
The ‘Little Man Storage’ Model

Larry Brumbaugh William Yurcik

National Center for Supercomputing Applications (NCSA)
University of Illinois Urbana-Champaign

{ljbrumb,byurcik}@ncsa.uiuc.edu

Abstract

A simple but powerful storage model is described that

has close correlation to generic storage systems.
Extending the Little Man Computer paradigm developed
by Stuart Madnick and John Donovan during the 1960s at
MIT (where it was taught to all undergraduate computer
science students), this paper describes a comparable
development undertaken for disk and tape storage
devices. A “Little Man Storage” paradigm is proposed to
simplify the explanation of how storage devices function
and how data is maintained by those devices.

1. Overview
For over forty years the Little Man Computer (LMC)
paradigm has proved to be a simple but powerful and
long-lived tool for teaching computer architecture to
undergraduates in a field where a product is considered
obsolete after 5 years (8 generations!). The authors of this
paper have taught for many years with LMC simulators
and have documented how LMC simulators can be useful
teaching tools [1-4]. However, as computer architectures
have evolved over time, subsystems within computers
have also grown in complexity and capability such that
their operation can no longer be effectively explained to
undergraduates without new educational support.

In this paper we propose a new paradigm for teaching
about storage systems, a core embedded subsystem
coordinated with the larger computer architecture that has
grown in complexity and capability to necessitate separate
treatment. In fact many storage systems today have
under-utilized processor capabilities such that we feel
teaching storage systems may actually have an impact on
future developments.

We propose a “Little Man Storage” model for teaching
about storage systems consisting of elements similar to
“Little Man Computer”. By using ecological design in
which model elements have intuitive meaning from
human experience, we believe that a Little Man Storage
(LMS) model may provide benefit in courses where
storage systems are studied comparable to the impact of

Little Man Computer. The LMS paradigm is consistent
with the SNIA Shared Storage Model [5] that was
developed to help standardize storage concepts across
vendor platforms. This paper provides a conceptual
overview of LMS as a precursor to a simulator
implementation. It is our hope for feedback that can be
incorporated into near-term development. This paper is
meant as a discussion of educational techniques for
communicating complex concepts in a learning
environment and not as a tutorial, we assume readers a
basic understanding of disk storage devices and how they
store and manage data.

The remainder of the paper is organized as follows:
after reviewing the LMC paradigm in Section 2, the LMS
model is described in Section 3. In Section 4 the relevant
LMS conceptual elements identified. Section 5 compares/
contrasts LMC and LMS to highlight our contribution. In
Sections 6 and 7 file storage and data management are
modeled. The discussion and examples focus exclusively
on disk storage. An example is given of a typical storage
processing operation that illustrates the individual steps
within the operation and examples are also given that
show the changes that occur in the storage device itself.
Although not discussed in this paper, a small subset of
this material can be used to illustrate tape/cartridge
processing.

2. The Little Man Computer Paradigm

The LMC paradigm has stood the test of time as a
conceptual device for helping students understand the
processing that takes place inside a computer. One of its
greatest strengths is its simplicity. The paradigm consists
of a walled mailroom, 100 mailboxes numbered 00
through 99, a calculator, a two digit location counter, an
input basket, and an output basket. Each mailbox is
designed to hold a single slip of paper upon which is
written a three digit decimal number. Note that each
mailbox has a unique address and the contents of each
mailbox are separate from its address. The calculator can
be used for input/output operations, temporarily store
numbers, and to add and subtract numbers. The two-digit

location counter is used to increment the count each time
the Little Man executes an instruction. The location
counter has a reset located outside of the mailroom.
Finally there is the “Little Man” himself, depicted as a
cartoon character, who performs tasks within the walled
mailroom. Figure 1 illustrates the major components of
the LMC paradigm. Other than the reset switch for the
location counter, the only communication a user has with
the Little Man is via slips of paper with three digit
numbers put into the input basket or retrieved from the
output basket.

Figure 1. Little Man Computer and the Walled

Mailroom

 The authors have written several papers [1-4]
describing use of a LMC simulator to enhance the quality
of computer science courses, specifically those that
emphasize architecture, hardware/software, and operating
systems concepts. The two simulators developed by the
authors are part of a larger worldwide effort to construct
LMC simulators some of which are described in [3]. We
feel these widespread developments validate both the
utility and continuous interest in the LMC paradigm.

3. The LMS Model

We intend to leverage the LMC paradigm with
corresponding conceptual analogies. In particular, the
basic philosophy utilized in the LMC model is to
minimize the functional details and physical structure
while still allowing the important conceptual features to
be clearly illustrated. The LMS model described here
would have been valid with the disks of 30 years ago.
However, more importantly it provides insight into
modern storage systems. Furthermore, this paper
describes a model, not a working simulation, but all the
moveable pieces for the working simulation are presented.

Recall that a disk storage device contains several
moveable components including: a) the revolving platters
where data are stored, b) an access arm that moves to the
designated location for the data and c) a mechanism for
copying data between the buffers and the hard drive

during input and output operations. Little Man Storage
itself, again depicted as a cartoon character, performs all
three of these functions.

4. LMS Hardware

The LMS disk device consists of two platters where
data can be stored on both sides of a platter. Both the top
and bottom surfaces of each platter surface contain three
concentric tracks. Hence, the storage device consists of
three cylinders. Each track consists of eight areas and all
areas store exactly 512 bytes of data. Table 1 specifies the
numbering scheme used to identify actual locations on the
device. Figure 2 shows both sides of a platter.

Table 1. Basic Hardware Components of LMS

Storage Device
Components

ID Numbering Scheme for the
Component

3 cylinders 0, 1, 2 (independent of platter surface)

4 tracks per cylinders 0, 1, 2, 3 (0/1 1st platter & 2/3 2nd platter)
8 areas per track 0, 1, 2, 3, 4, 5, 6, 7 (same data each area)

Figure 2. Both Sides of a Disk Platter

Side 1

A
B

C

7 0

6

5 2

1

4 3

Side 0

a
b

c

7 0

6

5 2

1

4 3

Areas can be referenced with values from 000 to 237.
Address xyz identifies the location of the cylinder, platter,
and area respectively. The small size of the storage device
allows decimal numbers to be used for all three values,
which simplifies addressing. Total disk capacity is 48K
(=3 cylinders * 4 tracks/cylinder * 8 areas/ track * .5K
bytes/area. Figure 2 shows one of the two platters in the
storage device. The three area locations denoted by a, b,
and c in Figure 2 have addresses of 007, 100 and 202
respectively. Area locations A, B and C have addresses of
017, 110 and 212 respectively. An alternative approach
that was briefly considered that numbered the areas from
00 to 95.

Figure 3. Physical Components that comprise an

LMS Storage Device

The LMS model consists of the physical components
shown in Figure 3. The disk controller is ‘Little Man’
(cartoon character) who provides the intelligence for disk
operation and can perform a limited number of simple
functions. In particular, LMS decodes and executes the
commands sent to it from the attached server/computer. In
implementing the commands, LMS uses one of its arms to
read-data-from and write-data-to the hard drive (HD). The
HD consists of the platters where data is actually stored.
Communication paths called I/O buses connect the
storage device to the source/destination of its data.
Buffers are intermediate storage areas (pieces of paper)
where data is placed both prior to copying it to storage
and after retrieving it from storage and before sending it
to the external device. There is one buffer (piece of paper)
for data going in each direction.

In adhering to the LMC simplification principle, the
disk contains no cache. Likewise, there are no auxiliary or
reserved areas/tracks that can be used to replace parts of
the disk that become defective. If part of an LMS device
becomes inoperable, there is no way to designate
processing options. No timing considerations are provided
for any of the electromechanical components of the
devices. Little Man Storage performs all the physical
processing associated with the device. This includes using
one arm to rotate the platters in the HD, using the other
arm to move over a specific cylinder and then with the
same arm copying the data to/from the HD.

5. Comparing Little Man Computer and
Little Man Storage

Table 2 provides a comparison of the environments
provided by the two paradigms and the types of physical
acts that the Little Man must perform in each of them.

Table 2. Comparing LMC and LMS
Characteristics

Environment/Physical Act
Compared

Little Man
Computer
(LMC)

Little Man
Storage
(LMS)

historic relevance of paradigm from 1960’s to
present

from 1970’s to
present

type of hardware device
described

computer disk storage
device

actual hardware location
of Little Man intelligence

CPU control
unit

storage
controller

locations where data is stored 100 mailboxes
(00-99)

96 disk areas
(000-237)

methods for performing I/O
operations

read/write slips
of paper

read/write disk
areas

programmable device? yes no

I/O bus(es) to /External
 Devices
 such as
 Server(s) +
 Computers

Disk Controller

This is Little Man Storage

HD

Input B
uffer

O
utput B

uffer

6. File Storage and Data Management

The LMS storage device consists of 96 areas where 94
areas are used to store data and 2 areas are reserved to
help manage the other 94. Area 000 contains a LIST of all
files stored on the device. This is the only (the root) LIST
on the disk. It is of fixed size (one area) and cannot be
expanded. Table 3 shows the values stored in the LIST for
several files. The location of the initial data in the file is
specified in the Area Start Location as a (cylinder, platter,
area) location. For simplicity, there are no attributes that
can be assigned to a file. When a file is created, LMS
adds a new row in the LIST. A new row is always added
following the last or bottommost current LIST entry. If a
file is deleted, its line in the LIST is erased. This is
denoted as <blank> in Table 3.

Table 3. LIST Structure for the Disk

File Name Size (Bytes) Area Start Creation Date

ALPHA.doc

10

006

06/06/2005

X.Y.Z 5000 128 09/18/1997

<blank> - - -

NextFile1234.txt 0 225 12/25/2002

************** - - -

Area 001 is used to manage the data areas that the

device contains. Each of the 94 data areas either holds
data associated with a file or is a free (unused) area. New
files and additions to existing files obtain their storage
from the free areas. It is the job of LMS to utilize this
information in area 001 to retrieve and store files. LMS
must also modify this information when necessary.

Initially, when the disk is first formatted, LMS marks
areas 002 through 237 as free. This information is kept in
a Free-Area-List. Whenever a file is created, one or more
of the free areas are assigned to hold its data. When a file
is deleted, the areas where its data were stored are
returned to the Free-Area-List. Area 001 holds the Area
Utilization List (AUL), where LMS stores information
about the data areas. There are 96 entries in the AUL. The
first two are used to manage the Free-Area-List and are
described in the next section. The others entries are either
used to identify the storage areas assigned to individual
files or are a part of the Free-Area-List. Table 4 shows the
initial portion of an AUL after 2 files have been written to
the storage device. One file occupies 4 areas (002, 003,
005 and 006) while the second file occupies a single area
(004). A value of 999 identifies the final area in a file.
Note that areas 007 and 008 are either part of the same
file or both are free areas. Free areas are shown in italics.
LMS itself does all of this reading and writing of
information.

Table 4. Contents of Area 001 Showing Storage
Allocation after Two Files are Written

Area Number Next Area Location in File
000 007 (first free area) *
001 00N (last free area) *
002 003 (file continuation)
003 005 (file continuation)
004 999 (end of file)
005 006 (file continuation)
006 999 (end of file)
007 008

237 999

Table 3 shows that the LIST entry for a file identifies only
the first area assigned to it. The rest of the file location
information is stored in the AUL. The AUL identifies the
areas that are linked together to provide storage for the
file. The final area contains a Next Area Location value of
999, meaning this is the last area associated with the file.
Storage for a file need not be in contiguous areas. The
areas that are not assigned to any file are tied together in
the Free-Area-List. The areas at the beginning of this list
are used to satisfy subsequent requests for storage. The
Table 4 structure is actually an oversimplification used to
clarify processing details. In reality, the AUL only needs
to contain the rightmost column of values since LMS can
determine the Area Number from its physical position in
the list (by counting from the beginning of the list).

7. Additional Storage Model Parameters

LMS must remember three important values. It uses
the first value to find an initial free area for new files and
additions to existing files. This value is stored as the very
first entry in the AUL (see Table 4). When additional
storage is needed, LMS looks in this location and begins
writing data to the corresponding area it identifies.
Additional free areas can then be determined using the
Free-Area-List. Once the last free area needed for the
current processing operation is determined, its Next Area
Location (the next free area) becomes the new first value
in the AUL. Similarly, the second entry in the AUL
identifies the final area in the Free-Area-List. When a file
is deleted, its areas are added to the Free-Area-List
following the area identified in the second AUL entry.
The final area added to the list becomes the new value in
location 2 of the AUL.

The third important value is the final entry in the LIST,
which is identified by following it with a ‘fake’ file name
entry of ‘********************’. The LIST is a white
board where LMS writes entries for new files at the
bottom of the board and erases entries for deleted files.
Once the bottom of the board is reached, the LIST is

considered full and must be ‘reorganized’. If there are
unused erased rows on the board, rows on the bottom are
copied to the currently erased rows and then erased from
the bottom of the board. Following the LMC principle of
simplicity, the LMS model places restrictions on the LIST
structure and on the number of files that can be stored.
With some effort this limit can be raised and
subdirectories can also be used. Since this clearly will
result in a more complexity, it is not discussed here.

Whenever a file is created, it is assigned one initial
area. If no data are written to the file, LMS writes
End-of-File at the beginning of the area. An area is
never split between two distinct files. Hence, every file
requires at least one area of storage and the maximum
number of files is 94. An alternative approach that was
strongly considered assigns the Start Location entry in the
LIST for an empty file to a special value such as 999.

8. Storage Processing Operations

In the same manner that the CPU of a computer
executes instructions, a storage device controller such as
Little Man Storage is capable of executing a pre-defined
group of commands that create, delete, store, retrieve and
process data. Although some storage devices support a
wider range of operations, we limit LMS to five
commands as shown in Table 5. LMS processes complete
files and individual records must be identified in the
application programs (since storage devices are unaware
of logical records). Each buffer can hold one area of data.
A physical record consists of all the data in an area. LMS
determines the actual location of a physical record that it
needs by combining information from the command itself,
the LIST, and the AUL. Each command is composed of
steps in the same way that CPU instructions are composed
of steps. EXAMPLE 1 illustrates the steps performed as
part of a Read File command.

Table 5. Basic I/O Commands Supported by LMS

Command OpCode Processing Performed by Command
Create File 00 Write an entry in the LIST, including

create date, etc.
Initialize one Free-Area-List area to
End-of-File.

Delete File 01 Erase the file entry from the LIST.
Return all AUL entries associated with
the file to the Free-Area-List.

Read File 02 Begin in the LIST and then go through
the corresponding AUL entries.
With the alternative approach noted
above, can also start in the AUL table.

Write File 03 Add data starting with the first area on
the Free-Area-List.
Write ***End-of-File*** after the last
record is written.

Append File 04 Follow the AUL entries for the file to
the one containing 999.
Add new records in a new area and
replace 999 with new area number.

All commands have the same basic syntax |op-
code|filename|optional data|. In the case of Write and
Append commands, the data to be written immediately
follows the command code and file name. Op-codes are 1
byte in length, while file names are 20 bytes and can
contain any printable characters. For example, |3|MY-
NEW-INFO |*****| is a command to write 5
asterisks to a file called MY-NEW_INFO.

EXAMPLE 1: A paper is placed in the input buffer
that says to get the data in the ALPHA.doc file. LMS
looks at the command in the buffer and reads it, noting the
command code (02) and the file name. LMS looks in the
LIST and sees that initial data in ALPHA.doc begins in
area 002. It rotates the disk until that area can be
accessed. It copies the data from area 006 to the output
buffer. LMS then looks in the AUL and notes the entry
for area 006 identifies additional ALPHA.doc data in area
013. It uses one arm to move the disk to this location and
the other arm to copy the data from 013 to the output
buffer. This processing continues for every area where
ALPHA.doc data is stored. When an AUL entry of 999 is
found, the Read File operation is complete.

9. Detailed Processing Examples

Two examples are now given to illustrate all of the
LMS components discussed to this point. Throughout all
of these examples an unrealistic assumption is made that
every operation is performed successfully. There is no
way to recover from an invalid or incorrect operation.

EXAMPLE 2: It is assumed that the HD is formatted
and all 94 data areas are free. File AA is created and
several small records are written to it. File BB is created
and enough records are written to it to fill three areas.
Several additional records are then added to AA,
requiring a new area to be allocated using an Append File
command. A third file GG is created, but no records are
written to it. Finally, file DD is created and three areas
have data written to them. Figure 4 shows the relevant
areas following the processing. The first two areas contain
the LIST and the AUL.

 0 1 2 3 4 5 6 7

00

-

-

AA

BB

BB

BB

AA

GG

01

DD

DD

DD

-

-

-

-

-

02

-

-

-

-

-

-

-

-

Figure 4. Disk Status Following the I/O

Operations in EXAMPLE 2

EXAMPLE 3: This example begins immediately after
the processing in EXAMPLE 2 has completed. File AA is
deleted. Two new files called SS and RR are created and
one byte of data is written to each file. Additional records
are then written to SS. Figure 5 shows the relevant areas
following the processing.

 0 1 2 3 4 5 6 7

00

-

-

-

BB

BB

BB

-

GG

01

DD

DD

DD

SS

RR

SS

-

-

02

-

-

-

-

-

-

-

-

Figure 5. Disk Status Following the I/O Operations in

EXAMPLE 3

10. Summary

We have introduced a new Little Man Storage model for
teaching about computer storage systems. While this
paper focuses primarily on conveying disk storage
concepts, work is underway for developing a Little Man
Storage software simulator that extends the storage
concepts demonstrated beyond disks. Results from the
educational use of this model will also provide feedback
on the effectiveness of this model in targeted learning
environments.

11. References

[1] W. Yurcik and L. Brumbaugh, “Using LMC Simulator
Assembly Language to Illustrate Major Programming
Concepts,” Info. Systems Education Conf. (ISECON), 2001.

[2] W. Yurcik and L. Brumbaugh, “A Web-Based Little Man
Computer Simulator,” 32nd Technical Symposium of Computer
Science Education (SIGCSE), pp. 204-208, 2001.

[3] W. Yurcik and H. Osborne, “A Crowd of Little Man
Computers: Visual Computer Simulator Teaching Tools,”
Winter Simulation Conference (WSC), 2001.

[4] W. Yurcik, J. Vila, and L. Brumbaugh, "An Interactive Web-
Based Simulation of a General Computer Architecture," IEEE
Intl. Conf. on Engineering & Computer Education (ICECE),
2000.

[5] SNIA Shared Storage Model White Paper.
<http://www.snia.org/tech_activities/shared_storage_model/
SNIA-SSM-text-2003-04-13.pdf>

