

Embedded Systems Courses at RIT

Roy S. Czernikowski
Department of Computer Engineering

Rochester Institute of Technology
rsceec@rit.edu

 James R Vallino

Department of Software Engineering
Rochester Institute of Technology

J.Vallino@se.rit.edu

Abstract

A three-course sequence of cross-disciplinary real-time
and embedded systems courses has been introduced at
RIT•. We are teaching these courses in a studio-lab
environment teaming computer engineering and software
engineering students. The courses introduce students to
programming both microcontrollers and more
sophisticated targets, use of a commercial real-time
operating system and development environment,
modeling and performance engineering of these systems,
and their interactions with physical systems.

1. Introduction
Embedded computers are now ubiquitous, often in
common products where they are invisible to the user.
These embedded processors provide special purpose
functionality not found in general-purpose applications
familiar to desktop computer users. The standard
computing curricula concentrate primarily on general-
purpose desktop applications and do not provide students
with the opportunity to gain the necessary skills for
engineering software in real-time and embedded systems.

2. Real-time and embedded systems at RIT
In Rochester Institute of Technology’s computer
engineering program, senior projects often focus on real-
time and embedded systems, but there was no formal
instruction in the engineering of these systems. The
software engineering program had an embedded systems
application domain comprising three courses: two
standard operating systems courses offered by computer
science and a concurrent programming course from
computer engineering. None of these courses directly
addresses issues in developing real-time or embedded
software; they were chosen because they were the closest

• Sections of this paper will also be presented at the Frontiers in
Education 2005 Conference in October 2005.

courses relevant to the domain. We decided that the best
way to address these shortcomings in the real-time and
embedded domain in both the computer engineering and
software engineering curricula was to adopt a cross-
disciplinary approach. The presence of students from
both programs created a unique opportunity for synergy
at RIT. The computer engineering students possess
knowledge of electronics and control systems along with
software development skills at the lower-levels. The
software engineering students possess significant
knowledge of how to engineer complex software systems
including the design and modeling of those systems.
Developing software for real-time and embedded
systems is where the skills of these two groups intersect.

In July, 2003, we started work on the laboratory and the
development of a three-course sequence. Each of these
upper-division courses is four academic quarter credit
hours and meets for ten weeks of classes having a pair of
two-hour studio sessions per week. In the studio-lab
environment each class session mixes lecture material
with hands-on exercises and projects in a flexible format.
These courses are cross-listed in the software
engineering and computer engineering programs.
Registration is initially controlled with the goal of having
an even mix between students from the two programs.
To the extent possible we ensure that all project teams
have a member from both computer engineering and
software engineering. The students will bring together
expertise from two domains and apply a common
engineering approach for solving real-time and
embedded system development problems. To this point,
we have offered the first two courses in the sequence
several times. The third course is currently being offered
for the first time in the spring 2005 academic quarter.
The remainder of this paper describes our laboratory
facilities, the syllabus for the three courses we developed
and some initial results of the internal and external
evaluation of the program.

Our funding came from the award of a National Science
Foundation Course, Curriculum and Laboratory
Improvement Adaptation and Implementation grant. We
identified the School of Computing and Software
Engineering at Southern Polytechnic State University
and the Department of Computer Science and
Engineering at Arizona State University as the
collaborating institutions that would provide course
materials for adaptation into the courses we developed.

3. Laboratory hardware facilities
The studio lab developed for these courses consists of
twelve student stations and an instructor’s station. The
instructor’s station is configured with classroom control
software that enables the capture, control and display of
any of the student stations on the classroom video
projector. Each student station is positioned to allow a
pair of students to work together. Each station has a
modern personal computer for software development and
a 486-based single board computer as a target system.
We are using a Diamond Systems [1] pc-104 board with
timers, A/D converters, D/A converters, and digital I/O
capability for the target systems. See Figure 1.

To reduce the clutter in the student’s work area we
eliminated the second monitor often attached to the
target system. Students can view the output from the
target system in a number of ways. For text-based
standard output, the target system development software
provides a redirected console on the development system.
We also have the VGA output converted to S-video and
then fed into a USB S-video digitizer. The digitizer’s
software provides a picture-in-picture display shown in
Figure 1. Finally, for projects that are generating VGA
graphics output the student can view the full resolution
video through the second input channel on the
development station’s dual-input monitor.

For the experiments involving programming a
microcontroller, each station is also provided with a
Motorola 68HC12 board, a custom designed interface
board on which is mounted the microcontroller board, a
custom binary LED-switch board for elementary binary
input and output, a signal generator and a power supply.

Figure 2 – M68HC12 Microcontroller, interface board,
LED-Switch Board, Signal Generator and Power Supply.

The last pieces of hardware to mention are primarily
used in the third course in the sequence. This course
covers performance engineering of real-time and
embedded systems. To motivate the need for system
tuning of real-time systems we use the control of
physical systems. The two systems we choose for the
laboratory are from Quanser Systems [8]. We selected
their inverted pendulum and ball and balance beam
systems shown in Figures 3 and 4 respectively. In the
third course the students also experiment with
hardware/software co-design on a Digilent Spartan 3
FPGA board [2] shown in Figure 5. There is one FPGA
system at each student station.

Figure 3 – Quanser System Inverted Pendulum

Figure 1 – PC Development environment and Diamond
Systems pc-104 board target system showing picture-in-
picture target system console.

Figure 4 – Quanser System Ball and Balance Beam.

 Figure 5 – Digilent Spartan 3 FPGA Board

4. Laboratory software facilities
There is a set of software tools to complement the
hardware in the laboratory. The development stations are
running the Windows XP Professional operating system.
The MGTEK MiniIDE [7] supports assembly language
programming on the 68HC12 microcontroller. We
received a software grant from Wind River Systems [11]
allowing the use of VxWorks and the Tornado integrated
development environment. This is the commercial real-
time operating system that the students utilize in the
laboratory. Matlab and Simulink from The MathWorks
[6] are used for simulating and controlling the Quanser
experiments. We received software grants from IBM [4]
for the Rational Rose development suite and Rational
Rose Real-Time as UML modeling tools. Finally, the
students work with Rhapsody from I-Logix [5] as a UML
modeling tool. Rhapsody’s statechart modeling and code
generation features are used heavily in the second course
in the sequence.

5. Course concepts
We designed a sequence of three courses that provides
the student with broad exposure to the real-time and
embedded systems domain. The first course, Real-Time
and Embedded Systems, provides a general introduction
to the area. We expect that this course will have the
largest appeal across both disciplines with some aspects
particularly attractive to both the computer engineering
and software engineering students. The second course,
Modeling of Real-Time Systems, has a stronger software
engineering flavor. It covers UML modeling of real-time
and embedded systems. The third course, titled
Performance Engineering of Real-Time and Embedded
Systems, deals with measurement of system performance,
implementation of time-critical software and the fluid
hardware/software boundary. The next sections describe
these three courses in detail.

6. Real-time and Embedded Systems course
The first course in this elective sequence is titled Real-
Time and Embedded Systems. It presents a general road
map of real-time and embedded systems. It introduces a
representative family of microcontrollers that exemplify
unique positive features as well as limitations of
microcontrollers in embedded and real-time systems.
These microcontrollers are used as external, independent
performance monitors of more complex real-time
systems targeted on more robust platforms. The majority
of this course presents material on a commercial real-
time operating system and using it for programming
projects on development systems and embedded target
systems. Some fundamental material on real-time
operating systems is also presented. This course was first
offered at RIT in the spring of 2003. It has since been
offered three more times. The textbook for the course is
Real-Time Systems and Software by Shaw [9].

The topics covered by the class provide an introduction
to the area. Class discussion focuses primarily on the
fundamentals of real-time systems. The project work
spans the range from microcontroller assembly
programming through to application development under
a commercial real-time operating system.

The topics covered by the Embedded and Real-Time
Systems course include:

• Introduction to Real-Time and Embedded Systems
• Microcontrollers
• Software Architectures for Real-Time Operating

Systems
• Requirements and Design Specifications
• Decision Tables and Finite State Machines
• Scheduling in Real-Time Systems
• Programming for a commercial real-time operating

system

• Development for Embedded Target Systems
• Design Patterns for Real-Time Systems
• Language Support for Real-Time
• Real-Time and Embedded Systems Taxonomy
• Safety Critical Systems

There are several programming project assignments
given to the students. A pair of students works on each
assignment. As was mentioned previously, to the extent
that the registration numbers permit, a software
engineering and computer engineering student are paired
together. This course has a mix of projects that allows
the computer engineering student to provide the lead on
some and the software engineering student to lead the
others. The project assignments for this course are:

Microcontroller programming: students program the
68HC12 microcontroller to act as an interval timer
and as an independent system performance
measurement device. The microcontrollers used
assembly language programs to measure and
tabulate the inter-arrival times, the “jitter”, of a
series of 1000 pulses for several experiments
described later. The microcontroller’s timers have
no difficulty measuring the arrival times or
interarrival times of the pulses to 1.0 microsecond
resolution.

Real-Time Operating System multi-tasking primitives:
the main goal for this project is to have the students
become familiar with programming under a
commercial real-time operating system. Using
VxWorks as an example of a commercial real-time
operating system, students learn how to program
using its concurrency and synchronization
primitives. The team must implement a concurrent
system such as a transit simulation or an automated
factory. The programming is done within a
simulated target system running on the development
station.

Real-Time Operating System performance
measurements: there are two smaller projects that fall
into this category. These programs run on the target
systems. Both projects make use of the
microcontroller project as a timing device. In the first
project the students learn how to schedule a periodic
task under VxWorks. This task is toggling a bit on
the printer port. The microcontroller timer measures
the inter-arrival time and jitter of these software-
generated periodic pulses. The second project
measures the interrupt response time of the target
system by having the microcontroller measure the
time between generating an interrupt signal to the
target and receiving its response. These two projects
are run on the target systems, and the microcontroller

collects 1000 samples with 1.0 microsecond
resolution and displays the results.

Final project: there is a final programming project. This
project is usually of student motivated with each
team thinking of a project. We have seen
implementations of user-level drivers for the devices
on the target system, an ultrasound distance
measurement, simple video games, and a digital
oscilloscope.

Students are presented with two different embedded
processors and development environments and are
confronted with the strengths and weaknesses of each
platform/architecture and environment.

Using Bloom’s Taxonomy as a guide, the learning
outcomes for this course are given in Table 1.

Table 1
Learning Outcomes for Real-Time and

Embedded Systems Course
Knowledge
 • List the scheduling algorithms commonly used in real-time

systems.
• Describe the steps required to build, install and run a

software system on an embedded processor.
Comprehension
 • Discuss the event sequence for responding to an interrupt.

Application
 • Apply software engineering practices to the development

of several small real-time systems.
• Demonstrate the use of a micro-controller as an event

timer.
• Design and implement measurement tools to collect

system performance data.
• Design and implement a concurrent system on a real-time

operating system.
Analysis
 • Measure the performance of a real-time operating system.
Synthesis
 • Design and implement a small-scale real-time application

on a real-time operating system.

7. Modeling of Real-Time Systems course
The second course is titled Modeling of Real-Time
Systems. The course takes an engineering approach to
the design of these systems by analyzing a model of the
system before beginning implementation. The course
discusses primarily UML based methodologies.
Implementations of real-time systems are developed
manually from the models and using automated tools to
generate the code. At this point, this course has run
twice. Doing Hard Time by Douglass [3] is the textbook
for the course.

Topics covered by the Modeling of Real-Time Systems
course include:

• Introduction to Modeling of Real-Time Systems
• Basic Concepts of Real-Time Systems

• Basic Concepts of Safety-Critical Systems
• Use case analysis for real-time systems
• Structural object analysis for real-time systems
• Behavioral Analysis using statecharts
• Design patterns for real-time and safety-critical

systems
• Threading and Schedulability
• Real-Time Frameworks

This course has the strongest software engineering
emphasis. The projects progress through phases in the
standard waterfall process model with emphasis on
analysis and design of the software system. For the
software engineering students this is continued practice
in the UML modeling that they do in all the courses in
their program. The application areas chosen for the
projects, i.e. embedded systems, are significantly
different from the typical desktop and GUI-over-
database projects that they see in their other courses. In
this course the software engineering students take the
lead on most projects. Many computer engineering
students have not done any UML modeling since their
second-year software engineering course. The project
assignments for this course are:

Requirements and Architectural Design: this assignment
starts with the user manual for a consumer electronic
device. It requires the students to identify the actors
in the system and do a use case analysis. This is then
followed by an architectural design and high-level
class structural design. A home blood pressure
monitor and a digital video recorder are two devices
that students have modeled for this project.

Design and Implementation: this assignment starts with a
clear statement of requirements and requires the team
to do a class-level design and implementation. We
have used both end-user applications, (such as a four-
function calculator), and a simulation (of a controller
for a chilled water air conditioning system). The
implementation language is Java with the team
implementing a graphical user interface to control the
program.

Code Generation: through this course we place an
emphasis on statecharts as a mechanism for behavior
modeling of real-time and embedded systems. In this
project the students explore the code generation
features of the modeling tool they use. The teams
create a statechart-based definition of the behavior
and automatically generate C++ code for the
application. Typically, the team will be able to create
a fully-functioning application entirely from within
the statechart model. This is not to say that the team
writes no C++ code. Some adornments to states are
code snippets that get built into the code that the tool

auto-generates. For this project we have used a four-
function calculator and garage door opener controller.

Final Project: this project is a modeling exercise done as
a take-home final exam. Each student does a
thorough identification of actors, a use case analysis,
class structural design and system dynamic modeling
using sequence diagrams and statecharts. There is no
implementation of the systems which to date have
been a power window controller for a car and a
reverse vending machine that accepts containers for
recycling at a local supermarket.

Using Bloom’s Taxonomy the learning outcomes for this
course are given in Table 2.

Table 2
Learning Outcomes for Modeling Real-Time

Systems Course
Knowledge
 • Specify the characteristics of real-time and safety critical

systems.
Comprehension
 • Discuss the software process for the development of real-

time systems and contrast it with development for a
standard application.

• Identify architectural and design patterns for real-time
and safety critical systems.

Application
 • Apply architectural and design patterns in the analysis

and design of real-time systems.
Analysis
 • Model the dynamic behavior of a real-time system using

statecharts.
• Describe the requirements for simple real-time systems

using use cases.
• Model the structure of a real-time system using UML

class diagrams.
Synthesis
 • Implement a simple system on a real-time operating

system.

8. Performance Engineering of Real-Time
and Embedded Systems course

The third course is Performance Engineering of Real-
Time and Embedded Systems. This course is first being
offered during the spring quarter of 2005. As of this
writing, aspects of the course are still under
development. The course is roughly divided in half with
the first and second parts emphasizing performance of
real-time systems and embedded systems, respectively.
This course has an unusual combination of topics and we
have not identified a single textbook that is suitable. We
are covering the course topics with handouts and other
on-line resources for the students.

Topics covered by the Performance Engineering of Real-
Time and Embedded Systems course include:

• Performance measurements for real-time and
embedded systems

• Profiling of program execution in embedded systems
• Exploration of linear control systems
• Interpretation of linear control parameters
• Hardware system description languages
• Hardware/software co-design

The real-time part of the course presents the control of
physical systems on an intuitive level. The intent is to
give exposure to control system structure and
performance rather than have student design control
systems. The software engineers have no background in
controls. The computer engineering students are able to
contribute to the analytical and control algorithms from
their required control systems courses and will take the
lead on these projects. Students perform experiments
with the inverted pendulum system and a ball and
balance beam. These experiments highlight the effect of
parameter tuning and system load on control of the
physical apparatus. In future offerings, this set of
experiments will culminate with student implementations
of software controllers.

The embedded systems part of the course uses our target
system as the computing element running the VxWorks
commercial real-time operating system. We deliberately
chose a rather slow (100MHz clock) 486 processor for
our target systems so that we could more easily monitor
loading effects. This is close to power management
policies in low-power embedded devices that prolong
battery life by slowing the clock speed. In subsequent
course offerings, input and output devices will be
connected through an FPGA I/O controller. Students
will measure initial system performance when the I/O
controller is a pass-through interface between the
processor and the devices. The current offering has the
students performing a set of JPEG image compressions,
first using an all-software approach on the target system,
and then off-loading some of the computations to an
attached FPGA board. The students will then be able to
make a hardware-software co-design tradeoff by placing
more device control functionality in the FPGA. At each
step the students will measure the change in system
performance as the boundary between hardware and
software is moved.

Using Bloom’s Taxonomy the learning outcomes for this
course are given in Table 3.

Table 3
Learning Outcomes for Performance

Engineering of Real-Time and Embedded
Systems Course

Knowledge
 • Identify PID control modes

• Identify the major characteristics of a Field-
Programmable Gate Array (FPGA)

Comprehension

 • Distinguish differences between PID control modes
• Contrast effects of system parameters on control of a

physical system.
Application
 • Profile the execution of an embedded system

• Be able to program an FPGA doing minor revisions to
VHDL code

Analysis
 • Describe hardware/software tradeoffs in the design of an

embedded system.
• Analyze the profiling data to determine which areas of

the program would benefit most from performance
tuning.

• Compare performance of systems based on performance
data.

Synthesis
 • Design a test and measurement plan to collect system

performance data.
• Demonstrate the effects of moving the

hardware/software boundary in a design

9. Evaluation plan
This project has two components in its evaluation plan.

External evaluation: a faculty member from one of our
collaborating institutions evaluated our work at the
end of the first year in May 2004. At this same time
we had an external review by someone working in
local industry developing real-time and embedded
systems. Near the end of the NSF funding period in
June 2005 we will again arrange a review by faculty
from our collaborating institutions and local
industrial representatives.

Course evaluations and surveys: students enrolled in the
courses are given concept surveys at the beginning
and end of each course to assess their domain
learning through each course. Course evaluations
will ask students to assess the course materials, the
laboratory environment, the teaching effectiveness
and whether the course has increased their interest in
real-time and embedded systems or helped them get
a co-op or full-time position.

10. Future work
This section describes some areas for improvement that
have been identified and other activities for the future.

• One challenge has been to develop courses
interesting to the software engineers and computer
engineers. The Modeling course is very well liked
by the software engineering students but is not as
attractive to the computer engineers. We need to
balance the topics better so as to make the composite
more attractive to both groups of students. Even the
SE students suggest that we select projects with
more explicit time-dependent requirements. We will
also consider designing a project that requires
implementation on the Java Micro Edition platform.

• The main exposure to VxWorks is in our first
course. We do not have a strict prerequisite structure
within these three courses thus we are hesitant to put
projects requiring implementation on VxWorks in
the other two courses. We need to create a very
succinct tutorial on writing applications for
VxWorks that we can use in the two courses that
currently do not cover the RTOS in detail. It took us
quite a while to settle on a configuration for
VxWorks in the lab that could easily support 13
simultaneous target systems and give easy
distribution of new VxWorks images. We next need
to work on giving students the necessary control to
create their own images when their project is
developing a kernel-level driver. We will also
investigate the use of a real-time variant of Linux in
these courses.

• The lack of a suitable textbook for the performance
engineering course is an issue for that course. We
will assess the best approach to follow after the
course has run for its first time in our spring 2005
term.

• There are other devices that we would like to have
students use with their project work. At the top of
the list would be interfacing to cheap USB
webcams. Unfortunately, we have not yet identified
any cameras that publish their USB interface.

• A last element of dissemination of our work, which
will take place at the end of the project, is to collect
all of our course materials, projects, exams, etc. onto
a password protected website and publicize its
availability to the engineering education community.

• The facilities are mostly in place now and this has
attracted the attention of other faculty members. We
already have one faculty member scheduled to
develop a fourth course to be taught in the lab next
year.

11. Acknowledgements
This project is being conducted under the sponsorship of
a National Science Foundation grant under the Course,
Curriculum and Laboratory Improvement Program (NSF
DUE-0311269) and in collaboration with Professor
Yann-Hang Lee of Arizona State University and
Professor Ronald Schroeder of Southern Polytechnic
State University. We would also like to thank Mr. Todd
Mosher of Alstom Transport Systems for his review of
our project’s first year.

12. References
[1] Diamond Systems, http://www.diamondsystems.com.

[2] Diligent, http://www.digilentinc.com.

[3] Douglass, B. P., Doing Hard Time – Developing Real-Time
Systems with UML, Objects, Frameworks, and Patterns,
Addison Wesley, Reading, 1999.

[4] IBM Rational Software, http://www.rational.com.

[5] I-Logix, http://www.ilogix.com.

[6] The MathWorks, http://www.mathworks.com.

[7] MGTEK, http://www.mgtwk.com/miniide.

[8] Quanser Systems, http://www.quanser.com.

[9] Shaw, A. C., Real-Time Systems and Software, John Wiley
& Sons, Inc., New York, 2001.

[10] Starnes, T, "Microcomputers Infest the Home", Gartner
Research, Inc. 2002.

[11] Wind River Systems, http://www.windriver.com

