
Teaching Microprocessor Systems Design Using a SoC and Embedded Linux
Platform 1

Yann-Hang Lee and Aung Oo

Department of Computer Science & Engineering
Arizona State University

yhlee@asu.edu, aung.oo@asu.edu

Abstract

In traditional microprocessor systems design courses,
students learn to develop assembly language programs to
control peripherals, handle interrupts, and perform I/O
operations. We adopt a 32-bit StrongARM architecture on
the Motorola MX1ADS board with Embedded Linux to
present a modern microprocessor system design course.
With this new platform, we use a high-level language to
develop projects that accelerate the students� learning
curve. Embedded Linux also provides the necessary
flexibility and tool set required for students to debug their
own projects. Our students' responded very positively to
this change. They were excited about the renewed course
structure, the updated learning environment, and the
challenging projects.

1. Introduction
Embedded systems are designed for dedicated

applications running in control systems. The unique
feature of such systems is the capability to perform timely
and predictable operations in response to concurrent
requests arriving from the external environment. To create
an effective embedded system one must properly employ
the appropriate system architecture, hardware/software
interfaces, peripheral devices, and software components.
Currently, embedded systems companies are facing with a
shortage of engineers having the appropriate skills to
respond to market opportunities [8]. Therefore, embedded
software engineering has emerged as a key element for
curriculums in Computer Science, Computer Engineering,
and Electrical Engineering at universities throughout the
world.

To teach the subject of software/hardware integration
and I/O interfaces, undergraduate computer science and
engineering programs incorporate a microprocessor

 1 This course development project is supported in part by NSF
Educational Innovation Grant EIA-0122600, the Consortium for
Embedded and Inter-Networking Technologies (CEINT), and
Motorola University Program.

system and applications course. In the course, students
develop assembly language programs to control
peripherals, handle interrupts, and perform I/O operations.
Then students perform experiments with a target single-
board microprocessor system integrated with typical
interface circuits such as programmable timers, serial
ports and parallel ports. Unfortunately, this approach fails
to keep pace with industry technology. This lag is
prompted by the advent of rapid prototyping development
of microelectronic systems that includes:

a. SoC-based platforms for embedded applications:
The system-on-a-chip (SoC) devices have made great
progress along with the ever-growing number of
transistors that can be integrated on a chip.

b. Abundant I/O interfaces: Besides programmable
timers, serial ports, and parallel ports, there are several
new I/O standards designed for human interfaces,
multimedia, networking, and inter-IC/device
communication.

c. I/O programming with high-level languages: For
software portability, modularity, and readability, high-
level programming languages have been used in all levels
of software development. An appropriate use of
programming languages and software structures often
leads to reusable embedded software.

 Our traditional computer engineering curriculum also
taught relatively outdated techniques in the subjects of
software/hardware integration and interface. The
�Microprocessor System Design� course emphasizes
assembly language programming and exercises only a
limited number of I/O interfaces. The course falls short in
addressing state-of-the-art interfacing technology and
emerging applications.

In our curriculum development project sponsored by
the NSF EIA program, we redesigned the microprocessor
system design class. Our goals were to provide a learning
environment which aligned with emerging technology and
improved the effectiveness of instruction. We also
developed a laboratory environment which incorporated
cutting-edge programming approaches to manage
hardware components in SoC platforms. This renewed
course goes beyond the inclusion of various interfaces and
devices. The course focuses on the appropriate software

structures using a mixture of high-level and assembly
language programming, I/O operations in modern
operating systems, and reusable software components.

In this paper, we will explore the challenges and
successes we encountered in implementing this new
microprocessor system design class. The course serves as
the first of three embedded system courses in our
curriculum. Section 2 presents background information on
the embedded system curriculum at Arizona State
University (ASU). In Section 3, we will present the new
course design followed by the course objectives, the
course material and the setup of the laboratory
environment for programming projects. Section 4 will
cover some of our lessons learned and feedback from our
students. In Section 5 we conclude our discussion.

2. Background
ASU, Motorola, and Intel formed a not-for-profit

Consortium for Embedded and Inter-Networking
Technologies (CEINT) in 2001 [3]. CEINT developed an
infrastructure to support a strong curriculum in embedded
systems. The end product was a concentrated path in
Computer Systems Engineering, which consisted of an
Embedded Systems Development, Embedded Systems
Engineering, and Embedded Systems Capstone course
[1].

We wanted to provide students with the opportunity to
learn practical development techniques using the
Embedded Systems Development course. To accomplish
this goal, we chose Motorola MX1ADS boards using
MontaVista�s HardHat Linux Toolkit. Although we
discussed both assembly level and high level
programming development, C was the main language
used for developing projects. This particular combination
of programming language, development environment, and
microcontroller architecture is rare for an introductory
level embedded systems class.

At the same time, the students were challenged to get
quickly up to speed on the fundamentals required to use
the new development environment and tools. Most of the
students did not have strong backgrounds in developing
software for Linux. To lessen this steep learning curve,
we provided laboratory demonstrations and walked
through simple development projects in small groups.
We also provided online tutorials, sample Linux drivers,
and low level C code examples for students to study.

In this course, we introduced students to memory
devices, memory controllers, buses, handling interrupts,
DMA, timers, counters, UART, SPI, I2C, parallel I/O,
keypad, LCD, touch panels, and A/D - D/A converters.
The students also developed device drivers for timers,
PWM, UART, gpio, and SPI eeprom as class projects.
Other available features such as watchdog timer, blue

tooth technology, USB, and CMOS sensors were left for
more advanced courses in the sequence.

Assembly language teaches the students about the
detailed architecture of the hardware. This gives students
an appreciation for high level constructs implemented in
assembly language [2]. However, implementing all
software programs in assembly language neither practical
nor desired. In fact, assembly-language programming is
no longer the best choice for developing embedded
systems, due to the availability of excellent compilers and
the rising complexity of software projects [6][9].

3. Course Design
3.1. Course Objectives

The objectives of the course are to familiarize the
students with hardware-software interfaces, hardware
designs of microprocessor systems and peripheral devices
and their communication protocols. Students work at
acquiring technical knowledge and applying this
knowledge to the development of programs for
controlling peripheral devices and interfaces. Thus, the
students learn to analyze and synthesize suitable solutions
for building integrated hardware/software systems capable
of interacting with external world.

3.2. Course Content
The revamped course places emphasis on

software/hardware integration and I/O programming, the
incorporation of the state-of-the-art SoC platforms, and
emerging embedded system development tools. Our plan
is to gear the integration of hardware modules to construct
embedded systems and the programming models and
characteristics of various I/O interfaces and peripherals.
The course syllabus is established as follows:

Course Syllabus: Microprocessor System Design

Course Goals:
• Develop an understanding for using a CPU core as a

component in system-level design.
• Develop the ability to integrate the CPU core with

various interface units in embedded systems.
• Gain the necessary skills for programming and

debugging I/O operations to manage peripherals for
embedded applications.

Major topics covered:
• Introduction and review of instruction set and

assembly language programming, instruction
execution cycle and timing (4 lectures)

• C programming for embedded systems (2 lectures)
• Interrupts and I/O multiplexing (2 lectures)
• Parallel I/O interface and signal handshaking (1

lecture)

• Timers and counters (2 lectures)
• Serial communication: UART, SPI, and I2C (4

lectures)
• Keypad and LCD interfaces (3 lectures)
• Transducers and sensors, touch panels, A/D-D/A

converters (3 lectures)
• Memory devices, SRAM, DRAM, flash memory,

and SDRAM controller (3 lectures)
• Buses, access arbitration, timing, and bus protocols

(2 lectures)
Laboratory projects:

• Introduction project on understanding the
programming environment on a target development
board.

• 3-4 small (1-2 weeks) assignments on programming
and interfacing with various peripheral units.

• 2 medium (3-4 weeks) sized projects to build
applications integrating multiple devices.

As shown in the syllabus, the course started with an
introduction to the ARM architecture and instruction sets.
We then discussed C programming for embedded systems
which included accessing I/O registers, bit manipulation,
C calling convention, and in-line assembly. The students
used the ARM Software Development Toolkit (ARM
SDT 2.02u) to develop and debug their assembly/C
programs in an ARM instruction set simulator called an
ARMULATOR.

Following the introduction to ARM architecture and
programming, we presented the overall architecture of
MX1 processor and the connection to peripheral
interfaces. For the I/O interfaces and interrupt signals, we
started the discussion with the general-purpose
input/output (GPIO) and handshaking signals. Since most
I/O functions and peripheral interfaces are multiplexed at
the I/O pads, the lectures focused on the programming
techniques for configuring I/O pins and functions.
Similarly, interrupt multiplexing and configuration
techniques were discussed, followed by interrupt vectors
and ISR operations. This allowed us to look into each
peripheral interface in subsequent lectures.

The peripheral interfaces covered in the class included
a timer, pulse-width modulator, UART, SPI, I2C, LCD
controller, and touch panel controller. The lectures
addressed the basic design principles, the internal register
configuration of the peripheral interfaces, and interrupt
mechanisms. The timing diagrams of the signal
waveforms at I/O pins were discussed to illustrate the
interaction of programming model and device operations.
In addition, the schematics of the MX1ADS development
board were used to show the connections of MX1

processor with external interface circuits and devices.
While discussing LCD and touch panel controllers, the
lectures also encompassed general raster display devices
and A/D converters.

After discussing the selected peripheral interfaces and
the programming techniques, the lectures focused on the
memory structure of microprocessor systems. Both the
abstract model and physical memory architecture of the
SRAM and DRAM were explored. We paid special
attention to synchronous DRAM, their timing
characteristics, and access modes. We used the Micron
MT48LC32M8A2 as an example of SDRAM.

The interconnection mechanism of microprocessor
systems is also an important subject of the course. We
focused on the bus architecture and the protocols of PC�s
XT, AT, ISA, and PCI buses. The general bus designs,
including synchronous/asynchronous, bus arbitration, and
block transfer were also covered. The final topic covered
optimization techniques of bus performance such as
pipelined transfers and split transactions.

3.3. Hardware Platform for Lab Projects
Although our goal was to teach the general principles

of the microcontroller architecture and system design, we
desired to have a target platform available to students to
use for experimentation. We decided to use a 32-bit RISC
platform instead of a traditional 8-bit architecture such as
the Intel 8051 and Motorola 6811. There were three
motivating factors in choosing a 32-bit RISC architecture
over an 8-bit architecture. First, we wanted to use a
current technology so that students would be well
prepared for a career in the embedded systems industry.
Second, we wanted to introduce multiple peripheral
devices and bus technologies that were only available on
32-bit architectures. And finally, we had received a large
endowment from industry partners to provide equipment
and classroom support for the 32-bit architecture.

The target hardware platform had to include a high
performance SoC microprocessor for which popular
interfaces were available and configurable. To acquire
additional support to build the experimental environment,
we contacted the Motorola�s Dragonball University
Program, sponsored by Motorola SPS in 2003. The
University Program considered our approach for
software/hardware integration as an effective instructional
method for embedded systems software development, and
donated thirty Dragonball MX1 development boards
(MX1ADS) for our lab. Motorola also agreed to provide
all necessary technical support to expedite the installation
of lab equipment.

To facilitate various projects, the SoC-based
development boards are accompanied with a peripheral
board on which various devices are installed. Figure 1

depicts a typical development system that enables
programming development for different I/O projects.

Dragonball
MX1

LCD

Touch panelKeyboard
(PS2 serial
interface)

Mouse
(USB interface)

Serial EPROM
(SPI interface)

Serial EPROM
(I2C interface)

CMOS video
sensor

SDRAM Flash memory
(for booting)

GPIO to
digital/analog

converter

Development board

Dragonball
MX1

LCD

Touch panelKeyboard
(PS2 serial
interface)

Mouse
(serial interface)

Serial EPROM
(SPI interface)

Serial EPROM
(I2C interface)

CMOS video
sensor

SDRAM Flash memory
(for booting)

GPIO to
digital/analog

converter

Development board

Dragonball
MX1

LCD

Touch panelKeyboard
(PS2 serial
interface)

Mouse
(USB interface)

Serial EPROM
(SPI interface)

Serial EPROM
(I2C interface)

CMOS video
sensor

SDRAM Flash memory
(for booting)

GPIO to
digital/analog

converter

Development board

Dragonball
MX1

LCD

Touch panelKeyboard
(PS2 serial
interface)

Mouse
(serial interface)

Serial EPROM
(SPI interface)

Serial EPROM
(I2C interface)

CMOS video
sensor

SDRAM Flash memory
(for booting)

GPIO to
digital/analog

converter

Development board

Figure 1. The target development system for lab

assignment

3.4. Software Platform for Lab Projects
Embedded Linux was chosen as the software platform

on the MX1ADS boards. The fine modularity of Linux
components allowed us to customize the Linux kernel for
the course. Only the device drivers required to boot the
target board were kept in the Embedded Linux build. This
enabled students to load their drivers as modules.
Additionally, Linux provided a rich set of freely available
debugging tools and environments, such as printk, strace,
gdb, ksymops, and klogd. With MontaVista�s Linux, we
established the software development environment shown
in Figure 2.

Influence from industrial trends also played a

significant role in our decision to use Linux. Currently,
Linux is one of the preferred choices in the embedded
system industry due to the availability of kernel source
code without loyalties. This has lead toward recent trends
of Linux becoming a dominant platform in embedded
controllers. According to a survey conducted by the
Venture Development Corporation, the estimated
worldwide shipments of embedded Linux operating
systems, add-on components, and related services reached

over $60.0 million in 2003. This number is projected to
reach over $115 million in 2006 [4].

In the target environment, students test their software
components to manage peripheral devices. Since the I/O
addresses are a part of the kernel address space and are
protected, software components are developed as loadable
device drivers modules. User applications use the drivers
through standard file operations such as open, close, read,
write, and ioctl. Interrupt service routines can also be
registered as the modules are installed. This approach is
quite attractive since the software for hardware interfaces
are modular and embedded as a part of the operating
system to support user applications. For students who
have not taken any operating system courses, it may be
challenging to comprehend the software structure and
kernel APIs, and to develop kernel modules.

Figure 3. A pseudo driver for exercising kernel I/O
address space and interrupts

To assist students with Linux specific driver
development, we provided several example driver
modules to illustrate the interactions between user
applications and device drivers. One example is a pseudo
driver, shown in Figure 3, which allows a user application
to access memory locations in the I/O address space.
When read or write functions are called, a command
structure consisting of an I/O address and a data field is
passed from the user application to the driver. The driver
then reads from or writes to the I/O address. Hence, the
student�s application program can manipulate and access
various control and status registers of peripheral
controllers. To illustrate interrupt-driven data transfer, we
added a ring buffer in the pseudo driver with which I/O
data can be saved for subsequent read calls. Blocked
driver function calls and the interaction with ISRs are
demonstrated using a wait queue, interruptible_sleep_on,
and wake_up_interruptible kernel functions. In addition,
the pseudo driver makes use of asynchronous notification
to emulate interrupts to user application programs. An
ISR can invoke kill_fasync to signal a user application

User Space

�.
sig
handler
sig mask
sig
pending
�.

Register signal
handler with task

structure Task structure
for the user

process

Kernel Space

Core Kernel

Device driver
module with

registered IRQ

IRQs

memory-
mapped

IO�s

Asynchronou
s signals

Register user
process for

signaling and
read/write to

IO�s
Signal

Handler(s)

Application
code

buffers

interrupts

Host PC workstation

ARM elf
gcc cross-
compiler

Embedded Linux

MontaVista IDE

cygwin
GDB Server

Target MX1 ADS

Applications

Windows

GDB
debugger

DB MX1 ADS board
support package

Figure 2. The target software development environment
for MX1 ADS

handler once it is registered. The signal handler can then
take an action or pass the status changes to the main
program. This pseudo driver also provides a great
example to build character device drivers for some
peripheral devices.

3.5. Sample Projects
To reduce the learning curve on Linux device driver

development models and Linux kernel application
programming interfaces (API), we provided a driver
framework for each assignment. This allowed the students
to concentrate on writing the hardware/software interface
code rather than worrying about Linux�s internal device
driver interface. For example, the following segment of
code is part of the driver framework we provided to
students to develop a timer driver.

int init_module()
{
 int result;
 /* register our character device */
 result = register_chrdev(IO_major, driverName, &IOBridge_fops);

 if (result < 0) {
 printk("<1>%s: Can't get major %d\n", driverName, IO_major);
 return result;
 }

 if (IO_major == 0)
 {
 IO_major = result;
 }

 // initialize hardware timer
 timer_init();

 // Register timer interrupt from the kernel.
 if (request_irq(TIMER_IRQ, timerISR, 0, "Timer2", NULL)) {
 printk("<1> Unable to get IRQ for Timer 2\n");
 unregister_chrdev(IO_major, driverName);
 return -EBUSY;
 }
 return 0;
}

void cleanup_module() /* This function is called when we do rmmod. */
{
 printk("<1>Freed %s\n", driverName);
 free_irq(TIMER_IRQ, NULL);
 unregister_chrdev(IO_major, driverName);
}

void timer_init() {
}

void timerISR(int irq, void *dev_id, struct pt_regs *reg) {
}

In terms of projects, the platform enabled many
development assignments with peripheral device
controllers and hardware configurations. The following
lists some sample projects given in the Fall of 2004.

1. Measurement of execution of the CRC-32 procedure
with a hardware timer. The measurement was done in
the eLinux environment on MX1ADS target board
using MontaVista�s DevRocket IDE on a Windows PC
or Linux workstation.

2. Development of an interrupt-driven mouse driver for a
serial mouse. The project employed a Microsoft 2-
button serial mouse (Version 2.0A) attached to UART
serial port. The driver compiles three mouse
movement data packages and then reports any
movement to the user applications.

3. Development of a driver for an external memory
device. A Microchip 25LC640 EEPROM which
consisted of 256 32-byte pages (or blocks) was used.
The EEPROM contained an SPI interface. Hence, all
commands and data transfer operations are done via a
SPI bus controller. The project introduced students to
the important concept of timing in device driver
programming.

For the first project, we provided a Linux character
driver capable of writing and reading registers on the
target board. The students were tasked with developing
an application to measure the execution time of a given
program by using the hardware timer. This assignment
introduced students to the Linux device driver model and
software-hardware interface.

Next, the serial mouse driver project allowed students
to apply their theoretical understanding of UART to
develop an interrupt driven mouse driver. The driver uses
an asynchronous I/O signal to communicate between the
application and device driver in the kernel. We provided a
framework for asynchronous I/O implementation in the
Linux device driver.

The overall goal of the assignments was to reinforce
classroom learning by providing the students with
interesting projects. This gave them a greater
understanding of theoretical concepts and a feeling of
satisfaction upon completion of the projects [2].

4. Outcome and Evaluation
At the end of the semester, we surveyed the students

about their learning experience. Twenty-eight out of
forty-four students responded to the survey (64%). The
survey questions are grouped into five categories: C
programming, the Linux development environment,
system architecture and system-level design, peripherals
and projects, and overall satisfaction.

According to the survey, over 80% of the students
agreed their understanding of C programming language
has increased and that they were comfortable with
developing device drivers using C. Even though the
students were not familiar with the tools and development
platform we used in class, we found that they were able to

learn them quickly. About 73% of the students suggested
that they were able to use the tools effectively at the end
of semester.

The most challenging issue was the lack of proficiency
in C programming and Linux development environments.
We are planning to integrate a Linux environment in some
prerequisite classes and add more emphasis on C in basic
programming courses in the future.

5. Conclusion
Similar to many computer engineering curriculums,

the microprocessor system design course at ASU has
focused on teaching hardware/software interfacing and
the management of peripheral devices. The previous
approach of using assembly language and
microcontroller-based platforms had been in place for
more than a decade. It allowed the students to appreciate
machine level processor operations and hand optimization
to achieve the efficiency of assembly programs. However,
with the advent of modern software development tools
and the wide-spread use of embedded systems
applications, a change in course material becomes
inevitable.

There are a few important initiatives used in our
approach for the microprocessor system design course.
First, the use of assembly language for software
development to control peripheral interfaces should be
minimized. Students must be able to assess the cases
where the use of assembly code can be justified. This
would include encapsulating assembly code in well-
defined interfaces and incorporating the code in software
components as required. Second, the use of a broad set of
peripheral interfaces including serial buses, LCD
controller, touch panel, and data acquisition should be
introduced. Finally, a practical software development and
execution environment should be utilized so that students
can gain familiarity with modern tools to build structured
software components for embedded applications.

With these initiatives, the microprocessor system
design course was transformed and introduced in the Fall
of 2004. It was anticipated that knowledge gaps would
exist in some of the prerequisite courses. Hence, we
assumed that students may encounter difficulty with the
required learning curve. However, we were surprised and
satisfied with students� reception to the course. In general,
students were excited about the new course structure, the
updated learning environment, and the challenging
projects, although complaints over the large amount of
manuals and data sheets still existed. Overall, we believe
this course was successful and we look forward to the
development of the more advanced courses in the
Embedded Systems curriculum.

6. References
[1] Gerald C. Gannod, et. al., �A Consortium-based Model for

the Development of a Concentration Track in Embedded
Systems�, Proceeding of the 2002 American Society for
Engineering Education Annual Conference & Exposition.

[2] Chris Hudson, �Teaching Microcontroller Technology �
learning through play�, IEEE International Symposium on
Engineering Education: Innovation in Teaching, Learning
and Assessment, Volume: Day 1, 4 January 2001.

[3] David C. Pheanis, �CEINT Internship Program�, 33rd
ASEE/IEEE Frontiers in Education Conference, November
2003.

[4] Chris Lanfear, Steve Balacco, �The Embedded Software
Strategic Market Intelligence Program, 2004�, Venture
Development Corporation, July 2004.

[5] Seongsoo Hong, �Embedded Linux Outlook in the PostPC
Industry�, Proceeding of the Sixth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, 2003.

[6] Frank Vahid, �Embedded System Design: UCR's
Undergraduate Three-Course Sequence�, Proceedings of
the 2003 IEEE International Conference on
Microelectronic Systems Education, 2003

[7] Naehyuck Chang and Ikhwan Lee, �Embedded System
Hardware Design Course Track for CS Studnets�,
Proceeding of the 2003 IEEE International Conference on
Microelectronic Systems Education, 2003.

[8] Shlomo Pri-Tal, John Robertson, Ben Huey, �An Arizona
Ecosystem for embedded Systems�, IEEE International
Conference on Performance, Computing, and
Communications, 4-6 April 2001.

[9] Konstantin Boldyshev, �Linux Assembly HOWTO,�
http://www.linuxselfhelp.com/HOWTO/Assembly-
HOWTO/index.html.

