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Abstract 

In traditional microprocessor systems design courses, 
students learn to develop assembly language programs to 
control peripherals, handle interrupts, and perform I/O 
operations. We adopt a 32-bit StrongARM architecture on 
the Motorola MX1ADS board with Embedded Linux to 
present a modern microprocessor system design course. 
With this new platform, we use a high-level language to 
develop projects that accelerate the students� learning 
curve. Embedded Linux also provides the necessary 
flexibility and tool set required for students to debug their 
own projects. Our students' responded very positively to 
this change. They were excited about the renewed course 
structure, the updated learning environment, and the 
challenging projects.  
 

1. Introduction 
Embedded systems are designed for dedicated 

applications running in control systems. The unique 
feature of such systems is the capability to perform timely 
and predictable operations in response to concurrent 
requests arriving from the external environment. To create 
an effective embedded system one must properly employ 
the appropriate system architecture, hardware/software 
interfaces, peripheral devices, and software components. 
Currently, embedded systems companies are facing with a 
shortage of engineers having the appropriate skills to 
respond to market opportunities [8]. Therefore, embedded 
software engineering has emerged as a key element for 
curriculums in Computer Science, Computer Engineering, 
and Electrical Engineering at universities throughout the 
world. 

To teach the subject of software/hardware integration 
and I/O interfaces, undergraduate computer science and 
engineering programs incorporate a microprocessor 
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system and applications course. In the course, students 
develop assembly language programs to control 
peripherals, handle interrupts, and perform I/O operations. 
Then students perform experiments with a target single-
board microprocessor system integrated with typical 
interface circuits such as programmable timers, serial 
ports and parallel ports. Unfortunately, this approach fails 
to keep pace with industry technology. This lag is 
prompted by the advent of rapid prototyping development 
of microelectronic systems that includes: 

a. SoC-based platforms for embedded applications: 
The system-on-a-chip (SoC) devices have made great 
progress along with the ever-growing number of 
transistors that can be integrated on a chip.  

b. Abundant I/O interfaces: Besides programmable 
timers, serial ports, and parallel ports, there are several 
new I/O standards designed for human interfaces, 
multimedia, networking, and inter-IC/device 
communication.  

c. I/O programming with high-level languages: For 
software portability, modularity, and readability, high-
level programming languages have been used in all levels 
of software development. An appropriate use of 
programming languages and software structures often 
leads to reusable embedded software. 

 Our traditional computer engineering curriculum also 
taught relatively outdated techniques in the subjects of 
software/hardware integration and interface. The 
�Microprocessor System Design� course emphasizes 
assembly language programming and exercises only a 
limited number of I/O interfaces. The course falls short in 
addressing state-of-the-art interfacing technology and 
emerging applications.  

In our curriculum development project sponsored by 
the NSF EIA program, we redesigned the microprocessor 
system design class. Our goals were to provide a learning 
environment which aligned with emerging technology and 
improved the effectiveness of instruction. We also 
developed a laboratory environment which incorporated 
cutting-edge programming approaches to manage 
hardware components in SoC platforms. This renewed 
course goes beyond the inclusion of various interfaces and 
devices. The course focuses on the appropriate software 



structures using a mixture of high-level and assembly 
language programming, I/O operations in modern 
operating systems, and reusable software components. 

In this paper, we will explore the challenges and 
successes we encountered in implementing this new 
microprocessor system design class. The course serves as 
the first of three embedded system courses in our 
curriculum. Section 2 presents background information on 
the embedded system curriculum at Arizona State 
University (ASU).  In Section 3, we will present the new 
course design followed by the course objectives, the 
course material and the setup of the laboratory 
environment for programming projects.  Section 4 will 
cover some of our lessons learned and feedback from our 
students. In Section 5 we conclude our discussion. 

2. Background 
ASU, Motorola, and Intel formed a not-for-profit 

Consortium for Embedded and Inter-Networking 
Technologies (CEINT) in 2001 [3]. CEINT developed an 
infrastructure to support a strong curriculum in embedded 
systems. The end product was a concentrated path in 
Computer Systems Engineering, which consisted of an 
Embedded Systems Development, Embedded Systems 
Engineering, and Embedded Systems Capstone course 
[1].  

We wanted to provide students with the opportunity to 
learn practical development techniques using the 
Embedded Systems Development course. To accomplish 
this goal, we chose Motorola MX1ADS boards using 
MontaVista�s HardHat Linux Toolkit. Although we 
discussed both assembly level and high level 
programming development, C was the main language 
used for developing projects.  This particular combination 
of programming language, development environment, and 
microcontroller architecture is rare for an introductory 
level embedded systems class.   

At the same time, the students were challenged to get 
quickly up to speed on the fundamentals required to use 
the new development environment and tools. Most of the 
students did not have strong backgrounds in developing 
software for Linux.  To lessen this steep learning curve, 
we provided laboratory demonstrations and walked 
through simple development projects in small groups.  
We also provided online tutorials, sample Linux drivers, 
and low level C code examples for students to study. 

In this course, we introduced students to memory 
devices, memory controllers, buses, handling interrupts, 
DMA, timers, counters, UART, SPI, I2C, parallel I/O, 
keypad, LCD, touch panels, and A/D - D/A converters. 
The students also developed device drivers for timers, 
PWM, UART, gpio, and SPI eeprom as class projects. 
Other available features such as watchdog timer, blue 

tooth technology, USB, and CMOS sensors were left for 
more advanced courses in the sequence. 

Assembly language teaches the students about the 
detailed architecture of the hardware.  This gives students 
an appreciation for high level constructs implemented in 
assembly language [2]. However, implementing all 
software programs in assembly language neither practical 
nor desired. In fact, assembly-language programming is 
no longer the best choice for developing embedded 
systems, due to the availability of excellent compilers and 
the rising complexity of software projects [6][9]. 

3. Course Design 
3.1. Course Objectives  

The objectives of the course are to familiarize the 
students with hardware-software interfaces, hardware 
designs of microprocessor systems and peripheral devices 
and their communication protocols. Students work at 
acquiring technical knowledge and applying this 
knowledge to the development of programs for 
controlling peripheral devices and interfaces. Thus, the 
students learn to analyze and synthesize suitable solutions 
for building integrated hardware/software systems capable 
of interacting with external world.  

3.2. Course Content 
The revamped course places emphasis on  

software/hardware integration and I/O programming, the 
incorporation of the state-of-the-art SoC platforms, and 
emerging embedded system development tools. Our plan 
is to gear the integration of hardware modules to construct 
embedded systems and the programming models and 
characteristics of various I/O interfaces and peripherals. 
The course syllabus is established as follows: 

Course Syllabus: Microprocessor System Design 
 

Course Goals:  
• Develop an understanding for using a CPU core as a 

component in system-level design. 
• Develop the ability to integrate the CPU core with 

various interface units in embedded systems. 
• Gain the necessary skills for programming and 

debugging I/O operations to manage peripherals for 
embedded applications. 

Major topics covered: 
• Introduction and review of instruction set and 

assembly language programming, instruction 
execution cycle and timing (4 lectures) 

• C programming for embedded systems (2 lectures) 
• Interrupts and I/O multiplexing (2 lectures)  
• Parallel I/O interface and signal handshaking (1 

lecture) 



• Timers and counters (2 lectures)  
• Serial communication: UART, SPI, and I2C (4 

lectures) 
• Keypad and LCD interfaces (3 lectures) 
• Transducers and sensors, touch panels, A/D-D/A 

converters (3 lectures) 
• Memory devices, SRAM, DRAM, flash memory, 

and SDRAM controller  (3 lectures) 
• Buses, access arbitration, timing, and bus protocols 

(2 lectures) 
Laboratory projects: 

• Introduction project on understanding the 
programming environment on a target development 
board. 

• 3-4 small (1-2 weeks) assignments on programming 
and interfacing with various peripheral units. 

• 2 medium (3-4 weeks) sized projects to build 
applications integrating multiple devices.  

 
 

As shown in the syllabus, the course started with an 
introduction to the ARM architecture and instruction sets. 
We then discussed C programming for embedded systems 
which included accessing I/O registers, bit manipulation, 
C calling convention, and in-line assembly. The students 
used the ARM Software Development Toolkit (ARM 
SDT 2.02u) to develop and debug their assembly/C 
programs in an ARM instruction set simulator called an 
ARMULATOR.  

Following the introduction to ARM architecture and 
programming, we presented the overall architecture of 
MX1 processor and the connection to peripheral 
interfaces. For the I/O interfaces and interrupt signals, we 
started the discussion with the general-purpose 
input/output (GPIO) and handshaking signals. Since most 
I/O functions and peripheral interfaces are multiplexed at 
the I/O pads, the lectures focused on the programming 
techniques for configuring I/O pins and functions. 
Similarly, interrupt multiplexing and configuration 
techniques were discussed, followed by interrupt vectors 
and ISR operations. This allowed us to look into each 
peripheral interface in subsequent lectures. 

The peripheral interfaces covered in the class included 
a timer, pulse-width modulator, UART, SPI, I2C, LCD 
controller, and touch panel controller. The lectures 
addressed the basic design principles, the internal register 
configuration of the peripheral interfaces, and interrupt 
mechanisms. The timing diagrams of the signal 
waveforms at I/O pins were discussed to illustrate the 
interaction of programming model and device operations. 
In addition, the schematics of the MX1ADS development 
board were used to show the connections of MX1 

processor with external interface circuits and devices. 
While discussing LCD and touch panel controllers, the 
lectures also encompassed general raster display devices 
and A/D converters. 

After discussing the selected peripheral interfaces and 
the programming techniques, the lectures focused on the 
memory structure of microprocessor systems. Both the 
abstract model and physical memory architecture of the 
SRAM and DRAM were explored. We paid special 
attention to synchronous DRAM, their timing 
characteristics, and access modes. We used the Micron 
MT48LC32M8A2 as an example of SDRAM. 

The interconnection mechanism of microprocessor 
systems is also an important subject of the course. We 
focused on the bus architecture and the protocols of PC�s 
XT, AT, ISA, and PCI buses. The general bus designs, 
including synchronous/asynchronous, bus arbitration, and 
block transfer were also covered. The final topic covered 
optimization techniques of bus performance such as 
pipelined transfers and split transactions. 

3.3. Hardware Platform for Lab Projects 
Although our goal was to teach the general principles 

of the microcontroller architecture and system design, we 
desired to have a target platform available to students to 
use for experimentation. We decided to use a 32-bit RISC 
platform instead of a traditional 8-bit architecture such as 
the Intel 8051 and Motorola 6811. There were three 
motivating factors in choosing a 32-bit RISC architecture 
over an 8-bit architecture.  First, we wanted to use a 
current technology so that students would be well 
prepared for a career in the embedded systems industry. 
Second, we wanted to introduce multiple peripheral 
devices and bus technologies that were only available on 
32-bit architectures. And finally, we had received a large 
endowment from industry partners to provide equipment 
and classroom support for the 32-bit architecture. 

The target hardware platform had to include a high 
performance SoC microprocessor for which popular 
interfaces were available and configurable. To acquire 
additional support to build the experimental environment, 
we contacted the Motorola�s Dragonball University 
Program, sponsored by Motorola SPS in 2003. The 
University Program considered our approach for 
software/hardware integration as an effective instructional 
method for embedded systems software development, and 
donated thirty Dragonball MX1 development boards 
(MX1ADS) for our lab. Motorola also agreed to provide 
all necessary technical support to expedite the installation 
of lab equipment.  

To facilitate various projects, the SoC-based 
development boards are accompanied with a peripheral 
board on which various devices are installed. Figure 1 



depicts a typical development system that enables 
programming development for different I/O projects.  
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Figure 1. The target development system for lab 

assignment 

3.4. Software Platform for Lab Projects 
Embedded Linux was chosen as the software platform 

on the MX1ADS boards. The fine modularity of Linux 
components allowed us to customize the Linux kernel for 
the course. Only the device drivers required to boot the 
target board were kept in the Embedded Linux build. This 
enabled students to load their drivers as modules. 
Additionally, Linux provided a rich set of freely available 
debugging tools and environments, such as printk, strace, 
gdb, ksymops, and klogd. With MontaVista�s Linux, we 
established the software development environment shown 
in Figure 2. 

Influence from industrial trends also played a 

significant role in our decision to use Linux.  Currently, 
Linux is one of the preferred choices in the embedded 
system industry due to the availability of kernel source 
code without loyalties.  This has lead toward recent trends 
of Linux becoming a dominant platform in embedded 
controllers. According to a survey conducted by the 
Venture Development Corporation, the estimated 
worldwide shipments of embedded Linux operating 
systems, add-on components, and related services reached 

over $60.0 million in 2003.  This number is projected to 
reach over $115 million in 2006 [4]. 

In the target environment, students test their software 
components to manage peripheral devices. Since the I/O 
addresses are a part of the kernel address space and are 
protected, software components are developed as loadable 
device drivers modules. User applications use the drivers 
through standard file operations such as open, close, read, 
write, and ioctl. Interrupt service routines can also be 
registered as the modules are installed. This approach is 
quite attractive since the software for hardware interfaces 
are modular and embedded as a part of the operating 
system to support user applications. For students who 
have not taken any operating system courses, it may be 
challenging to comprehend the software structure and 
kernel APIs, and to develop kernel modules.  

 

Figure 3. A pseudo driver for exercising kernel I/O 
address space and interrupts 

To assist students with Linux specific driver 
development, we provided several example driver 
modules to illustrate the interactions between user 
applications and device drivers. One example is a pseudo 
driver, shown in Figure 3, which allows a user application 
to access memory locations in the I/O address space. 
When read or write functions are called, a command 
structure consisting of an I/O address and a data field is 
passed from the user application to the driver. The driver 
then reads from or writes to the I/O address. Hence, the 
student�s application program can manipulate and access 
various control and status registers of peripheral 
controllers. To illustrate interrupt-driven data transfer, we 
added a ring buffer in the pseudo driver with which I/O 
data can be saved for subsequent read calls. Blocked 
driver function calls and the interaction with ISRs are 
demonstrated using a wait queue, interruptible_sleep_on, 
and wake_up_interruptible kernel functions. In addition, 
the pseudo driver makes use of asynchronous notification 
to emulate interrupts to user application programs. An 
ISR can invoke kill_fasync to signal a user application 
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handler once it is registered. The signal handler can then 
take an action or pass the status changes to the main 
program. This pseudo driver also provides a great 
example to build character device drivers for some 
peripheral devices.  

3.5. Sample Projects 
To reduce the learning curve on Linux device driver 

development models and Linux kernel application 
programming interfaces (API), we provided a driver 
framework for each assignment. This allowed the students 
to concentrate on writing the hardware/software interface 
code rather than worrying about Linux�s internal device 
driver interface. For example, the following segment of 
code is part of the driver framework we provided to 
students to develop a timer driver.  
 
int init_module() 
{ 
    int result;                                                                                                                                                                                                                                                                 
    /* register our character device */ 
    result = register_chrdev(IO_major, driverName,  &IOBridge_fops); 
                                                                                                                                              
    if (result < 0) { 
        printk("<1>%s: Can't get major %d\n", driverName, IO_major); 
        return result; 
    } 
                                                                                                                                              
    if (IO_major == 0) 
    { 
        IO_major = result; 
    } 
    
    // initialize hardware timer 
    timer_init(); 
          
    // Register timer interrupt from the kernel. 
    if (request_irq(TIMER_IRQ, timerISR, 0, "Timer2", NULL)) { 
        printk("<1> Unable to get IRQ for Timer 2\n"); 
      unregister_chrdev(IO_major, driverName); 
        return -EBUSY; 
    }                                                                                                                                                                                                                                                                    
    return 0; 
} 
 
void cleanup_module()  /* This function is called when we do rmmod. */ 
{ 
    printk("<1>Freed %s\n", driverName); 
    free_irq(TIMER_IRQ, NULL); 
    unregister_chrdev(IO_major, driverName); 
} 
 
void timer_init() { 
} 
 
void timerISR(int irq, void *dev_id, struct pt_regs *reg) { 
} 

In terms of projects, the platform enabled many 
development assignments with peripheral device 
controllers and hardware configurations. The following 
lists some sample projects given in the Fall of 2004. 

1. Measurement of execution of the CRC-32 procedure 
with a hardware timer. The measurement was done in 
the eLinux environment on MX1ADS target board 
using MontaVista�s DevRocket IDE on a Windows PC 
or Linux workstation.  

2. Development of an interrupt-driven mouse driver for a 
serial mouse. The project employed a Microsoft 2-
button serial mouse (Version 2.0A) attached to UART 
serial port. The driver compiles three mouse 
movement data packages and then reports any 
movement to the user applications.  

3. Development of a driver for an external memory 
device. A Microchip 25LC640 EEPROM which 
consisted of 256 32-byte pages (or blocks) was used. 
The EEPROM contained an SPI interface. Hence, all 
commands and data transfer operations are done via a 
SPI bus controller. The project introduced students to 
the important concept of timing in device driver 
programming. 

For the first project, we provided a Linux character 
driver capable of writing and reading registers on the 
target board.  The students were tasked with developing 
an application to measure the execution time of a given 
program by using the hardware timer. This assignment 
introduced students to the Linux device driver model and 
software-hardware interface.  

Next, the serial mouse driver project allowed students 
to apply their theoretical understanding of UART to 
develop an interrupt driven mouse driver. The driver uses 
an asynchronous I/O signal to communicate between the 
application and device driver in the kernel. We provided a 
framework for asynchronous I/O implementation in the 
Linux device driver. 

The overall goal of the assignments was to reinforce 
classroom learning by providing the students with 
interesting projects. This gave them a greater 
understanding of theoretical concepts and a feeling of 
satisfaction upon completion of the projects [2]. 

4. Outcome and Evaluation 
At the end of the semester, we surveyed the students 

about their learning experience. Twenty-eight out of 
forty-four students responded to the survey (64%). The 
survey questions are grouped into five categories: C 
programming, the Linux development environment, 
system architecture and system-level design, peripherals 
and projects, and overall satisfaction. 

According to the survey, over 80% of the students 
agreed their understanding of C programming language 
has increased and that they were comfortable with 
developing device drivers using C. Even though the 
students were not familiar with the tools and development 
platform we used in class, we found that they were able to 



learn them quickly. About 73% of the students suggested 
that they were able to use the tools effectively at the end 
of semester. 

The most challenging issue was the lack of proficiency 
in C programming and Linux development environments. 
We are planning to integrate a Linux environment in some 
prerequisite classes and add more emphasis on C in basic 
programming courses in the future. 

5. Conclusion 
Similar to many computer engineering curriculums, 

the microprocessor system design course at ASU has 
focused on teaching hardware/software interfacing and 
the management of peripheral devices. The previous 
approach of using assembly language and 
microcontroller-based platforms had been in place for 
more than a decade. It allowed the students to appreciate 
machine level processor operations and hand optimization 
to achieve the efficiency of assembly programs. However, 
with the advent of modern software development tools 
and the wide-spread use of embedded systems 
applications, a change in course material becomes 
inevitable. 

There are a few important initiatives used in our 
approach for the microprocessor system design course. 
First, the use of assembly language for software 
development to control peripheral interfaces should be 
minimized. Students must be able to assess the cases 
where the use of assembly code can be justified.  This 
would include encapsulating assembly code in well-
defined interfaces and incorporating the code in software 
components as required. Second, the use of a broad set of 
peripheral interfaces including serial buses, LCD 
controller, touch panel, and data acquisition should be 
introduced. Finally, a practical software development and 
execution environment should be utilized so that students 
can gain familiarity with modern tools to build structured 
software components for embedded applications. 

With these initiatives, the microprocessor system 
design course was transformed and introduced in the Fall 
of 2004. It was anticipated that knowledge gaps would 
exist in some of the prerequisite courses.  Hence, we 
assumed that students may encounter difficulty with the 
required learning curve. However, we were surprised and 
satisfied with students� reception to the course. In general, 
students were excited about the new course structure, the 
updated learning environment, and the challenging 
projects, although complaints over the large amount of 
manuals and data sheets still existed. Overall, we believe 
this course was successful and we look forward to the 
development of the more advanced courses in the 
Embedded Systems curriculum. 
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