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Abstract 
 

Recently, the University of Alabama Department 
of Electrical and Computer Engineering adopted 
curricular changes to incorporate embedded systems 
into its computer engineering core course sequence.  
One of the major changes implemented was the 
creation of a senior lecture/laboratory combination 
specifically dedicated to embedded systems.  This 
paper describes the specific lecture and laboratory 
content of this senior-level course and how this course 
fits within the new curriculum a The University of 
Alabama. 
 
1.   Background/Introduction 
  

The faculty of the Computer Engineering program 
at The University of Alabama has undertaken a project 
of pedagogical improvement by incorporating a focus 
on embedded systems that is pervasive throughout the 
computer engineering curriculum. There are several 
driving factors behind this decision. Embedded systems 
represent a major fraction of the digital systems market 
as indicated by the fact that embedded systems 
represent a key technology in the automotive, 
consumer electronics, industrial automation, military 
and aerospace applications, office automation, 
telecommunication and data-communication industries 
[1-3]. There is also significant regional interest in 
embedded systems with several major automotive and 
other manufacturing industries located in the state of 
Alabama and surrounding areas [4]. 

As much as 98% of all 32-bit microprocessors 
currently in use worldwide are used in embedded 
systems [5]. However, most computer engineering 
programs teach programming and design skills that are 
appropriate for a general-purpose computer operating 
under control of a commercial operating system rather 
than for the more specialized embedded systems [6]. 
Additionally, instruction in embedded systems can 
increase opportunities for breadth in a curriculum as 
these systems naturally involve hardware and software 
components that interface to various electrical, 

mechanical, and chemical processes. Thus embedded 
systems education is an excellent example of an area of 
study that requires depth and rigor while maintaining 
breadth required for meeting emerging workforce and 
education needs of U.S. industry [4, 7]. 

The rapid proliferation of embedded systems 
requires an increasing number of engineers trained in 
microcontroller-based systems, real-time concepts, 
hardware/software co-design, distributed processing, 
hardware/software integration, and system-level issues 
in embedded systems design. Instructional material is 
just beginning to appear in this area and the 
development of this focus area, associated instructional 
materials, and evaluation materials will allow us to 
better serve our students and, more importantly, to 
provide material for this emerging area that can be 
adapted for use by others. 

This embedded systems focus is important in the 
context of distinguishing our programs at The 
University of Alabama. The embedded systems focus 
will directly affect three degree programs: Computer 
Engineering, Computer Science, and Electrical 
Engineering. The majority of computer engineering 
programs deal primarily with design and programming 
for general-purpose computers. Traditionally, we also 
have offered a broad exposure to computer engineering 
topics in our curriculum and conducted research in a 
number of areas. Recent self-assessments of our 
program utilizing both the IEEE/ACM model computer 
engineering curriculum [8] and a set of nationally 
recognized and comparable programs led us to choose 
to adopt a more focused curriculum model. Because of 
our limited size and resources, we believe that focusing 
both our education and research efforts on a single 
theme, namely embedded systems, will allow us to 
progress in both areas. A web-based search for 
“embedded systems education” using the ASEE 
database and internet search engines reveals a scarcity 
of programs focusing on embedded systems, 
particularly in the U.S. Southeastern region. We 
believe that successful implementation of this focused 
effort in a niche area will serve as a model for many 
other similarly sized programs [4]. 



2. The University of Alabama Computer 
Engineering Core Course Sequence 
 

The plan for reforming the curriculum will involve 
each of the courses in the Computer Engineering 
program shown in Figure 1. In this figure, the arrows 
denote a prerequisite relationship between the courses. 
The comprehensive plan builds upon each of these 
courses to provide an enriched experience for the 
students.  

 

ECE380
Digital Logic

4 credit with lab

ECE383
Microcomputers
4 credit with lab

ECE484
Computer Architecture

3 credit

ECE480/481
Digital Systems Design

4 credit with lab

ECE486/487
Embedded Systems

4 credit with lab

ECE494
Capstone Design

3 credit

ECE493
Special Topics

3 credit

ECE380
Digital Logic

4 credit with lab

ECE383
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4 credit with lab

ECE484
Computer Architecture

3 credit

ECE480/481
Digital Systems Design

4 credit with lab

ECE486/487
Embedded Systems

4 credit with lab

ECE494
Capstone Design

3 credit

ECE493
Special Topics

3 credit  
 
Figure 1. Computer Engineering Core Curriculum 

with Embedded Systems Focus 
 

The first course in the sequence of Figure 1, ECE 
380 - Digital Logic, is a four-hour lecture/laboratory 
combination class incorporating traditional 
combinational and sequential logic design and digital 
design using VHDL. The embedded systems theme is 
incorporated into this class through exercises that, for 
example, include digital counter designs in the context 
of watchdog timers common in embedded processors, 
pulse width modulation (PWM) circuit design, and 
complex state machine designs for typical embedded 
system tasks such as bus arbitration. Altera’s Quartus II 
electronic design automation software is used to 
provide the students with system design and simulation 
experience. This course is required for students in all 
three directly affected engineering disciplines. Along 
with the nature of the subject material, this student 
diversity makes this course especially well-suited for 
the incorporation of multidisciplinary team-based 
learning. Finally, basic designs from exercises in this 
course are used as components in larger, more complex 
designs in subsequent courses. Proper design 
techniques as well as design reuse are stressed. 

The second course, ECE 383 – Microcomputers, 
builds on a foundation of traditional architectural topics 
such as register, memory, bus, and instruction set 
design to incorporate embedded systems topics such as 
peripheral interfacing, analog-to-digital (A/D) 
conversion, device control, interrupt management, and 
system reliability. Metrowerks CodeWarrior is used to 

provide a modern development environment for 
programming and debugging the software portions of 
system design. Students expand the use of Altera’s 
Quartus II software introduced in ECE 380 to produce 
custom interface logic to connect a microprocessor 
with a variety of peripheral devices. We also introduce 
the basic use of Mentor Graphics software for 
facilitating hardware/software co-design and board-
level design issues. As with ECE 380, this course is 
required for students in all three directly affected 
engineering disciplines facilitating the incorporation of 
multidisciplinary team-based learning. 

The third course, ECE 480/481 - Digital Systems 
Design, is a four hour lecture/laboratory combination 
class that focuses on the design and test of digital 
systems components including basic arithmetic and 
logic components, and digital systems interfaces 
including PWM designs, and mouse, keyboard and 
video display drivers. VHDL-based designs are 
implemented on FPGA devices. System-on-a-
Programmable-Chip design methodologies are 
introduced. Special emphasis on testing includes an 
introduction to device-embedded logic analyzers and 
their use for debugging SoPC designs.  Specific topical 
material introduced includes hardware description 
languages, electronic design automation, logic circuit 
testing and testable design, SOC design and intellectual 
property (IP) cores. Software tools for electronic 
design automation from Altera and Mentor Graphics 
corporations are used, allowing students previously 
exposed to these toolsets to become more proficient in 
their use. More advanced features of these toolsets are 
introduced including floor planning, advanced timing 
analysis, and synthesis options. Additional toolsets are 
introduced including both design-for-test and 
hardware/software co-design for embedded processors. 
Additionally, the Mentor Graphics toolset includes 
capabilities for engineering project management that 
are used to manage the execution of best design 
practices throughout project assignments. Specific 
embedded systems concepts that are covered include 
embedded processor design, peripheral integration and 
SOC solutions for embedded systems. Integration of 
custom hardware and software with existing 
components is emphasized. Hardware/software co-
design is addressed by integrating and expanding basic 
projects from the first two courses: ECE 380 and ECE 
383 [4]. 

The fourth course, ECE 484 – Computer 
Architecture, is a three hour course that incorporates 
embedded systems concepts into the context of 
computer architectural issues.  Traditional computing 
architectures are introduced, evaluated, and contrasted 
with embedded systems architectures [9].  Specifically, 
architectural design tradeoffs associated with the 
processor(s), input/output (I/O), and memory are 



discussed.  Performance evaluation and analysis is also 
contrasted between a general-purpose MIPS 
architecture and architectures used in embedded 
systems.  Hardware/software co-design is introduced, 
and the relationships between the software and 
hardware components of computing systems are 
discussed.    

The fifth course, ECE 486/487 – Embedded 
Systems, is a four hour lecture/laboratory combination 
class.  It is described in detail in the following sections 
of this paper.   

The sixth course, ECE 493 – Special Topics, 
provides flexibility in the curriculum by allowing 
advanced embedded systems concepts to be introduced 
on a regular as-needed basis. Such topics would 
include, but are not limited to, real-time systems, 
distributed embedded systems, hardware/software co-
design methodologies and design 
verification/validation/testing. 

The seventh course, ECE 494 – Capstone Design, 
culminates the undergraduate engineering design 
experience by providing a semester-long, team-
oriented design project building on the skills learned in 
a previous senior-level lecture/laboratory course. 
Candidate lecture/laboratory courses preceding the 
Capstone Design course include ECE 480/481 Digital 
Systems Design and ECE 486/487 Embedded Systems. 
All facets of the previously introduced software tools 
will be exercised in this course. Design projects such as 
programmable logic devices and SOC solutions in 
robotic car competitions [10] and projects following 
the IEEE Computer Society International Design 
Competition model [11] will be used. Since the design 
is team oriented, this course also provides the 
opportunity to assess student teaming skills and the 
pedagogies used throughout the curriculum for 
instruction in teaming [4]. 
 
3. ECE 486/487 Embedded Systems 
 

The ECE 486/487 Embedded Systems 
lecture/laboratory course is a new course resulting from 
the curriculum reform activities.  The following 
sections describe the concepts covered in the lecture, 
how these concepts relate to the IEEE/ACM model 
curriculum, the laboratory activities, and the hardware 
and software currently used for the laboratory 
assignments.   

 
3.1  Lecture Material 

 
The course begins with an introduction to 

embedded systems.  This portion of the lecture 
provides general definitions of embedded systems, 
examples of common embedded systems, and 
distinguishes embedded systems from other types of 

computing systems.  Also, general characteristics of 
embedded systems are given and functional and non-
functional metrics used to evaluate system design and 
performance are described.  Background material such 
as Moore’s Law is presented to explain the broad 
emergence of embedded systems throughout our 
society.  This leads to a justification of embedded 
systems as a focus area within computer engineering 
and the corresponding need for embedded systems 
education.  This material corresponds to various core 
components of the IEEE/ACM model curriculum 
including “History and overview of embedded systems 
– ESY0” and “Classification of embedded systems – 
ESY6”, as well as one elective component of the model 
called “Software engineering considerations – ESY7”.   

The next set of lectures is designed to concentrate 
on the design of embedded systems.  Specifically, ad-
hoc, top-down, and bottom-up design methodologies 
are shown to be inadequate as general-purpose 
methodologies due to the varying system requirements 
and characteristics across multiple embedded systems 
applications.  Hardware/software co-design is 
introduced and compared to the other methodologies.  
Its uses a domain-independent process abstraction to 
describe system behavior which delays hardware and 
software allocation and mapping decisions making it 
more suitable as a general-purpose approach for these 
applications.  The main goals of this concept are that 
embedded systems designers must be able to perform 
hardware and software design tradeoffs and analysis.  
Computational models used to describe system 
behavior are also introduced.  These lecture concepts 
correlate to several of the components in the “Software 
engineering considerations – ESY7” section of the 
model curriculum which is recommended as elective 
material [8].   

The aforementioned lecture materials represent a 
high-level, abstract view of embedded systems.  Some 
of these concepts, particularly the design 
methodologies, are difficult for students to grasp, and 
students have indicated that these sections of the 
lecture are their least favorite.  The following sets of 
lectures deal with more tangible concepts that are more 
easily mapped to hands-on laboratory assignments.  
Students have indicated a higher level of interest in this 
material.   

The next set of lectures is designed to discuss 
typical I/O activities and related concepts required of 
embedded systems.  Specifically, data acquisition, A/D 
conversion, digital-to-analog (D/A) conversion, 
sampling rates, the Nyquist rule, A/D resolution, 
“system” resolution, PWM, timers, timer resolution, 
communication protocols, direct memory access, and 
specific I/O devices such as keypads, and UARTs are 
discussed.  Many of these concepts are introduced 
earlier in the course sequence, but in this case a 



concerted effort is made to put these concepts into a 
“system” context.  For example, A/D conversion is 
introduced in ECE 383 in the context of an on-chip 
converter incorporated with the microprocessor.  In 
ECE 486, A/D conversion is again discussed, but this 
time it is seen as part of a data acquisition system and 
the A/D converter is incorporated as an off-chip I/O 
peripheral device.  In this case, the A/D converter 
resolution and sampling rate are compared to the 
requirements of the “system” within the context of the 
specific real-world data being collected.  These topics 
are listed as components in two parts of the model 
curriculum including “Fundamentals of embedded 
systems – ESY1” (core) and “Hardware considerations 
– ESY3” (elective) [8].    

The different architectures to support interfacing 
required for the I/O activities previously mentioned is 
the focus of another set of lectures.  In particular, bus-
based architectures are discussed and specific designs 
are created.  Bus communication protocols are 
compared, master-slave relationships are defined, and 
system activities are decomposed into atomic bus 
transactions.  Bus arbitration is introduced, 
multiprocessor bus architectures are described, and bus 
saturation is defined and explored.  Finally, interrupt-
driven and polled I/O are described, compared, and 
contrasted in terms of hardware design, software 
design, and system performance.  All of these topics 
satisfy many of the components in the following parts 
of the model curriculum:  “Language issues – ESY2” 
(core), “Hardware considerations – ESY3” (elective), 
“Mapping between languages and hardware – ESY4” 
(core), “Classification of embedded systems – ESY6” 
(core), “Particular techniques and applications – 
ESY8” (elective), and “High integrity software systems 
– ESY10” (elective) [8].  

Another set of lectures is designed to address 
memory concepts.  These lectures cover different 
memory technologies and discuss particular 
applications of each.  The technologies are compared 
and contrasted based upon their operational 
characteristics.  Also, memory system hierarchical 
design and caching are introduced.  The localities of 
reference upon which memory system design is based 
are used to show the importance of memory system 
design and its effect on overall system performance.  
The particular aspect of the model curriculum 
incorporated into these lectures is “Mapping between 
languages and hardware – ESY4” (core) [8]. 

The last set of lectures is designed to introduce 
real-time issues.  Real-time systems are defined and the 
various types are compared and contrasted.  Real-time 
operating systems are discussed and their performance 
goals are described as they relate to I/O activities and 
memory operation addressed in earlier lectures.  For 
example, at this point students seem to recognize and 

understand the effects of caching on real-time 
performance and the minimization of interrupt latency 
with real-time operating systems.  The students have 
shown genuine excitement about being able to relate 
such concepts.  Scheduling is also introduced at this 
point.  Since we have already defined the process 
abstraction and the concurrent process model of 
computation, it is easy to address process scheduling, 
preemption, non-preemption, priority-based 
scheduling, and priority assignments based upon 
popular algorithms such as the rate-monotonic 
algorithm.   These topics correlate to the following 
parts of the model curriculum:  “Language issues – 
ESY2” (core), “Mapping between languages and 
hardware – ESY4” (core), “Real-time operating 
systems – ESY5” (elective), and “Classification of 
embedded systems – ESY6” (core) [8].  

 
3.2  Laboratory Hardware and Software 

 
The hardware and software dedicated to the 

embedded systems laboratory assignments uses a 
single-bus architecture built around the VMEbus.  The 
VMEbus is a standardized bus protocol designed for 
I/O intensive operations and often used in industrial, 
military, and aerospace embedded applications [12].  
Each of the three lab stations consists of two single-
board-computers (SBC) connected to the VMEbus, one 
6U-sized combination VMEbus CDROM drive and 
hard drive for each SBC, and one shared A/D board 
consisting of 64 differential analog input channels also 
connected to the VMEbus.  One SBC is loaded with the 
Windows XP Professional operating system and the 
second SBC is loaded with Redhat Linux version 9.0 
running the 2.4.20-6 Linux kernel.  A customized 
library of software functions compatible with the C 
programming language is available for use on each 
platform.  The functions make interfacing to the 
VMEbus address space easy and eliminate the need for 
timely driver development for the specific hardware 
used.  Each of the three lab stations allows for remote 
login via the Internet.  This promotes sharing of the 
hardware.  Remote login does not provide for 
interacting directly with the equipment in some cases, 
for example setting up analog input into the A/D board.  
But, it does allow for software development which 
accounts for a majority of the time spent using the 
stations.   

Although the VMEbus is seen almost exclusively 
in industrial, military, and aerospace applications, it is 
surprisingly useful for academic embedded systems 
activities.  In addition to using its asynchronous 
protocol as an example of such bus communications, 
the flexibility of the VMEbus makes it perfect for 
demonstrating many other topics discussed in the 
IEEE/ACM model curriculum.  For example, SBCs can 



be easily added to a VMEbus backplane to produce a 
multiprocessor.  The SBCs can be the same producing 
a homogenous multiprocessor, or each can be different, 
even executing different operating systems, to produce 
a heterogeneous multiprocessor.  Various memory 
configurations can be set up by adding global memory 
cards to a VMEbus system.  Multiprocessors and 
shared memory provide the opportunity to address 
mutual exclusion, concurrency, and inter-process 
communication issues.  Various operating systems 
including real-time operating systems are readily 
available for VMEbus SBCs.  With such an operating 
system, detailed timing analysis of system performance 
and real-time scheduling concepts can be investigated.  
The VMEbus supports various bus arbitration methods, 
has a prioritized 7-level interrupt protocol, supports 
multiple bus masters, has a data transfer rate of 40 
Mbytes per second, and is standardized.  Its thorough 
I/O support makes it easy to study polled I/O, interrupt-
driven I/O, standard and memory-mapped I/O 
configurations, arbitration for multiple interrupting 
devices, starvation, and bus saturation concepts.  One 
final benefit of the VMEbus is that there are many 
vendors and many choices for VMEbus devices 
making off-the-shelf components common, relatively 
inexpensive, and simple to use.   

 
3.3  Laboratory Activities 

 
 The laboratory activities are chosen to supplement 
the lecture material.  Each assignment is made with the 
goal of supporting the “system” concept of an 
embedded system.  So, in each case, overall system 
performance is a concern.  Based upon the data 
presented in [13], the C programming language is used 
for approximately 80% of all embedded systems, and 
assembly language is used for approximately 10%.  
Since assembly language is the choice for earlier 
courses in the UA sequence, such as ECE 383, this is 
the best time to introduce C as a high-level 
programming language suitable for embedded 
applications.  By doing so, the laboratory addresses a 
core topic in the IEEE/ACM model curriculum called 
“Language Issues – ESY2”.  This specifically refers to 
a need for the description of various programming 
languages used in embedded systems and the 
specification of a guide for when such languages are 
appropriate [8].  Finally, each assignment will use the 
VMEbus systems described in the previous section or 
will involve a software simulation of some embedded 
systems component.   
 Another important aspect of the laboratory 
assignments is that the technical data necessary to 
program the hardware and to use the custom C 
software libraries is not presented in a formal fashion.  
Instead, students are responsible for gathering the 

necessary information from the technical 
documentation accompanying the laboratory hardware 
and software, i.e. technical manuals.  This type of 
experience is invaluable to embedded systems 
engineers who will be faced with this task early and 
often in their careers, often dealing with documentation 
that is poorly written and filled with errors.  Thus, the 
laboratory activities provide an opportunity to assess 
student learning in an unstructured environment.   
 The first two laboratory assignments involve the 
creation of a data acquisition system.  The particular 
analog data collected from the real-world is not as 
much of a concern as how the data is collected and 
what is done with the data.  For the first iteration of the 
course, the students collected environmental data 
including temperature, light, and humidity.  The 
sensors and the circuitry required were pre-selected and 
set up for the students.  This represents a case where 
practicing engineers are given an I/O component, i.e. a 
sensor package, with which to work and must integrate 
that package into the data acquisition system.  In this 
way, the students can focus on system integration 
activities and avoid electronic design issues they 
should have been exposed to earlier in the curriculum 
and that tend to distract some students from the goal of 
the current exercise.  For the first laboratory 
assignment, students create a data acquisition system 
that uses polled I/O to collect environmental data at a 
specified rate.  The time required for the A/D 
conversion and the responsiveness of the overall 
system is collected.  In the second lab, the students 
create the same data acquisition system that is 
interrupt-driven.  In this case, the interrupt latency is 
measured and compared to the system timing of the 
polled I/O system.  Creating the same functionality 
using two different approaches has proven to be a 
valuable technique in demonstrating important 
differences in performance and implementation.  These 
two assignments also support many of the interfacing 
topics covered in the lecture portion of the course 
including general I/O configurations, writing interrupt-
service routines, and decomposing bus-based 
communication into atomic bus transactions using 
master-slave relationships. 
 Another lab assignment that is used is that of 
creating a software simulation of a memory hierarchy.  
For this assignment, there is no direct connection to the 
VMEbus hardware, although students are encouraged 
to write their simulations using the lab stations to 
promote further familiarity with those systems.  For 
this assignment, students are required to develop a 
simulation of a memory hierarchy configured 
according to user input.  Once configured, the 
simulations must be able to accurately track memory 
performance given a set of memory references.  
Considering that many embedded applications have 



predictable workloads, memory performance prediction 
and configuration is a necessary component of 
embedded systems development.   
 The final laboratory assignment involves real-time 
scheduling.  Like the previous lab, the students are 
asked to develop a software simulation of a real-time 
scheduler configured according to user input.  Possible 
configuration options include preemption or non-
preemption, static or dynamic priority assignment, 
periodic or aperiodic task execution, independent tasks 
or tasks having precedence constraints.  This 
assignment incorporates many concepts discussed in 
the IEEE/ACM model curriculum and included as part 
of the lecture material.  For example, real-time 
operating system issues are addressed, as well as 
different priority assignment algorithms such as rate-
monotonic and earliest-deadline-first.  Scheduling 
processes also ties back into the concurrent process 
model of computation mentioned earlier as a technique 
used to describe system behavior.  Students can now 
see the effects of different functional decompositions 
and different granularities of decomposition.   
 
4. Future changes to ECE 486/487 
 
 After the first complete offering of this course with 
its associated laboratory assignments, it is evident that 
several adjustments must be made.  First, a complete 
co-design laboratory assignment must be produced to 
complement the lecture material on this subject.  Co-
design is a rather abstract topic for students to 
understand especially if they have little to no design 
experience.  The problems encountered up to this point 
with introducing such an assignment include finding a 
suitable system with the scope appropriate for a 1-2 
week assignment, a system that will provide obvious 
and limited design choices after using trade-off 
analysis, and conquering the learning curve associated 
with design environments using co-design.   
 A second addition to the course includes 
expanding the software simulation assignments to 
incorporate the VMEbus systems.  Adding a real-time 
operating system to one SBC will make it easy to 
incorporate the VMEbus systems into the scheduling 
assignments.  Also, the VMEbus SBCs have cache 
memories and configurable caching options including 
the ability to turn caching off to support hard, real-time 
applications.  With limited effort, it should be 
straightforward to incorporate the VMEbus systems 
into the memory simulator assignments.   
 Finally, additional lab assignments must be 
introduced to complement other lecture topics such as 
multiprocessing.  As embedded systems continue to 
increase in complexity, multiprocessing is becoming a 
necessary topic as opposed to an “advanced” topic and 
must be incorporated into the class.  The VMEbus 

systems readily support multiprocessing and this must 
become a fundamental part of the course. 
 In addition to adding laboratory assignments to the 
course, the course lecture and lab materials must be 
generalized in such a way as to make them available 
for use by others.  The generalized versions of the 
materials should incorporate feedback generated from 
student assessment of the current materials.  
Assessment strategies are currently being defined.   
 
5. Conclusions 
 

The University of Alabama has reformed its 
Computer Engineering curriculum in order to 
incorporate an embedded systems theme throughout its 
core course sequence.  One large component of these 
changes involves the introduction of a senior-level 
lecture/laboratory combination course concentrating on 
embedded systems.  This course is integrated into the 
core course sequence and its lecture topics are derived 
from the IEEE/ACM model computer engineering 
curriculum.  The laboratory assignments are designed 
to complement the lecture topics, and they also 
incorporate many of the topics, both core topics and 
elective topics, mentioned in the model curriculum.  
The laboratory assignments make use of a system 
architecture designed around the VMEbus.  The 
VMEbus is shown to provide a powerful, flexible 
platform from which to teach many of the concepts in 
the model curriculum.   
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