
Hardware/Software Co-Design of Embedded Real-Time Systems from an
Undergraduate Perspective

Kevin C. Kassner*
RF & Electronic Systems Department

Dynetics Corporation
Huntsville, AL 35806, USA
kevin.kassner@dynetics.com

*Contact author

Kenneth G. Ricks

Electrical and Computer Engineering
The University of Alabama

Tuscaloosa, AL, 35487, USA
kricks@coe.eng.ua.edu

Abstract

The increasing complexity of embedded systems

parallels the difficulty of adequately preparing students
to design them. Two topics key to the success of a
graduate in the area of embedded systems are
hardware/software co-design and real-time computing.
This paper serves as a case study describing how an
undergraduate applied hardware/software co-design in
the design of a spectrum analyzer with real-time
constraints for a Capstone senior design project. The
goal of this work is to produce a co-design approach
more suited for undergraduates having little design
experience.

1. Introduction

How can we prepare our electrical and computer
engineering students to design embedded systems?
There is so much material to cover at the undergraduate
level it hardly seems possible to adequately prepare
students for a career in embedded systems
development. Thus, educators are faced with the
difficult task of selecting a subset of critical topics to
include in their curriculum. Two critical topics are
hardware/software (HW/SW) co-design and real-time
computing. In spring 2004 The University of Alabama
offered for the first time an embedded systems class at
the undergraduate level. An educational result of this
course was the design of a spectrum analyzer with real-
time constraints which was successfully completed
December 2004 as a Capstone Design project. This
paper is an examination of how HW/SW co-design was
employed in an undergraduate design class.
Completion of such a project suggests that a student is
well prepared for a career in embedded systems
development. The remainder of this paper is organized
as follows. First, some background material is
presented describing HW/SW co-design. Traditional
implementations are presented that lead to a

customized implementation implemented by the
author. A short description is then given about the
specific design project undertaken in this effort. This
is followed by a detailed description of the custom
HW/SW co-design technique as applied to this specific
project. Finally some conclusions and observations are
made.

2. Background

Hardware/software co-design is a design
methodology which exploits the synergism of hardware
and software through their concurrent design [1] and
achieves this by delaying the allocation decision.
Hence, as much as possible is known about the system
prior to allocating pieces of the system to the hardware
or software domains. This methodology has two
primary advantages; more time to evaluate tradeoffs
and it creates better hardware/software interfaces.
However, it requires engineers to be familiar with both
hardware and software caveats. Any design
methodology should:
• provide a checklist for the design process
• facilitate the communication of design team

members
• help to predict costs
• aid in the creation of a working prototype
• aid in the creation of a timeline for the

development cycle
• help with the identification of metrics
• aid with requirements specification, and
• assist with the development of test procedures.

The goal of HW/SW co-design is to do all of these
things as well as allow designers to “predict”
implementation, “incrementally refine” a design over
“multiple levels of abstraction”, and create a “working
first implementation” [2]. HW/SW co-design is a
cyclic design methodology. Implementations of
HW/SW co-design are as varied as embedded systems

themselves. Institutions and individuals tailor the
methodology to fit their application and institutional
framework. All these different implementations make it
difficult to apply co-design, especially for an
undergraduate student having limited design
experience. An implementation of HW/SW co-design
suitable for an undergraduate applying it (the
methodology) for the first time was needed. To meet
this requirement a custom version (shown in Figure 4)
based upon Wolf’s and Axelsson’s descriptions of
HW/SW co-design was created [2, 4].

Wolf’s and Axelsson’s implementations of HW/SW
co-design are presented here for reference and
comparison to the author’s version. In [2], Wolf
divides co-design into four major tasks:
• partitioning the function to be implemented into

smaller, interacting pieces;
• allocating those partitions to microprocessors or

other hardware units, where the function may be
implemented directly in hardware or in software
running on a microprocessor;

• scheduling the times at which functions are
executed, which is important when several
functional partitions share one hardware unit;

• mapping a generic functional description into an
implementation on a particular set of
components, either as software suitable for a
given processor or logic which can be
implemented from the given hardware libraries.

In [3] Wolf also describes HW/SW co-design in the

following way: “Front end activities such as
specification and architecture simultaneously consider
hardware and software aspects. Similarly, back-end
integration and testing consider the entire system. In
the middle, however, development of hardware and
software components can go on relatively
independently – while testing of one will require stubs
of the other, most of the hardware and software work
can proceed relatively independently” [3]. A block
diagram of the co-design process from [3] is shown in
Figure 1. Wolf’s two descriptions of HW/SW co-
design are very different, yet they both demonstrate the
core concept of delayed allocation.

Though the cyclic nature of co-design is missing
from Figure 1, it is demonstrated in Axelsson’s
diagram shown in Figure 2. The structure of Figure 2
also emphasizes the delayed allocation decision by
including allocation as a separate task in the design
flow diagram. Axelsson [4] defines the tasks in his
figure as follows:
• System behavioral description, giving an

executable specification of what the system is
supposed to do.

Figure 1. A simple HW/SW co-design methodology [3].

Figure 2. Axelsson’s diagram of HW/SW Co-design [4].

• Hardware architecture selection, describing

what hardware components should be used and
how they should be connected.

• Partitioning, deciding which parts of the system
behavior should be realized by what parts of the
hardware architecture.

Please note that Axelsson’s use of the term partitioning
is analogous to our use of allocation thus far.

Figure 3 is a comparison of Axelsson’s design flow
diagram and a typical top-down model. This figure
illustrates the advantage of a detailed behavioral
description that is domain independent; the more
information known about a system prior to hardware
architecture selection the better.

 HW/SW Co-Design Top-Down

Figure 3. Axelsson’s diagram versus a typical top-down model.

Figure 4 shows the author’s flow diagram for HW/SW
co-design. The nomenclature used here is slightly
different from that of Wolf and Axelsson.
• Specification, usually consists of a collection of

metrics, both functional and non-functional,
which provide a precise description of the top-
level system attributes and requirements.
Examples of metrics include throughput,
latency, unit cost, NRE cost, power
consumption, maintainability, and time-to-
market.

• Partitioning is the action of breaking the system
functionality into small domain-independent,
concurrent and interacting/communicating
processes. The size of the processes is called the
granularity. The result of the partitioning step
should be a fully defined behavioral description
of the system, with well defined interfaces
between processes. Performance requirements
for the processes such as frequency, throughput,
and latency should also be defined.

• Allocation is the action of assigning each
process to either the hardware domain or the
software domain. Communication bandwidth
alternatives/limitations between hardware and
software should be considered. For example,
two processes exchanging lots of data frequently
would likely best exist in the same domain.

• Hardware Architecture means describing what
hardware components should be used and how
they should be connected [4] to support the
execution of the processes.

• Mapping is the selection of specific hardware
components and mapping the processes onto
parts of the hardware architecture. This includes
mapping processes from the software domain to
the processor(s) on which they will be executed.
Much consideration should be given to the
execution requirements of the processes.
Manufacturability should be considered during
component selection.

• Synthesis is the implementation of the hardware
and software processes for the selected
hardware.

• Integration is the recombination and testing of
processes and interfaces after implementation.

• Scheduling is the assignment of resources to all
system processes such that their execution
requirements are satisfied including inter-
process communication dependencies.

Those who are familiar with HW/SW co-design may

not see the need to break the design process down into
this many steps. However, undergraduates find this
decomposition beneficial because it requires one to
think about each step separately and consider trade-offs
that may not have otherwise be considered. Figure 5
shows how this design flow compares to Axelsson’s.
Allocation is placed above hardware architecture
because the allocation process provides helpful
intuition going into the hardware architecture selection.
This was done even though the first hardware
architecture selection usually causes some immediate
feedback into the allocation.

Figure 4. Customized diagram of HW/SW co-design.
Dashed arrows indicate feedback paths that may not

occur in every design.

Scheduling appears near the end of the design process,
though a system schedule is defined in the partitioning
step and considered throughout the design process.
The finer granularity of the design tasks makes them
more manageable for an undergraduate without much
intuition gained through experience. The direct
correlation to the definitions listed above serve as a
reference to keep the student on track during each
design task. For these reasons this design flow is
believed to be much more accessible to undergraduates
applying HW/SW co-design for the first time. The
remainder of this paper is a case study of how this
customized HW/SW co-design methodology was used
in the design of a spectrum analyzer with real-time
constraints for a Capstone senior design project.

3. Project Background

The project under examination is the design of an
FFT based low-bandwidth real-time spectrum analyzer.
The inspiration for the project was an ASIP designed
by SiWorks Inc. This FFT processor is capable of
computing a 1024-point FFT in just 250 clock cycles.
Unfortunately these chips were not available for
purchase during the initial stages of the design project.
Ultimately the implementation technology used to
compute the FFT was an FPGA. This resulted in a

computational bandwidth well beyond that of our
specifications and the analog interface. The customer
for the design was the Department of Electrical and
Computer Engineering at The University of Alabama
for use in sophomore and junior level laboratories. The
goal of the project was to design and build a beta
prototype of a stand-alone spectrum analyzer with
these basic requirements:
• enough bandwidth to view the spectrum of

ADSL signals
• a flexible input interface for general purpose use
• VGA interface
• $300 proposed maximum unit cost per thousand

The user interface and VGA resolution details were not
specified. One of the primary metrics was the real-
time requirement. These goals were met and surpassed
with the exception of some op-amp stability issues and
one known firmware bug. The specifications of the
completed system are listed in Table 1.

Table 1.
Specifications of Completed System

Real-Time

-- Input data stream sampled

continuously

-- Every sample must be processed

-- No results are to be discarded

FFT size 1024 points

Frequency Range 0 to 1.10 MHz

Resolution 1.95 kHz

Sample Frequency 4 MHz

Input Voltage Range 0 to 100Vpeak

Input Impedance 1MΩ, 20pF

Input Range Selection Automatic

System Latency
-- 0.5 ms (input to video processor)

-- 80 ms (input to display)

Configuration Interface PS/2 Mouse

Output Interface VGA (640x480x6-bit color)

Power Source Single Phase, 120V, 60Hz

Manufacturability No BGA or leadless chip packages

Unit Cost per Thousand $87.44

4. Implementing HW/SW Co-Design

The original ad-hoc system diagram that was created
prior to the application of HW/SW co-design is shown
in Figure 6.

 Customized Co-Design Axelsson’s Co-Design

Figure 5. Customized design flow versus Axelsson’s.

It is evident from the figure that partitioning,
allocation, and hardware architecture selection were all
occurring simultaneously. Early in a design process
very little is known about how the system will
function; therefore, at that point it is dangerous to
attempt to define a hardware-architecture to support the
operation of the system. Instead, Figure 7 shows a
system partitioning resulting from a co-design
approach. The immediate advantage of applying
HW/SW co-design is a domain and architecture
independent partitioning. Figure 8 shows one
component of the system, the system control unit,
decomposed into its constituent parts. This is the
progression of partitioning that should continue until
the processes are simple enough that they are readily
implemented and the interfaces between them are fully
defined, representing a system having the desired
granularity. The partitioning step is also the time to
define performance requirements for the processes
such as frequency, throughput and latency. These will
be important factors to consider in the mapping step to
ensure that the final scheduling process will be
successful.

During the allocation, hardware architecture, and
mapping stages many tradeoffs must be analyzed
before settling on a particular system implementation.

It is during these stages of the co-design process that
decisions must be made that may ultimately affect the
partitioning and even the system specification. These
are the feedback loops built into the co-design process
that lead to multiple iterations through this process
before project completion. For example, the original
intent was to use an FPGA to implement a custom
optimization of the FFT algorithm to achieve the
desired performance. However, during initial hardware
architecture selection it was realized that a sufficiently
large FPGA would be cost prohibitive. The next
alternative explored was an FFT ASIP although those
found were not available (Zarlink PDSP16510, I&C
Tech. STARFFT). Finally it was decided to use a DSP,
the TI TMS320C6711, which is a 272-pin BGA device.
It met the minimum performance requirements, was
inexpensive and readily available. Having made this
selection required a re-partitioning of the system. This
second top-level partitioning is that shown in Figure 7.
As part of the allocation, each process was assigned an
anticipated implementation technology. At this point
dual-port RAM was the chosen implementation
technology for buffering. Unfortunately, dual-port
RAM is very expensive in sizes as large as 1Kbyte.
The memory did not need to be random access, so a
2Kbyte FIFO from TI, SN74V235, was used instead.

Figure 6. Original ad-hoc system partitioning.

Figure 7. Co-design top-level system partitioning.

Figure 8. Partitioning of the system control unit.

As another example, there were concerns about the
thermal characteristics of the circuit board and
difficulty in mounting the device prior to proceeding
with the hardware architecture using the
TMS320C6711. The specifications were changed to
include manufacturability, which meant no BGA parts.
This required another tradeoff to a different DSP
device, the TMS320C5402 which comes in a 144-pin
QFP. This processor is capable of computing the FFT
at an input sample rate of greater than 2MHz. The last
frequency bin in the FFT corresponds to Fsample/2
providing a 1MHz bandwidth, just barely satisfying the

minimum performance requirements. Therefore this
change did not affect the partitioning, allocation, or the
hardware architecture used for the TMS320C6711.

As another example of these feedback loops through
the co-design process, changes were required to
prevent aliasing. In order to prevent aliasing
(frequencies above Fsample/2 from wrapping around into
the low end of the spectrum), a low-pass filter was
needed to attenuate the frequencies above Fsample/2 to
less than the LSB of the input data; the input data being
the output of a 10-bit ADC. However, the -3dB point
of the filter needed to be 1MHz or higher to meet the
performance requirements. To meet the minimum
performance requirements two DSPs would need to be
used in parallel, each one processing every other set of
data, to compute the FFT. By putting two DSPs in
parallel and using a six-pole Bessel low-pass filter the
Fsample would be 4MHz. With this new configuration
the -3dB point was calculated to be 1.10MHz. Again,
these changes would ripple through all phases of the
co-design process resulting in a new partitioning,
allocation, and hardware architecture shown in Figure
10.

One final example of the need for feedback in the co-
design process resulted from the introduction of new
technology midway through the design process. In this
case, it was discovered that Altera had recently made
an FFT IP core available on their web site. The FFT IP
core could be configured as a streaming FFT (one input
and one output every clock cycle), meaning the entire
system could be pipelined requiring little additional
memory for buffering and greatly simplifying the
overall implementation of the system. It was also
determined that the Altera Cyclone EP1C12Q240C7,
the largest FPGA offered by Altera or Xilinx and
available in the QFP package, was available and within
budget. The embedded memory blocks in the cyclone
line of FPGAs are true dual-port RAM. A review of the
partitioning showed that switching from the DSPs and
external FIFOs would not require changing the
algorithms; disregarding those for the VGA interface
which would in fact be simplified due to the interfaces
being completely internal to the FPGA. The decision
was made to change the mapping to make use of this
new technology. This resulted in yet another cycle
through the co-design process starting with partitioning
and continuing through allocation, hardware
architecture, all the way to the system integration,
scheduling and testing phases.

The final top-level system partitioning using the
FPGA device is shown in Figure 9. The final
partitioning shows remarkable similarity to the original
system partitioning shown in Figure 7, with the

exception that Figure 9 has significantly more detail at
the top level. Finally, a screen shot of the output of the
system and a photo of the finished spectrum analyzer
are shown in Figure 11.

5. Conclusions

This case study demonstrates that the application of
HW/SW co-design can be employed in senior design
classes to increase the complexity of projects
accomplishable by undergraduate students. The custom
HW/SW co-design process presented here should be
applicable to any embedded system. The structure of
the design flow diagram and the accompanying
definitions make it ideally suited for undergraduates.

6. References

[1] G. De Michell, R. K. Gupta, “Hardware/software co-design”,

Proceedings of the IEEE, Vol. 85, no. 3, March 1997, pp. 349.

[2] W. H. Wolf, “Hardware-Software Co-Design of Embedded

Systems”, in Proceedings of the IEEE, Vol. 82, no. 7, July
1994, pp. 967-989.

[3] W. H. Wolf, Computers as Components, Principals of

Embedded Computing System Design, Morgan Kaufmann, New
York, New York, 2001, pp. 502–503.

[4] J. Axelsson, “Hardware/Software Partitioning of Real-Time

Systems”, IEE Colloquium on Partitioning in Hardware-
Software Codesigns, February 13, 1995, pp. 5/1-5/8.

Figure 9. Final top-level system partitioning.

Figure 10. One version of the hardware architecture.

Figure 11. System output (top) and completed spectrum analyzer (bottom).

	1. Introduction
	3. Project Background
	5. Conclusions

