications [12].
Each of the three lab stations consists of two single-
board-computers (SBC) connected to the VMEbus, one
6U-sized combination VMEbus CDROM drive and
hard drive for each SBC, and one shared A/D board
consisting of 64 differential analog input channels also
connected to the VMEbus. One SBC is loaded with the
Windows XP Professional operating system and the
second SBC is loaded with Redhat Linux version 9.0
running the 2.4.20-6 Linux kernel. A customized
library of software functions compatible with the C
programming language is available for use on each
platform. The functions make interfacing to the
VMEbus address space easy and eliminate the need for
timely driver development for the specific hardware
used. Each of the three lab stations allows for remote
login via the Internet. This promotes sharing of the
hardware. Remote login does not provide for
interacting directly with the equipment in some cases,
for example setting up analog input into the A/D board.
But, it does allow for software development which
accounts for a majority of the time spent using the
stations.

Although the VMEbus is seen almost exclusively
in industrial, military, and aerospace applications, it is
surprisingly useful for academic embedded systems
activities. In addition to using its asynchronous
protocol as an example of such bus communications,
the flexibility of the VMEbus makes it perfect for
demonstrating many other topics discussed in the
IEEE/ACM model curriculum. For example, SBCs can

be easily added to a VMEbus backplane to produce a
multiprocessor. The SBCs can be the same producing
a homogenous multiprocessor, or each can be different,
even executing different operating systems, to produce
a heterogeneous multiprocessor. Various memory
configurations can be set up by adding global memory
cards to a VMEbus system. Multiprocessors and
shared memory provide the opportunity to address
mutual exclusion, concurrency, and inter-process
communication issues. Various operating systems
including real-time operating systems are readily
available for VMEbus SBCs. With such an operating
system, detailed timing analysis of system performance
and real-time scheduling concepts can be investigated.
The VMEbus supports various bus arbitration methods,
has a prioritized 7-level interrupt protocol, supports
multiple bus masters, has a data transfer rate of 40
Mbytes per second, and is standardized. Its thorough
I/O support makes it easy to study polled I/O, interrupt-
driven I/O, standard and memory-mapped I/O
configurations, arbitration for multiple interrupting
devices, starvation, and bus saturation concepts. One
final benefit of the VMEbus is that there are many
vendors and many choices for VMEbus devices
making off-the-shelf components common, relatively
inexpensive, and simple to use.

3.3 Laboratory Activities

 The laboratory activities are chosen to supplement
the lecture material. Each assignment is made with the
goal of supporting the “system” concept of an
embedded system. So, in each case, overall system
performance is a concern. Based upon the data
presented in [13], the C programming language is used
for approximately 80% of all embedded systems, and
assembly language is used for approximately 10%.
Since assembly language is the choice for earlier
courses in the UA sequence, such as ECE 383, this is
the best time to introduce C as a high-level
programming language suitable for embedded
applications. By doing so, the laboratory addresses a
core topic in the IEEE/ACM model curriculum called
“Language Issues – ESY2”. This specifically refers to
a need for the description of various programming
languages used in embedded systems and the
specification of a guide for when such languages are
appropriate [8]. Finally, each assignment will use the
VMEbus systems described in the previous section or
will involve a software simulation of some embedded
systems component.
 Another important aspect of the laboratory
assignments is that the technical data necessary to
program the hardware and to use the custom C
software libraries is not presented in a formal fashion.
Instead, students are responsible for gathering the

necessary information from the technical
documentation accompanying the laboratory hardware
and software, i.e. technical manuals. This type of
experience is invaluable to embedded systems
engineers who will be faced with this task early and
often in their careers, often dealing with documentation
that is poorly written and filled with errors. Thus, the
laboratory activities provide an opportunity to assess
student learning in an unstructured environment.
 The first two laboratory assignments involve the
creation of a data acquisition system. The particular
analog data collected from the real-world is not as
much of a concern as how the data is collected and
what is done with the data. For the first iteration of the
course, the students collected environmental data
including temperature, light, and humidity. The
sensors and the circuitry required were pre-selected and
set up for the students. This represents a case where
practicing engineers are given an I/O component, i.e. a
sensor package, with which to work and must integrate
that package into the data acquisition system. In this
way, the students can focus on system integration
activities and avoid electronic design issues they
should have been exposed to earlier in the curriculum
and that tend to distract some students from the goal of
the current exercise. For the first laboratory
assignment, students create a data acquisition system
that uses polled I/O to collect environmental data at a
specified rate. The time required for the A/D
conversion and the responsiveness of the overall
system is collected. In the second lab, the students
create the same data acquisition system that is
interrupt-driven. In this case, the interrupt latency is
measured and compared to the system timing of the
polled I/O system. Creating the same functionality
using two different approaches has proven to be a
valuable technique in demonstrating important
differences in performance and implementation. These
two assignments also support many of the interfacing
topics covered in the lecture portion of the course
including general I/O configurations, writing interrupt-
service routines, and decomposing bus-based
communication into atomic bus transactions using
master-slave relationships.
 Another lab assignment that is used is that of
creating a software simulation of a memory hierarchy.
For this assignment, there is no direct connection to the
VMEbus hardware, although students are encouraged
to write their simulations using the lab stations to
promote further familiarity with those systems. For
this assignment, students are required to develop a
simulation of a memory hierarchy configured
according to user input. Once configured, the
simulations must be able to accurately track memory
performance given a set of memory references.
Considering that many embedded applications have

predictable workloads, memory performance prediction
and configuration is a necessary component of
embedded systems development.
 The final laboratory assignment involves real-time
scheduling. Like the previous lab, the students are
asked to develop a software simulation of a real-time
scheduler configured according to user input. Possible
configuration options include preemption or non-
preemption, static or dynamic priority assignment,
periodic or aperiodic task execution, independent tasks
or tasks having precedence constraints. This
assignment incorporates many concepts discussed in
the IEEE/ACM model curriculum and included as part
of the lecture material. For example, real-time
operating system issues are addressed, as well as
different priority assignment algorithms such as rate-
monotonic and earliest-deadline-first. Scheduling
processes also ties back into the concurrent process
model of computation mentioned earlier as a technique
used to describe system behavior. Students can now
see the effects of different functional decompositions
and different granularities of decomposition.

4. Future changes to ECE 486/487

 After the first complete offering of this course with
its associated laboratory assignments, it is evident that
several adjustments must be made. First, a complete
co-design laboratory assignment must be produced to
complement the lecture material on this subject. Co-
design is a rather abstract topic for students to
understand especially if they have little to no design
experience. The problems encountered up to this point
with introducing such an assignment include finding a
suitable system with the scope appropriate for a 1-2
week assignment, a system that will provide obvious
and limited design choices after using trade-off
analysis, and conquering the learning curve associated
with design environments using co-design.
 A second addition to the course includes
expanding the software simulation assignments to
incorporate the VMEbus systems. Adding a real-time
operating system to one SBC will make it easy to
incorporate the VMEbus systems into the scheduling
assignments. Also, the VMEbus SBCs have cache
memories and configurable caching options including
the ability to turn caching off to support hard, real-time
applications. With limited effort, it should be
straightforward to incorporate the VMEbus systems
into the memory simulator assignments.
 Finally, additional lab assignments must be
introduced to complement other lecture topics such as
multiprocessing. As embedded systems continue to
increase in complexity, multiprocessing is becoming a
necessary topic as opposed to an “advanced” topic and
must be incorporated into the class. The VMEbus

systems readily support multiprocessing and this must
become a fundamental part of the course.
 In addition to adding laboratory assignments to the
course, the course lecture and lab materials must be
generalized in such a way as to make them available
for use by others. The generalized versions of the
materials should incorporate feedback generated from
student assessment of the current materials.
Assessment strategies are currently being defined.

5. Conclusions

The University of Alabama has reformed its
Computer Engineering curriculum in order to
incorporate an embedded systems theme throughout its
core course sequence. One large component of these
changes involves the introduction of a senior-level
lecture/laboratory combination course concentrating on
embedded systems. This course is integrated into the
core course sequence and its lecture topics are derived
from the IEEE/ACM model computer engineering
curriculum. The laboratory assignments are designed
to complement the lecture topics, and they also
incorporate many of the topics, both core topics and
elective topics, mentioned in the model curriculum.
The laboratory assignments make use of a system
architecture designed around the VMEbus. The
VMEbus is shown to provide a powerful, flexible
platform from which to teach many of the concepts in
the model curriculum.

6. References

[1] Gannod, G. C., Golshani, F., Huey, B., Lee, Y. H.,
Panchanathan, S., and Pheanis, D., “A Consortium-based
Model for the Development of a Concentration Track in
Embedded Systems”, 2002 Proceedings of the American
Society for Engineering Education Annual Conference and
Exposition, session 1532.

[2] Wolf, W., “Rethinking embedded microprocessor
education”, In Proceedings of the 2001 American Society for
Engineering Education Annual Conference and Exposition,
Albuquerque, NM, 2001.

[3] Wolf, W., Madsen, J., “Embedded systems education for
the future”, In Proceedings of the IEEE, 88(1), pp. 23 . 30,
January 2000.

[4] Stapleton, W. A., Ricks, K. G., Jackson, D. J.,
“Implementation of an Embedded Systems Curriculum” 20th
International Conference on Computers and Their
Applications (CATA’04), New Orleans, Louisiana: ISCA,
pp. 302-307 (March 2005).

[5] Turley, J., “The Two Percent Solution,” Embedded
Systems Programming, December 2002,
www.embedded.com/story/OEG20021217S0039.

[6] Ganssle, J., “A Call for a New Curriculum,”
Embedded.Com, May 2002, www.embedded.com/
story/OEG20020530S0075.

[7] “From Analysis to Action: Undergraduate Education in
Science, Mathematics, Engineering and Technology”,
National Research Council, National Academy Press,
Washington, DC, 1996, http://www.nap.edu/
catalog/9128.html.

[8] The IEEE Computer Society/ACM, Computing Curricula,
www.computer.org/education/cc2001/.

[9] Hennessy, J., Patterson, D., Computer Architecture: A
Quantitative Approach, 3rd Edition, Morgan Kaufmann,
2003.

[10] Georgia Institute of Technology, School of Electrical
and Computer Engineering, http://users.ece.gatech.edu/
~hamblen/4006/projects/nios_robot/ECE4006_page.html.

[11] IEEE Computer Society, Computer.org, Computer
Society International Design Competition 2003,
http://computer.org/CSIDC/.

[12] IEEE Standard for A Versatile Backplane Bus: VMEbus,
ANSI/IEEEANSI/IEEE Std 1014-1987, 1987.

[13] Lewis, Daniel W., Fundamentals of Embedded Software,
Prentice Hall, Upper Saddle river, New Jersey, 2002.

