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Abstract 

 
The increasing complexity of embedded systems 

parallels the difficulty of adequately preparing students 
to design them. Two topics key to the success of a 
graduate in the area of embedded systems are 
hardware/software co-design and real-time computing. 
This paper serves as a case study describing how an 
undergraduate applied hardware/software co-design in 
the design of a spectrum analyzer with real-time 
constraints for a Capstone senior design project.  The 
goal of this work is to produce a co-design approach 
more suited for undergraduates having little design 
experience.   

1.   Introduction 
 

How can we prepare our electrical and computer 
engineering students to design embedded systems? 
There is so much material to cover at the undergraduate 
level it hardly seems possible to adequately prepare 
students for a career in embedded systems 
development. Thus, educators are faced with the 
difficult task of selecting a subset of critical topics to 
include in their curriculum. Two critical topics are 
hardware/software (HW/SW) co-design and real-time 
computing. In spring 2004 The University of Alabama 
offered for the first time an embedded systems class at 
the undergraduate level. An educational result of this 
course was the design of a spectrum analyzer with real-
time constraints which was successfully completed 
December 2004 as a Capstone Design project. This 
paper is an examination of how HW/SW co-design was 
employed in an undergraduate design class.  
Completion of such a project suggests that a student is 
well prepared for a career in embedded systems 
development.  The remainder of this paper is organized 
as follows.  First, some background material is 
presented describing HW/SW co-design.  Traditional 
implementations are presented that lead to a 

customized implementation implemented by the 
author.  A short description is then given about the 
specific design project undertaken in this effort.  This 
is followed by a detailed description of the custom 
HW/SW co-design technique as applied to this specific 
project.  Finally some conclusions and observations are 
made.   
 
2. Background 
 

Hardware/software co-design is a design 
methodology which exploits the synergism of hardware 
and software through their concurrent design [1] and 
achieves this by delaying the allocation decision. 
Hence, as much as possible is known about the system 
prior to allocating pieces of the system to the hardware 
or software domains. This methodology has two 
primary advantages; more time to evaluate tradeoffs 
and it creates better hardware/software interfaces. 
However, it requires engineers to be familiar with both 
hardware and software caveats. Any design 
methodology should: 
• provide a checklist for the design process 
• facilitate the communication of design team 

members 
• help to predict costs 
• aid in the creation of a working prototype 
• aid in the creation of a timeline for the 

development cycle 
• help with the identification of metrics 
• aid with requirements specification, and 
• assist with the development of test procedures. 
 

The goal of HW/SW co-design is to do all of these 
things as well as allow designers to “predict” 
implementation, “incrementally refine” a design over 
“multiple levels of abstraction”, and create a “working 
first implementation” [2]. HW/SW co-design is a 
cyclic design methodology. Implementations of 
HW/SW co-design are as varied as embedded systems 



themselves. Institutions and individuals tailor the 
methodology to fit their application and institutional 
framework. All these different implementations make it 
difficult to apply co-design, especially for an 
undergraduate student having limited design 
experience.  An implementation of HW/SW co-design 
suitable for an undergraduate applying it (the 
methodology) for the first time was needed. To meet 
this requirement a custom version (shown in Figure 4) 
based upon Wolf’s and Axelsson’s descriptions of 
HW/SW co-design was created [2, 4].  

Wolf’s and Axelsson’s implementations of HW/SW 
co-design are presented here for reference and 
comparison to the author’s version.  In [2], Wolf 
divides co-design into four major tasks: 
• partitioning the function to be implemented into 

smaller, interacting pieces; 
• allocating those partitions to microprocessors or 

other hardware units, where the function may be 
implemented directly in hardware or in software 
running on a microprocessor; 

• scheduling the times at which functions are 
executed, which is important when several 
functional partitions share one hardware unit; 

• mapping a generic functional description into an 
implementation on a particular set of 
components, either as software suitable for a 
given processor or logic which can be 
implemented from the given hardware libraries. 

 
In [3] Wolf also describes HW/SW co-design in the 

following way: “Front end activities such as 
specification and architecture simultaneously consider 
hardware and software aspects. Similarly, back-end 
integration and testing consider the entire system. In 
the middle, however, development of hardware and 
software components can go on relatively 
independently – while testing of one will require stubs 
of the other, most of the hardware and software work 
can proceed relatively independently” [3]. A block 
diagram of the co-design process from [3] is shown in 
Figure 1.  Wolf’s two descriptions of HW/SW co-
design are very different, yet they both demonstrate the 
core concept of delayed allocation. 

Though the cyclic nature of co-design is missing 
from Figure 1, it is demonstrated in Axelsson’s 
diagram shown in Figure 2. The structure of Figure 2 
also emphasizes the delayed allocation decision by 
including allocation as a separate task in the design 
flow diagram.  Axelsson [4] defines the tasks in his 
figure as follows: 
• System behavioral description, giving an 

executable specification of what the system is 
supposed to do. 

 
 

Figure 1.  A simple HW/SW co-design methodology [3]. 
 
 

 
 

Figure 2. Axelsson’s diagram of HW/SW Co-design [4]. 
  
• Hardware architecture selection, describing 

what hardware components should be used and 
how they should be connected. 

• Partitioning, deciding which parts of the system 
behavior should be realized by what parts of the 
hardware architecture. 

 
Please note that Axelsson’s use of the term partitioning 
is analogous to our use of allocation thus far.  

Figure 3 is a comparison of Axelsson’s design flow 
diagram and a typical top-down model. This figure 
illustrates the advantage of a detailed behavioral 
description that is domain independent; the more 
information known about a system prior to hardware 
architecture selection the better. 

 



 
 

                                                     HW/SW Co-Design                                    Top-Down 
 

Figure 3.  Axelsson’s diagram versus a typical top-down model. 
 
 

Figure 4 shows the author’s flow diagram for HW/SW 
co-design.  The nomenclature used here is slightly 
different from that of Wolf and Axelsson.  
• Specification, usually consists of a collection of 

metrics, both functional and non-functional, 
which provide a precise description of the top-
level system attributes and requirements. 
Examples of metrics include throughput, 
latency, unit cost, NRE cost, power 
consumption, maintainability, and time-to-
market.  

• Partitioning is the action of breaking the system 
functionality into small domain-independent, 
concurrent and interacting/communicating 
processes. The size of the processes is called the 
granularity. The result of the partitioning step 
should be a fully defined behavioral description 
of the system, with well defined interfaces 
between processes. Performance requirements 
for the processes such as frequency, throughput, 
and latency should also be defined. 

• Allocation is the action of assigning each 
process to either the hardware domain or the 
software domain. Communication bandwidth 
alternatives/limitations between hardware and 
software should be considered. For example, 
two processes exchanging lots of data frequently 
would likely best exist in the same domain. 

• Hardware Architecture means describing what 
hardware components should be used and how 
they should be connected [4] to support the 
execution of the processes.  

• Mapping is the selection of specific hardware 
components and mapping the processes onto 
parts of the hardware architecture. This includes 
mapping processes from the software domain to 
the processor(s) on which they will be executed. 
Much consideration should be given to the 
execution requirements of the processes. 
Manufacturability should be considered during 
component selection. 

• Synthesis is the implementation of the hardware 
and software processes for the selected 
hardware. 

• Integration is the recombination and testing of 
processes and interfaces after implementation. 

• Scheduling is the assignment of resources to all 
system processes such that their execution 
requirements are satisfied including inter-
process communication dependencies.  

 
Those who are familiar with HW/SW co-design may 

not see the need to break the design process down into 
this many steps.  However, undergraduates find this 
decomposition beneficial because it requires one to 
think about each step separately and consider trade-offs 
that may not have otherwise be considered. Figure 5 
shows how this design flow compares to Axelsson’s.  
Allocation is placed above hardware architecture 
because the allocation process provides helpful 
intuition going into the hardware architecture selection. 
This was done even though the first hardware 
architecture selection usually causes some immediate 
feedback into the allocation. 



 
 

Figure 4.  Customized diagram of HW/SW co-design. 
Dashed arrows indicate feedback paths that may not 

occur in every design. 
 

Scheduling appears near the end of the design process, 
though a system schedule is defined in the partitioning 
step and considered throughout the design process.  
The finer granularity of the design tasks makes them 
more manageable for an undergraduate without much 
intuition gained through experience. The direct 
correlation to the definitions listed above serve as a 
reference to keep the student on track during each 
design task.  For these reasons this design flow is 
believed to be much more accessible to undergraduates 
applying HW/SW co-design for the first time. The 
remainder of this paper is a case study of how this 
customized HW/SW co-design methodology was used 
in the design of a spectrum analyzer with real-time 
constraints for a Capstone senior design project. 
 

3.  Project Background 
 

The project under examination is the design of an 
FFT based low-bandwidth real-time spectrum analyzer. 
The inspiration for the project was an ASIP designed 
by SiWorks Inc. This FFT processor is capable of 
computing a 1024-point FFT in just 250 clock cycles. 
Unfortunately these chips were not available for 
purchase during the initial stages of the design project. 
Ultimately the implementation technology used to 
compute the FFT was an FPGA. This resulted in a 

computational bandwidth well beyond that of our 
specifications and the analog interface. The customer 
for the design was the Department of Electrical and 
Computer Engineering at The University of Alabama 
for use in sophomore and junior level laboratories. The 
goal of the project was to design and build a beta 
prototype of a stand-alone spectrum analyzer with 
these basic requirements: 
• enough bandwidth to view the spectrum of 

ADSL signals 
• a flexible input interface for general purpose use 
• VGA interface 
• $300 proposed maximum unit cost per thousand 
 

The user interface and VGA resolution details were not 
specified.  One of the primary metrics was the real-
time requirement.  These goals were met and surpassed 
with the exception of some op-amp stability issues and 
one known firmware bug.  The specifications of the 
completed system are listed in Table 1. 
 

Table 1. 
Specifications of Completed System 

 

Real-Time 

-- Input data stream sampled 

continuously 

-- Every sample must be processed 

-- No results are to be discarded 

FFT size 1024 points 

Frequency Range 0 to 1.10 MHz 

Resolution 1.95 kHz 

Sample Frequency 4 MHz 

Input Voltage Range 0 to 100Vpeak 

Input Impedance 1MΩ, 20pF 

Input Range Selection Automatic 

System Latency 
-- 0.5 ms (input to video processor) 

-- 80 ms (input to display) 

Configuration Interface PS/2 Mouse 

Output Interface VGA (640x480x6-bit color) 

Power Source Single Phase, 120V, 60Hz 

Manufacturability No BGA or leadless chip packages 

Unit Cost per Thousand $87.44 

 
4. Implementing HW/SW Co-Design 
 

The original ad-hoc system diagram that was created 
prior to the application of HW/SW co-design is shown 
in Figure 6.  

 



 
 
          Customized Co-Design             Axelsson’s Co-Design 
 

Figure 5.  Customized design flow versus Axelsson’s. 
 
 
It is evident from the figure that partitioning, 
allocation, and hardware architecture selection were all 
occurring simultaneously. Early in a design process 
very little is known about how the system will 
function; therefore, at that point it is dangerous to 
attempt to define a hardware-architecture to support the 
operation of the system.  Instead, Figure 7 shows a 
system partitioning resulting from a co-design 
approach.  The immediate advantage of applying 
HW/SW co-design is a domain and architecture 
independent partitioning.  Figure 8 shows one 
component of the system, the system control unit, 
decomposed into its constituent parts.  This is the 
progression of partitioning that should continue until 
the processes are simple enough that they are readily 
implemented and the interfaces between them are fully 
defined, representing a system having the desired 
granularity.  The partitioning step is also the time to 
define performance requirements for the processes 
such as frequency, throughput and latency. These will 
be important factors to consider in the mapping step to 
ensure that the final scheduling process will be 
successful.  

During the allocation, hardware architecture, and 
mapping stages many tradeoffs must be analyzed 
before settling on a particular system implementation.  

It is during these stages of the co-design process that 
decisions must be made that may ultimately affect the 
partitioning and even the system specification.  These 
are the feedback loops built into the co-design process 
that lead to multiple iterations through this process 
before project completion.  For example, the original 
intent was to use an FPGA to implement a custom 
optimization of the FFT algorithm to achieve the 
desired performance. However, during initial hardware 
architecture selection it was realized that a sufficiently 
large FPGA would be cost prohibitive. The next 
alternative explored was an FFT ASIP although those 
found were not available (Zarlink PDSP16510, I&C 
Tech. STARFFT).  Finally it was decided to use a DSP, 
the TI TMS320C6711, which is a 272-pin BGA device. 
It met the minimum performance requirements, was 
inexpensive and readily available. Having made this 
selection required a re-partitioning of the system. This 
second top-level partitioning is that shown in Figure 7. 
As part of the allocation, each process was assigned an 
anticipated implementation technology. At this point 
dual-port RAM was the chosen implementation 
technology for buffering. Unfortunately, dual-port 
RAM is very expensive in sizes as large as 1Kbyte. 
The memory did not need to be random access, so a 
2Kbyte FIFO from TI, SN74V235, was used instead.   



 
 

Figure 6. Original ad-hoc system partitioning. 
 

 

 
 

Figure 7.  Co-design top-level system partitioning. 
 

 

 
 

Figure 8.  Partitioning of the system control unit. 
 

As another example, there were concerns about the 
thermal characteristics of the circuit board and 
difficulty in mounting the device prior to proceeding 
with the hardware architecture using the 
TMS320C6711.  The specifications were changed to 
include manufacturability, which meant no BGA parts. 
This required another tradeoff to a different DSP 
device, the TMS320C5402 which comes in a 144-pin 
QFP. This processor is capable of computing the FFT 
at an input sample rate of greater than 2MHz. The last 
frequency bin in the FFT corresponds to Fsample/2 
providing a 1MHz bandwidth, just barely satisfying the 

minimum performance requirements. Therefore this 
change did not affect the partitioning, allocation, or the  
hardware architecture used for the TMS320C6711.  

As another example of these feedback loops through 
the co-design process, changes were required to 
prevent aliasing.  In order to prevent aliasing 
(frequencies above Fsample/2 from wrapping around into 
the low end of the spectrum), a low-pass filter was 
needed to attenuate the frequencies above Fsample/2 to 
less than the LSB of the input data; the input data being 
the output of a 10-bit ADC. However, the -3dB point 
of the filter needed to be 1MHz or higher to meet the 
performance requirements. To meet the minimum 
performance requirements two DSPs would need to be 
used in parallel, each one processing every other set of 
data, to compute the FFT. By putting two DSPs in 
parallel and using a six-pole Bessel low-pass filter the 
Fsample would be 4MHz. With this new configuration 
the -3dB point was calculated to be 1.10MHz.  Again, 
these changes would ripple through all phases of the 
co-design process resulting in a new partitioning, 
allocation, and hardware architecture shown in Figure 
10.   

One final example of the need for feedback in the co-
design process resulted from the introduction of new 
technology midway through the design process.  In this 
case, it was discovered that Altera had recently made 
an FFT IP core available on their web site.  The FFT IP 
core could be configured as a streaming FFT (one input 
and one output every clock cycle), meaning the entire 
system could be pipelined requiring little additional 
memory for buffering and greatly simplifying the 
overall implementation of the system.  It was also 
determined that the Altera Cyclone EP1C12Q240C7, 
the largest FPGA offered by Altera or Xilinx and 
available in the QFP package, was available and within 
budget.  The embedded memory blocks in the cyclone 
line of FPGAs are true dual-port RAM. A review of the 
partitioning showed that switching from the DSPs and 
external FIFOs would not require changing the 
algorithms;  disregarding those for the VGA interface 
which would in fact be simplified due to the interfaces 
being completely internal to the FPGA.  The decision 
was made to change the mapping to make use of this 
new technology.  This resulted in yet another cycle 
through the co-design process starting with partitioning 
and continuing through allocation, hardware 
architecture, all the way to the system integration, 
scheduling and testing phases.   

The final top-level system partitioning using the 
FPGA device is shown in Figure 9.  The final 
partitioning shows remarkable similarity to the original 
system partitioning shown in Figure 7, with the 



exception that Figure 9 has significantly more detail at 
the top level.  Finally, a screen shot of the output of the 
system and a photo of the finished spectrum analyzer 
are shown in Figure 11.   

5. Conclusions 
 

This case study demonstrates that the application of 
HW/SW co-design can be employed in senior design 
classes to increase the complexity of projects 
accomplishable by undergraduate students. The custom 
HW/SW co-design process presented here should be 
applicable to any embedded system. The structure of 
the design flow diagram and the accompanying 
definitions make it ideally suited for undergraduates. 
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Figure 9.  Final top-level system partitioning. 



 
 

Figure 10.  One version of the hardware architecture. 
 
 

 

 

 
 

Figure 11.  System output (top) and completed spectrum analyzer (bottom). 
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