
Experiences with the Blackfin Architecture for Embedded Systems Education

Diana Franklin John Seng

Dept. of Computer Science
California Polytechnic State University

San Luis Obispo, CA 93407
{franklin,jseng}@csc.calpoly.edu

Abstract

In the course of a major curriculum change at California
Polytechnic State University, the embedded processing course
was redesigned. During this process, the course had the op-
portunity to purchase new hardware. Analog Device’s Black-
fin processor was chosen based mostly on cost, but also on
performance, development environment, and documentation.

We first present our goals in the class. We then give an
overview of the Blackfin architecture and how the Blackfin fits
in with many of our goals. We then present the implementation
of an expansion board developed to interface with Blackfin’s
EZ-KIT Lite board.

We present our experiences with this setup in the hopes that
others who might be thinking of a similar curricular change
can learn from our successes and failures. We outline the
strengths and weaknesses of the Blackfin architecture as an
educational platform, followed by a discussion of our expe-
riences and a presentation of the support materials we devel-
oped to accompany the course, including lecture material and
laboratories. Finally, we discuss our future directions for our
uses with the board.

1. Introduction

Designing the curriculum for an embedded processing
course is especially difficult in today’s schools because of the
many conflicting goals in curricular design. The ideal would
be cheap, flexible, powerful hardware. This be shipped with
an industrial-strength, intuitive, feature-rich development en-
vironment. Finally, there would be a textbook available that
is targeted towards students rather than a manual targeted at
professionals. If we take a step back and look at the entire
curriculum, we would also like a processor that could be used
for a wide array of classes, such as digital signal processing,
as well as student projects.

Unfortunately, such a bundle of technology, and educa-
tional materials does not exist in a low-cost package. At
California Polytechnic State University, San Luis Obispo, we
chose to use Analog Device’s Blackfin processor. It satisfies
several of the above goals, mainly that it is cheap, general and
powerful hardware, coupled with a good development envi-
ronment, but it was not without disadvantages. Our students

used the manuals, augmented by lecture slides, but had no
textbooks.

In this paper, we explore the tradeoffs that are involved
in designing a single class, CPE 316, Embedded Systems,
at California Polytechnic State University, San Luis Obispo.
We describe our design and how it relates to those trade-
offs. Finaly, we augmented the original hardware and devel-
oped a detailed set of lecture slides that follow the Black-
fin, which currently has no textbook written for it. We
provide the class materials that we developed on-line at
http://www.csc.calpoly.edu/ franklin/316/Bundle.tgz

We begin by analyzing our curricular goals for the embed-
ded systems class in Section 3. We continue in Section 4
by describing the Blackfin architecture, our architecture of
choice, and the development environment provided. Section 5
presents the expansion board design and the flexibility it gives
to the labs. Sections 7 and 8 give a brief summary of our lec-
tures and labs from several instantiations of the class. We give
ideas for future development and conclude in Section 10.

2. Related Work

Embedded processing has become increasingly important,
and with its rise in industrial significance, the best way to
teach the concepts has been studied by several educators.

Many groups have looked at high-level approaches to im-
proving embedded processing education in the curriculum.
Michigan State University proposed an approach to integrate
embedded processing into the whole curriculum rather than
a single course [1]. A full curriculum targeted towards em-
bedded processing, including design from math classes and
engineering classes on up, has also been proposed [3]. They
stress that high-level principles, not specific information com-
mercial companies might want, should be emphasized.

We take on many of the practical matters in designing an
embedded processing course. We assume that the core topics
have already been decided. Our job is to convey this infor-
mation in a way that fits well with the rest of the curriculum,
is up to date, is not too costly, and fulfills as any educational
goals as possible.



Course Integration Financial

textbook unlike MIPS inexpensive boards
intuitive software parallelism multiple courses
breadboard access DSP

Table 1. Summary of goals

3. Goals

As with any course development, there were disparate
goals in designing this course. We categorize our goals in one
of three categories. First, we had the normal goals that anyone
does with an embedded processing course, that of conveying
the information for the course in the most painless, efficient
manner. Second, we had issues with integrating this course
with the rest of the curriculum. Finally, we had financial con-
siderations to minimize the amount of hardware necessary to
purchase. These goals are summarized in Table 1.

CPE 316 at Cal Poly follows a year of digital design and
computer architecture. They have covered the first 7 chap-
ters of the P&H architecture text, ”Computer Organization &
Design” [4]. They have not yet covered interfacing processor
and peripherals or parallel processing. The students have also
taken at least a year of Java programming. The two courses
that are not in the prerequisite chain are C programming and
assembly programming (other than small portions in the ar-
chitecture course). Most students had taken one quarter of C,
though not all. Almost no students were familiar with partic-
ular C keywords integral to interfacing with devices.

Within the embedded processing course, we had several
goals. The hardware needs to be easy to use, with a develop-
ment environment that was intuitive and quick for the students
to pick up. Cal Poly is on the quarter systems, so the students
cannot waste much time learning new environments. In order
to allow control of interesting devices, it needs a mechanism
for students to connect their own breadboard to the processor.
Finally, the course needs a textbook. There were two choices
deemed acceptable - a textbook that is not tied to any single
processor coupled with manuals, or a textbook that was spe-
cific to our hardware. The former is possibly more realistic
for the workplace, although the latter is easier on the students.

No course is in isolation, so there are higher-level goals to
consider. Prior to this, the major language is MIPS because
of its use in the P&H’s architecture book [4]. Students should
have exposure to a variety of languages, so an assembly lan-
guage that illustrates a new set of features is useful. Finally,
the students have not yet been exposed to parallel processing,
so a language that allows parallel instructions is desirable.

The financial considerations are listed last, but in this econ-
omy in a public school, they often become the overriding fac-
tor. The boards must be either donated or inexpensive. In
order to amortize the cost of the boards, they should be used
for multiple classes. To this end, the processor should be pow-
erful and capable of digital signal processing tasks.

Fetch (1−3)
Dec

Addr

Calc Mem

Data Reg

Mult Arith

DataWriteback

��
�
��
�

��
�
��
�

��
�
��
� ���

�

��		



��

��
���� ��

�
��
�

���� ����

��
�
��
�

��
�
��
�

����

��
��

 ! "# $%

&'

DAGs

Figure 1. The 10-stage Blackfin Pipeline.

In the end, we were able to satisfy almost every goal except
for the textbook. In the rest of the paper, we present how we
satisfy the goals through the use of the EZ-Kit Lite Blackfin
board and special hardware attached to it. For a textbook,
we used a combination of detailed lecture slides and helpful
laboratories. We were not satisfied enough with the general
textbooks we found to require the students to purchase them.
Because this was a senior level course, we expected that this
was a more gentle introduction to the resources that will be
available on the job.

4. Blackfin Architecture

The Blackfin is a hybrid microcontroller and digital sig-
nal processor. We used the EZ-KIT Lite, which was obtained
at an educational discount from Analog Devices. We now
present the interesting details about the Blackfin environment
we had, split up into architecture, assembly language, soft-
ware development environment, and EZ-KIT Lite board.

4.1 Architecture

The Blackfin is an in-order, multi-issue processor. The
pipeline has two data paths throughout. The processing core
consists of a 10-stage pipeline. The pipeline is depicted in
Figure 1.

Instruction fetch requires three stages, with a decode stage
fourth. It fetches 64 bits each cycle, though serial instructions
require only 16 or 32 bits. It only executes 64 bits in a single
cycle in the presence of a 3-wide parallel instruction.

Stages five and six are for memory operations and branches
address calculations. It employs two Data Address Generators
(DAGs) for address calculations. Once the branch address is
calculated, it uses static branch prediction to go to the predi-
cated destination.

The Blackfin reads the data register file in cycle seven, and
then performs computations in cycle eight and nine. For com-
putation, it performs multiplication first and then has an alu
for accumulation or any other arithmetic operation. It also in-
cludes special-purpose video units. Data results are written in
cycle ten.

There are two register files - eight 32-bit data registers and
8 pointer registers. It also has several special-purpose regis-
ters for looping and memory address calculations. In addition,



there are two 40-bit accumulators, one associated with each
multiply/ALU pair.

The Blackfin has three caches - two data and one instruc-
tion cache. There is also a very small instruction buffer in the
fetch unit that can hold short loops. In each cycle, you can
perform a load from all three caches. It may not perform two
loads to the same data cache in the same cycle.

The architecture of the Blackfin itself presented an excel-
lent opportunity to reinforce the ideas taught in the computer
architecture course. The pipeline was still in order, but it had
more pipeline stages and the stages were performed in a dif-
ferent order than the MIPS processor. The students were also
able to learn about static branch prediction, which was not
emphasized in the previous course. Finally, the presence of
dual data caches allows students to think consciously about
when their data is accessed in order to place data such that
you can access both caches in the same cycle.

4.2 Assembly Language Features

The Blackfin ISA has several unique features beyond the
simple MIPS instruction set. The main differences are the
address calculation features, control features, variable data
widths, and parallel processing.

The DAG allows for a very rich set of addressing modes.
In general, one can access a memory location at a constant
offset from a register index and increment the index in a single
instruction. Furthermore, it allows circular addressing with
a stride, automatically wrapping the pointer around when it
reaches the end of the buffer. It also has bit-reverse addressing
specifically designed for the FFT algorithm.

In order to maintain high performance with a 9-stage
pipeline, the Blackfin needs support for branching. The
Blackfin provides two major mechanisms to alleviate con-
trol hazards. First, it provides static branch prediction. Any
branch can be labeled to be predicted taken. Unfortunately,
this only saves four out of eight stall cycles. The address is
not calculated until cycle four, so for loops with a known num-
ber of iterations, the Blackfin provides a zero-overhead loop
mechanism in the fetch unit. It can keep track of two nested
loops at once. The entire loop is buffered in the unit, along
with the counter and the beginning and end program coun-
ters. This automatically provides the proper instruction, with
no stalls, until the loop is complete.

The Blackfin provides support for 16-bit operations as well
as 32-bit operations. It can either perform a single 16-bit oper-
ation on each ALU or have each 16-bit half of a 32-bit num-
ber be treated as a separate 16-bit value for the purposes of
arithmetic operations. This allows one to perform four 16-bit
operations in a single cycle when employing both ALUs.

Finally, as referred to above, the Blackfin allows limited
parallelism. It may perform two 16-bit and one 32-bit oper-
ation at once, drawn from a list of parallelizable operations.

Only one store may be performed each cycle, though one can
perform two loads. There are two DAGs, so address offsets
and updates may also be performed in parallel.

This instruction set satisfied all of the educational goals of
the assembly language. The advanced branching instructions
allowed for an excellent tie-in of core architectural material
to the course, and the parallel instructions provide a unique
opportunity. This was especially important because even cor-
rectly predicted branches as well as unconditional jumps had
a 4-cycle penalty. The ability to control branches in the as-
sembly language and think about the performance ramifica-
tion makes the knowledge more concrete.

4.3 Software

The software environment needed to be intuitive and easy
to pick up, especially in our quarter system. We use the Ana-
log Devices’ Visual DSP++ as an integrated development en-
vironment for the class. Visual DSP++ is designed to be
used with the EZ-KIT lite, a processor simulator, or with a
JTAG interface. This program allows programming the board
in Blackfin assembly or C and provides an overall interface
which is highly similar to other integrated development envi-
ronments.

The only problem with this software is a combination of
hardware problems and the license server. Occasionally, it
gets into a state in which the student can no longer control the
hardware. If they close the program, the license does not al-
ways return to the license server right away. Upon attempting
to restart the program, the license server will say it is out of
licenses. This requires a license server restart.

4.4 EZ-KIT Lite Board

The EZ-KIT Lite Board provides I/O opportunities for stu-
dents with the Blackfin chip. They provide flexibility in aug-
menting their design by having flash memory that can be used
to configure different input and output pins.

The most basic functions that are fun and easy to use are
the LEDs and the pushbuttons. The sample codes that come
with the board are simple for the instructor to understand. The
board also includes more advanced features like audio/video
and bus protocols.

There were two problems with the board. The board has
a set of switches on it that, if changed, cause the board to act
in odd ways. At Cal Poly, the labs are open to allow senior
project students to use hardware for their projects, but they are
not monitored at all times. Students will sometimes flip the
switches, and it is difficult to tell. This caused several students
to lose whole lab periods getting the hardware to work again.

Second, there is no good access for connecting a student
breadboard. Section 5 describes the expansion board designed



to give students access to several input and output pins on the
EZ-KIT Lite board.

4.5 Documentation

The Blackfin architecture has a Hardware Reference Man-
ual(HWR) as well as a separate Instruction Set Architecture
Manual(ISA). In addition, the EZ-KIT Lite Board has a man-
ual. These manuals are all electronic. Students may request
hard-copies as well, though they are very large and heavy.

The Blackfin HWR and ISA manuals are very well indexed
and easy to navigate through Acrobat Reader. The EZ-KIT
Lite is a little more difficult to utilize efficiently. We found
that the students were more comfortable with the physical
versions of the books and had not had much experience with
electronic manuals. In retrospect, I wish I had done a half a
lecture on how to navigate the manuals effectively.

4.6 Discussion

The Blackfin 533x on the EZ-KIT Lite board satisfied our
hardware goals. It had an intuitive environment, though not
bug-free, it was inexpensive, it had an assembly language suf-
ficiently different from MIPS, allowed for parallel execution,
and had the functionality for digital signal processing. The
only thing it lacked was a simple interface to a student bread-
board.

Our experience with this hardware was mostly positive.
When problems occurred, though, it was very difficult to track
them down. It could be the students’ software, the hardware
switches, the connection to the development environment, or a
bad state. When restarted, sometimes the license server would
then fail.

To alleviate this, students should be counseled early in
the class to save working versions of their code to determine
whether a problem is with their code or the board. In addi-
tion, the students need easy access to someone who has the
authority to restart the license server.

5. Expansion Board Design

Although the Analog Devices’ EZ-KIT lite board is highly
integrated and provides excellent performance, the board is
not designed to be readily used in an educational environment.
Several of the board pins are connected to other chips and are
not available for use through on-board pin headers. Unfortu-
nately, the board does not provide easy access to input/output
pins. What the board does provide is a 3-socket expansion
interface intended to be used with other Analog Devices’ ex-
pansion cards. Each socket is a 90-pin connector with a fine
pitch spacing. We use this interface to connect a custom ex-
pansion board for use in a class lab environment.

Our expansion board contains simple circuitry to buffer
some of the input/outputs pins on the board. One fact to note
when using the I/O pins of the Blackfin is that the I/O pins
on the Blackfin processor use 3.3V interface circuitry. Con-
necting 5V circuits directly to the I/O pins would damage the
Blackfin. Instead, we used voltage level conversion buffers to
allow 5V circuitry to be used during the labs.

The expansion board design provides a modest number of
digital inputs and digital outputs. The design allows software
to control 8 digital outputs and 8 digital inputs. Should more
inputs and/or more outputs be required, an SPI I/O port ex-
pander would be good for that purpose. Also, a CD4094,
would work well as an output expander because of the shift-
and-store inteface it provides.

A 24-pin ribbon cable is used to connect the students’
breadboard with the Analog Devices’ board. On one end of
the cable is a polarized connector which connects with the ex-
pansion board, and on the other end is a 24-pin DIP socket
which plugs directly into a breadboard.

6. Textbook

Currently, no textbook exists for that targets the Blackfin
architecture. We considered a more general textbook, such as
Computers as Components [5]. Although this was useful to
use as instructors, and we incorporated some of the publicly
available on-line slides into the lectures, it was at such a high
level that we made it a recommended textbook, not a required
textbook.

This meant that are lecture notes were the only resource
the students had beyond the manuals. Our lectures slides are a
combination of high-level, general material, followed by spe-
cific information for the Blackfin architecture.

7. Lectures

The lecture slides were a combination of theoretical mate-
rial and Blackfin-specific implementation. The figures for the
Blackfin-specific material were obtained from the hardware
and ISA manuals [2].

We are releasing the slides so that they may be used as a
building block for someone to tailor their own slides if they
wish. They are by no means complete and will continue to be
developed as the class is taught more often.

7.1 Lecture Topics

We have created a set of lectures that cover the core em-
bedded processing subjects as well as additional special top-
ics that are related to architecture and embedded processing
in general. The core topics are:

• Memory-Mapped I/O / Polling



• Interrupts

• Timers

• Ports / Buses

• DMA and Power

• analog / digital conversion

We also added several topics, ranging from architectural
lectures to tie the chip back to concepts introduced in the ar-
chitecture classes to pure C and assembly programming tech-
niques.

• Blackfin Overview / ISA describes the overall architec-
ture as well as giving examples on branching mecha-
nisms and loading and storing.

• Blackfin Pipeline gives details on what each pipeline
stage performs including timing diagrams of instruction
sequences and their stall cycles.

• Blackfin Calling Convention presents generic function
call convention with the specific rules of the Black-
fin processors. It also covers the difference in calling
convention between concentional functions and interrupt
handlers.

• Static Branch Prediction gives details on the zero-
overhead-loop instructions, static branch prediction, and
conditional instructions. It includes timing diagrams and
statistical performance problems. Finally, it relates the
branch penalties to what stages operations occur in the
pipeline.

• Parallel Processing covers statically scheduled parallel
programming, Blackfin parallel instructions, loop un-
rolling, and software pipelining.

• C for Assembly Programs presents C keywords that
range from necessary to useful when programming with
devices. First a brief overview of memory regions and
scope in C. The keywordsvolatile, register, static, in-
line are shown. A memory example of exploiting two
data banks is given. It moves on to several Blackfin-
specific tricks like the keywordrestrict, making easily-
recognizable circular buffers. Finally, it shows how to
interface C functions with assembly functions and use
inline assembly.

• Optimizing Code introduces the idea of profiling, Am-
dahl’s Law, and test input sets. It then presents several
optimization techniques like DMA, data locality, and
some simple examples of branch removal.

7.2 Discussion

The additional topics were taught only in the second in-
stantiation. This led to some different observances in the lab
work for the course.

The first time this course was taught, before the C for As-
sembly lecture was included, students strongly preferred us-
ing assembly in the laboratories. After the addition of the C
lecture, students were much more comfortable using C, and
more than half of the students used C when they were given a
choice.

Before the calling convention lecture, students had very
little idea of how, from a register point of view, the handler
should be written. Some students were reserving registers
to be used as communication between the main loop and the
ISR, whereas others were destroying random registers without
realizing that this would affect the registers used in the main
loop. This greatly enhanced the understanding of both the un-
predictability of when the ISR is called and the importance of
register usage conventions.

For the rest of the extra lectures, they are very much bonus
material intended to reinforce concepts learned in either as-
sembly language courses or architecture courses. An embed-
ded processing course is the ideal place to do this, since this is
sometimes the first time students have needed to program in a
meaningful way at this level. In previous courses, they often
felt the assembly language was just an educational task with
no real purpose. Once they see the usefulness, one needs only
to bring in a performance-critical problem in order to expand
the focus of the course. This gives the opportunity to teach
about profiling and high-level code optimizations all the way
down to branch prediction, code scheduling, and pipelining.
It can serve as a great culmination of all of the software and
hardware skills the students have learned.

8. Labs

Our labs were designed with a few goals in mind. First, we
wanted to target the skill sets of polling, interrupts, and con-
trol. Second, we wanted to make the labs interesting so that
by the end of the quarter, the students could imagine them-
selves building a robot if called upon to do so. Finally, we
needed to fit everything in a 10-week course. The labs be-
low are not from a single instantiation of the class, but cho-
sen from various instantiations of the class. They are not
the entire assignments, either, but the portions that the stu-
dents found the most fun. The actual assignments had small
pieces that are not mentioned, culminating in a larger assign-
ment at the end. The full text of the labs can be perused at:
“http://www.csc.calpoly.edu/∼franklin/316/Labs.html.”



8.1 Polling

The original polling labs were fairly uninteresting, only re-
quiring the students to respond to button presses by changing
patterns on the LEDs.

A proposed future lab would create a Simon Says game
where the LEDs would light up in a certain sequence, and
the player would need to repeat that sequence with the but-
tons. The computer would keep generating faster and longer
sequences until the player could no longer get the sequence
correct.

8.2 Interrupts

The interrupt lab was a ping-pong game, where the LEDs
represent the ball, and the buttons represent the paddles. A
player can lose by either pressing the button at the wrong time
or not pressing the button when the ball is there. At the end,
display a message that indicates both who won and why they
won. As the game continues, the ball needs to accelerate.

This lab served several purposes. It was fun for the stu-
dents, required thought as to how to detect all the ways to lose,
and allowed for some flexibility in design by having them de-
cide how to display the loss. Several students even imple-
mented extra functionality by allowing a game reset with one
of the other buttons. In one instantiation of the course, this
was the most successful lab.

8.3 Nested Interrupts

The nested interrupts assignment was a part of the inter-
rupts lab. They were to display morse code depending on
what button was pressed, but allow interruption of displaying
the different patterns depending on which other button was
pressed. They were to implementing the displaying of the
pattern in the interrupt service routine, not in the main pro-
gram.

8.4 Timers

For this lab, the students built a dimmer. The light’s bright-
ness was controlled by the amount of time the light was turned
on. Timers controlled the light turning on and off. When one
button is pressed, the light gets dimmer, and another causes
the light to get brighter.

The students enjoyed this lab very much. The biggest mis-
take was to change how often the light turned on and off with-
out ever turning the light on for a longer period than it was
turned off.

8.5 Advanced labs

In various instantiations of the class, the last lab involved
the students receiving input from external devices, performing
some operation and producing output for an external device.
These devices could be hooked up to the breadboard.

Servo Lab The servo lab used a standard hobby servo that
is controlled by a 1-2ms pulse with a period of 20 ms. If the
pulse width is 1ms, it is turned all the way to the left. At 2ms,
it is turned all the way to the right. You can place it anywhere
in between by adjusting the width between 1-2ms. The period
must stay constant at 20ms.

The servo was controlled by the buttons. There were two
instantiations - two buttons set them to far left and far right,
while the two middle buttons made the servo rotate slowly to
the left or right. In the other version, all four buttons deter-
mined four positions for the servo to point.

Potentiometer A potentiometer dial, when rotated, adjusts
the power it is sending between 0 and 5 volts. This is then
connected to an ADC0831 and read in by the students.

The ADC0831 interface was the most complex the students
encountered. They needed to transmit a chip select signal
along with a clock to the ADC0831 and then sample the in-
coming bit 8 times in order to obtain the 8-bit value for the
volt.

Students did not realize how precise the timing needed to
be about putting the chip select down before beginning the
clock, and then waiting a cycle before beginning the sample.

The potentiometer was used to control the LEDs. The
LEDs could either display the 8-bit number in binary, or it
could look more like a voltmeter with the number of lights
growing from one side or another.

The potentiometer and servo can be combined to have the
potentiometer control the servo. This involves more coordi-
nation for the students, but they thoroughly enjoyed getting
the hardware to work. This lab was a highpoint for many of
the students.

8.6 Discussion

There are many ways to design the labs. In our quarter-
system environment, we felt the need to streamline the labs so
that the students could learn the most concepts in the shortest
amount of time. This led to tradeoffs in how the labs were
structured as well as to how much information was provided
to them.

When designing the labs, we had a trade-off between small
problems that targeted specific skills and large labs that would
take fewer different files. Due to a combination of the de-
velopment environment and the fact that they were initially



coding in assembly, the overhead with beginning a new pro-
gram was quite large. In retrospect, it is important that dif-
ferent parts merely build on each other and do not require a
new codebase. What were listed above are the core projects,
although the actual labs often include some smaller, simpler
parts before building to the full lab. The intent of the smaller
parts was to allow for more partial credit if students could
not get the whole thing working. In the future, teaching the
students about how to break down large projects in order to
test them thoroughly would have been better than cutting the
projects up into different parts that did not directly build on
each other.

There were also differences in how we implemented the
labs. The first instantiation of the course provided students
with only the manuals, requiring them to begin from scratch.
The second instantiation of the course provided sample code
(often the code similar to that shipped with the board) so that
they could use that as a baseline and modify it for the specific
assignment. In order to try to ensure the students took the time
to understand the given code, a set of questions was asked
about the sample code and turned in. This definitely made
it quicker for students who could learn from sample code to
finish the projects. Several groups that understood the con-
cepts completed early labs in very little time. Struggling stu-
dents resorted to some method of random code replacement,
not truly understanding the sample code and often not making
the changes to it in the right places. It is clear that for strong
students, the sample code method removed much of the te-
dium that would have been involved and took nothing away
from the learning. For the struggling students, however, it is
unclear which was better. With no sample code, they do not
know what to generate on their own, so it would take much
more time to solve the labs. On the other hand, if they solve
the early lab, that would give them a more solid foundation
to solve later labs. With sample code, they could more easily
fool themselves into thinking they were not so lost.

9. Future Work

Since the course is still in its first year, it will continue to
be developed in the coming years. In the future, we will be
augmenting our slides with material and improving the labo-
ratory projects.

For the lectures, the more general material was not in-
tegrated seamlessly into the Blackfin-specific details. More
work will be done in the following year with obtaining sup-
port materials for the students and integrating them into the
lecture slides.

In addition, more hardware components can give new and
interesting laboratory assignments. There are a variety of labs
that could be added for a course that is a semester long. This
would open up the possibility of an open-ended project for the
last month of the course. In addition, we did not have time to

touch upon code optimization in the laboratories. We could
give a task and have the students learn how to profile code,
time their code with on-board timers, and have a contest as to
which group had the fastest solution. The students were very
excited about such a prospect.

10. Conclusion

Embedded processing courses will always have a difficult
time keeping up with technology because students work at the
assembly level. Textbooks are hard-pressed to keep up with
the new hardware offerings, and schools face many pressures
when choosing a development platform.

We give analysis on what problems were faced in design-
ing our embedded processing course. We found a hardware
/ software environment that serves most of the goals set out,
and we have augmented the available materials with our own.
Our materials are now publicly available. The course was
largely successful, with just a few changes needed in the ma-
terial to present in order to make up for the lack of a textbook.
We hope others who choose the same setup will be able to
learn from our contributions of materials and experiences.

References

[1] B. Chang, D. Rover, and M. Mutka. A multi-pronged approach
to bringing embedded systems into undergraduate education. In
ASEE, 1998.

[2] A. Devices.Blackfin Processor Family Manuals. ADI, 2005.
[3] S. Guangfan, W. Peidong, L. Jinbao, and W. Kaizhu. A curicu-

lum design and consideration for the embedded systems. In
ICITA204, 2004.

[4] D. A. Patterson and J. L. Hennessy.Computer Organization &
Design. Morgan Kaufmann, 2004.

[5] W. Wolf. Computers as Components. Morgan Kaufmann, 2001.


